X-ray crystallographic studies on tetra methyl thiram disulphide or bis (dimethyl thiocarbamoyl) disulphide

Rachna Tiwari ${ }^{1}$, Jyotsna Chauhan*1, R.K.Tiwari ${ }^{2}$
${ }^{1}$ Physics Department in Rajeev Gandhi Technical University, Airport Bypass Road, Gandhi Nagar, Bhopal-462036, (INDIA)
${ }^{2}$ Physics Department in Jiwaji University, Airport Bypass Road, Gwalior, (INDIA)
Phone: 0755-2677343, 0755-2678812; Fax: 0755:2742006/2
E-mail: jyotsnachauhan2006@gmail.com
Received: 25 ${ }^{\text {th }}$ June, 2007 ; Accepted: $30^{\text {th }}$ June, 2007

Abstract

It has been observed that some of the fungicides are loosing their effects and becoming resistant to them. Analogous compounds can be designed as substitute, if their structures are known. A rational approach to test these fungicides is to know the three dimensional structure of these compounds and macromolecular receptor sites as well as their molecular complex The structures of these compounds can be obtained by X-ray diffraction method in crystalline form and they will invariably be similar to their structure in solutions. The composition of Tetra methyl thiram disulphide or bis (dim ethyl thiocarbamoyl) disulphide crystals are confirmed by comparing the infra-red spectra of the two components. The Unit cell parameters are $a=6.9130(10) \AA, b=6.9250(10) \AA c=11.8020(10) \AA$ the space group is P1. © 2008 Trade Science Inc. - INDIA

KEYWORDS

X-ray crystallography; Systemic fungicides; Triazole structure.

INTRODUCTION

Thiram is the coined name for tetramethyl thiram disulphide or bis (dimethyl thiocarbamoyl) disuiphide. The molecular weight of thiram is 240.4. It is white coloured substance which is essentially insoluble in water slightly soluble in alcohol and ether and completely soluble in acetone and chloroform. It is unstable in the presence of acids. Being carbomate fungicidal compound thiram is toxic if consumed orally.As a part of research, X-ray crystallographic analysis of this fungicidal compound was carried out to study the effect of substituents on the molecular geometry and conformation of fungicidal compound with the main object to understand their biological activity.

EXPERIMENTAL

It was developed by E.1. du Pont de Nemours and Co. in 1931. The crystals were grown at 20° from its solution in acetone by slow evaporation method. The unit cell parameters were determined directly by automatic computerized 4 Enraf Nonious CAD-4 diffractometer in ω - 2θ scan mode using Nickel filtered CuKa , radiation with range of 3.8 to 69.94°. These data showed $a=6.9130(10) \AA, b=6.9250(10.) \AA$, $\mathrm{c}=11.8020(10) \AA$. The space group is P1. The density of the crystal was measured by floatation method, in the mixture of benzene and carbon tetrachloride at room temp. Its calculated density is $1.469 \mathrm{mg} / \mathrm{m}^{3}$ and measured density is $1.454 \mathrm{mg} / \mathrm{m}^{3}$

Fual Papro

Data collection and structure solution

The three dimensional intensity data were collected on a computerized automatic 4-circled CAD-4 EnrafNonious diffractometer using Nickel filtered $\mathrm{CuKa}(1.5418 \mathrm{~A})$ radiation at Deptt. of Biophysics AIIMS New Delhi. All these data were corrected for Lorentz and polarization effect, but no absorption correction was applied. The total number of reflection were 2247. The unique reflections corresponding to intensity limit were 2064. The hkl values varies from $0<=\mathrm{h}<=8$, $-8<=\mathrm{k}<=8,-14<=\mathrm{k}=14$ respectively. The crystal structure was solved using the SHELXS-97. The ORTEP Diagram is shown in figure 1 and packing diagram is shown in figure 2.

Refinement

For determination of structure of the crystal VAX machine using SHELXS- 97° was used. In the beginning all the non-hydrogen atom'. are located The coordinates thus obtained are fed to SHELXL-97 for refinement The first three cycles of isotropic refinement gave on R value of 16.21%. To reduce R to 14.25% given form of refinement of structure with individual an isotropic temp. factors is in exponential form was implemented

$2 \mathbf{P}^{\wedge}\left[1++2 \mathrm{hKa}^{*}{ }^{*}\right.$ *U12]

All the hydrogen atoms were fixed geometrically and not included in the refinement. The refinement was terminated when all the shifts indicated for parameters of non-hydrogen atoms were less than the corresponding standard deviation. The final R index was 13.46% for all the observed reflections.

RESULTAND DISCUSSION

The molecule consists of two diethyl, dithocarbamato moieties connected through $S(2)-S(3)$. The $S(2)-S(3)$ bond length is of $2.0077(16) \mathrm{A}$. The conformation of the molecule is similar to that of thiram monosulphide and even more so that of several sulphides This is also a good ideal system for the study of deformation density. For the reasons, the molecule contains various C-N, C-S, S-S bonds.If the molecule is divide along $S(2)-S(3)$ bond in two equal halves, it shows symmetry in parameters. Each of the two dimethyldithiocarbamato crystals approximately plan-

Figure 1: ORTEP drawing at 50% probability level

Figure 2 : The moleculer pacing seen down b-axis
ner. The dihedral angle around $\mathrm{S}(2)-\mathrm{S}(3)$ bond is $88.38(17)^{\circ}$. The length of the C-N and terminal C-S bonds are intermediate between the values expected

(I)

(II)
for single and double bonds, indicating that the canonical form II makes a substantial contribution of the structure.

The high double bond character of these bonds also affects the C-N stretching frequencies of the infrared spectrum, which were shifted considerable towards higher frequency from the normal C-N region.

It may be. added that in tetramethyithiram disulphide the two halves of the molecules are required to be equivalent by space group-symmetry. In these molecules, the terminal 5 atoms of each dithiocarbamato crystal is 3.8-3.9 \AA from the central, SpC of the other moiety. Strong intra-molecular non- bonded interactions and structural non-equivalence of the two halves of the molecule seen to be peculiar of the thiuram monoscul phides. It is of interest to see the two C-S 'double' bonds happen to have exactly equal length 1.648 (3) \AA and $1.652(4) \AA$, and the length of two central C- N bonds are equal [within experimental error] and $1.312(5) \AA$. Also the lengths of the four $\mathrm{N}-\mathrm{CH}$ bonds are in reasonable agreement. It is well known that among the several factors affecting the values of bond angles is Sp Sp hybridized centres. An important role is played by the repulsions between bonding (non-bonding) electron pairs in the valence shell of the central atom. In a survey of the molecular geometries of urea derivatives the value of the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ angles has been found tc increase regularly with the length of opposite bond. CO . This results is easily accounted for in terms of varying repulsions between bonding electron pairs in valance cell of C.

ACKNOWLEDGMENT

The Financial assistance provided by Deptt of Science and Technology (D.S.T), New Delhi in form Junior Research Fellow is gratefully acknowledged. Iam thankful to Prof T. P Singh Head Deptt of BioPhysics, AIIMS, New Delhi for providing me National Facility

CAD-4Diffractometer and Lab. Iam also thankful to Prof.D. Vellmurgan, UNIV OF MADRAS for his valuable help in Data collection.

REFERENCES

[1] Y.U.Wang, J.H.Liao; Acta.Cryst., B45, 65-69 (1989).
[2] G.M.Sheldrick; SHELXS-97, Programme for crystal structure solution, (1997).
[3] G.M.Sheldrick; SHELXL-97 Programme for crystal structure refinement, (1997).
[4] P.L.Johnson, L.O.Paul; J.Chem.Soc.(B), 1296-1303 (1970).
[5] Y.Wang, J.H.Liao, C.H.Ueng; Ada Cryst., C42, 1420-1423 (1986).
[6] N.K.Wilson; J.Phys.Chem., 75, 1067-1072 (1971).
[7] I.L.Kane, J.A.Estlin, K.Butts; Acta.Cryst., 22, 273280 (1967).
[8] M.F.Dix, A.D.Rae; Cryst.Struct.Commum., 2, 159162.
[9] K.Maroy; Acta.Chern.Scand., 19, 1509 (1965).
[10] C.Mareello, D.Aldo, V.Hessandro; Acta.Cryst., B32, 2581 (1976).
[11] R.J.Gillespie; ‘Molecular Geometry’, London, Nostrand-Reinhold, (1972).
[12] J.A.Domenicano, C.A.Coulson; Second Eur.Crystallogr.Meet., Kerzlney.Hungary Abstracts, 436-438 (1974).
[13] G.Bandoli, D.A.Clemente, E.Tondello, A.Dondoni; J.Chem.Soc.Perkin, 2, 157-160 (1974).
[14] S.P.Heijden, N.Vander, W.D.Chandler, B.E. Robertson; Canad.J.Chem., 53, 2102-2107 (1975).
[15] F.S.Stephens; J.Chem.Soc.(A), 1843-1846 (1970).

