
 

 
International Journal of Chemical Sciences 

 Research | Vol 15 Iss 3 
 

Citation: Rajput US and Shareef M. Unsteady MHD Flow Past Impulsively Started Vertical Plate in Porous Medium with Heat Source 

and Chemical Reaction. Int J Chem Sci. 2017;15(3):154. 

© 2017 Trade Science Inc. 1 
 

Unsteady MHD Flow Past Impulsively Started Vertical Plate in Porous 

Medium with Heat Source and Chemical Reaction 

 

Rajput US1 and Shareef M2*  

1,2Department of Mathematics and Astronomy, University of Lucknow, Lucknow, India 

 

*Corresponding author: Shareef M, Department of Mathematics and Astronomy, University of Lucknow, Lucknow, India, 

Tel: 8840951415; E-mail: rajputshareeflu@gmail.com  

 

Received: May 10, 2017; Accepted: June 28, 2017; Published: July 03, 2017 

 

Introduction 

The convective boundary layer flow along an infinite flat plate is one of the important problems. An impulsive motion of a 

plate in a viscous fluid was studied by Stewartson [1,2]. His study was completely based within the context of boundary 

layer equations. If the fluid is electrically conducting then the magnetic field can stabilize such a flow within a porous and 

non-porous medium. And the magneto hydrodynamic flow with heat generation and chemical reaction is widely used in 

many engineering processes with applications in industries. In recent years, considerable progress has been made in the 

study of the thermo physical properties affecting magneto hydrodynamic flow. For instance, the magneto hydrodynamic 

flow of a vertical permeable uniformly stretched surface with chemical reaction and heat absorption/generation was studied 

by Chamka [3]. He solved the problem analytically and observed that the Prandlt number, Schmidt number and the strength 

of magnetic field retard the fluid velocity. Prasad et al. [4] analyzed the 2-D impulsive motion of an infinite vertical plate 

with mass transfer and radiation. They solved the model by finite-difference method and observed that when the radiation 
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parameter increases, the fluid velocity decreases near the plate. Further, Ibrahim et al. [5] studied the effect of chemical 

reaction on magneto hydrodynamic flow with mass and heat transfer along a moving vertical porous plate. Further Ibrahim 

et al. [6] extended their work by considering the radiation on the same model.  

 

Hall current term in generalized Ohm’s law cannot be neglected for the problems having a strong magnetic field. Also, the 

rotating flow of incompressible, electrically conducting and viscous fluid has abundant geophysical and astrophysical 

applications. So, many scholars have studied such models, for instance, Agarwal et al. [7] studied the combined effect of 

Hall current and dissipation on rotating fluid with free convective motion. Seth et al. [8] worked on unsteady hydro 

magnetic free convective flow along a moving vertical plate with rotation and thermal radiation in porous medium and 

observed that rotation retards fluid velocity in primary flow direction; whereas it accelerates fluid flow in the secondary 

flow direction in the boundary layer region. Some other scholars such as Prakash et al. [9], Ramana et al. [10] and Reddy 

MG [11] have studied the MHD flow with radiative heat-mass transfer and chemical reaction. The present model analyzes 

the combined effect of rotation and Hall current on unsteady magneto hydrodynamic convective flow past along impulsively 

started vertical flat plate with a heat source and chemical reaction in a porous medium. 

 

Mathematical Model 

Consider viscous, electrically conducting and incompressible fluid through porous medium. Let 'x   axis be chosen 

vertically upward along the motion of the plate. And the normal direction of the plate is taken along the z' axis. Also, the 

plate and the fluid are rotating together as a rigid body about z' axis with a constant angular velocity ' . A constant 

magnetic field 
oB  is applied along z'  axis. As the plate is infinitely long lying in the ' 'x y  plane; so, various physical 

variables involved in the problem are considered as the functions of 't  and 'z  only.  

 

Initially at a time ' 0,t   the system is at rest; and has a constant temperature and concentration T
and C

 respectively. At 

the time ' 0t  , the plate starts moving with a constant velocity ou along 'x   axis. Also, the concentration and temperature 

of the plate are raised to
pC and 

pT respectively. The impulsive motion of the plate and the free convection causes the 

disturbance in the fluid. From electric charge conservation equation . 0J    , we have 
'zJ   constant, where

' ' '( , , )J x y z J J J  is the current density vector. As the plate is non-conducting, so at the plate 
' 0.zJ   Thus 

' 0zJ   

everywhere in the fluid. Under the above assumptions, the governing equations with Boussinesq’s approximation are as 

follows: 
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The boundary conditions taken are as under:  

' 0 : ' 0, ' 0, ',

' 0 : ' , ' 0, , ' 0,

' 0, ' 0, , ' .

o p p

t u v T T ,C C    z

t u u v T T C C  at z

 u v T T C C   as   z

 

 

     


      
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     

        (5)  

Taking Hall current into account and neglecting the electron pressure gradient, the ion slips and the thermo-electric effects, 

the generalised Ohm’s law is given as-  
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 To obtain the equations in non-dimensional form, the following dimensionless parameters are introduced:  
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(7)  

Using equation (7), equations (1), (2), (3), (4) and (5) respectively, become: 
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To solve above system, assume V u iv  . Then using equations (8) and (9), we get, 
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The boundary conditions (12) are transformed:  
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The dimensionless PDEs (10), (11) and (13), with the boundary conditions (14) are solved with the help of Laplace 

transform method ( 1 & 1 r cP   S ).  
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The skin-friction components
x and 

y are obtained as: 
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Results and Discussion 

To examine the influence of chemical reaction, magnetic field, heat source, rotation, Hall current and time on flow, a 

number of selected graphs for velocity versus boundary layer length are shown in FIGURES 1 to 9. These graphs show that 

the magnitude of primary velocity u and secondary velocity v decrease rapidly on increasing boundary layer length to 

approach free stream value. From the FIGURES 1 and 2, it is observed that with the increase in cr
(chemical reaction 

parameter) both the components of velocity go on decreasing. The rate of decrease becomes sharp with an increase in 

rotation. Effect of bouncy force can be seen from FIGURE 3, which shows that the buoyancy force accelerates the flow in 

both the directions. This is because of an increase in the values of thermal and mass Grashof number. FIGURES 4, 5 and 6 

show the effect of Hall current on the fluid velocity at the different rotation. It is noticed that the velocity of the fluid in the 

primary direction increases, whereas secondary velocity decreases on increasing Hall current parameter m. This shows that 

Hall current tends to accelerate fluid flow along the primary direction; whereas it tends to retard secondary velocity 

throughout the boundary layer region. It can be observed that the Hall current stabilizes the fluid velocity only if the 

strength of applied magnetic field is strong (FIGURE 6). FIGURE 7 shows that the magnetic field parameter retards the 

flow in the primary direction while accelerates the flow in the secondary direction. It is because of an applied transverse 

magnetic field which produces a resistive type force known as the Lorentz force. FIGURES 8 and 9 illustrate the influence 

of heat source parameter Q at different instant of time. In both the cases, Q accelerates the flow in both the directions. But as 

the time increases the rate of increase becomes high. FIGURES 10 and 11 displays the variation of the temperature 

distribution in the fluid near the plate with heat source parameter at a different time for 0.71rP   . It is found that at a 

particular instant of time temperature in the system increases with the increase in the heat source parameter. FIGURES 12 
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and 13 depict concentration distribution at different times which shows that an increase in cS
 or rc

reduces the thickness of 

the concentration boundary layer. TABLE 1 display the variation of skin friction due to variation in chemical reaction 

parameter rc at different rotation. It is found that for a fixed rotation, x  increases with rc , and 
y decreases with increase in

rc .  

TABLE 1. Skin-fiction for rc . 
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FIG. 1. Velocity profile for rc at Ω= 2 . 
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FIG. 2. Velocity profile for rc at Ω= 4   

 

 

FIG. 3. Velocity profile for rG and mG . 
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FIG. 4. Velocity profile m at M = 1.5 and Ω = 0.2 

 

 

 

 

FIG. 5. Velocity profile for m at M = 1.5 andΩ = 1. 
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FIG. 6. Velocity profile for m at M = 2.5 andΩ = 0.2. 

 

 

 

FIG. 7. Velocity profile for M . 
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FIG. 8. Velocity profile for Q at t = 0.3 

 

 

FIG. 9. Velocity profile for Q at t = 0.4. 
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FIG. 10. Temperature profile Q at t = 0.2. 

 

 

 

 

FIG. 11. Temperature profile for Q at t = 0.5. 
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FIG. 12. Concentration profile for 
cS and 

rc at t = 0.1. 

 

 

 

FIG. 13. Concentration profile for and at t=0.6. 

Conclusion 

It is found that Hall current has a tendency to accelerate the primary flow while it retards secondary flow. An increase in the 

chemical reaction parameter corresponds to decrease in both the component of the fluid velocity as well as the concentration 

in the system. However, the fluid velocity in both the directions as well as the temperature increases with the increase in 

heat source parameter. Also, the solution (15) obtained is valid only for 1rP  and 1cS  . For the case when 1rP   and 
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1cS , the thicknesses of concentration, momentum and thermal boundary layers are of the same order of magnitude. It is 

also found that 
x  increases and 

y gets decreased with rc .  

 

Symbols 

Cp: specific heat at constant pressure                                            v´: secondary velocity of the fluid                                                 

Cr: dimensionless chemical reaction parameter                            v: dimensionless secondary velocity of the fluid 

D: mass diffusion coefficient                                                         z: dimensionless spatial coordinate normal to the plate 

g: acceleration due to gravity                                                         α: thermal diffusivity 

Gm: mass Grashof number                                                              β: volumetric coefficient of thermal expansion 

Gr: thermal Grashof number                                                            β*: volumetric coefficient of concentration expansion 

Ke: mean absorption coefficient                                                      :
 
dimensionless temperature 

K´: permeability parameter                                                             v: kinematic viscosity 

m: Hall parameter                                                                            ρ: density of fluid 

M: magnetic field parameter                                                            ϭs: Stefan-Boltzmann constant 

Pr: Prandlt number                                                                           e: electron collision time 

Qo: heat source coefficient                                                               : dimensionless concentration 

Q: dimensionless heat source coefficient                                         e: cyclotron frequency of electron 

Sc: Scthimth number                                                                        : dimensionless rotation parameter 

t: dimensionless time 

u´: primary velocity of the fluid 

u: dimensionless primary velocity of the 

fluid 

e  
electron collision time 

e  
cyclotron frequency of electron 


 
dimensionless rotation parameter 
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