

WATER QUALITY ISSUES IN THE TEA GARDEN BELT OF DARRANG DISTRICT, ASSAM KAMALA KANTA BORAH^a, BHABAJIT BHUYAN^b and HARI_PRASAD SARMA^{*}

Department of Environmental Science, Gauhati University, GUWAHATI (Assam) – 781 014 INDIA ^aDepartment of Chemistry, Mangaldai College, DARRANG – 784 125 (Assam) INDIA ^bDepartment of Chemistry, North Lakhimpur College, LAKHIMPUR - 787 031 (Assam) INDIA

ABSTRACT

The present research has been carried out to study some of the water quality parameters in and around the selected tea gardens of Darrang district, Assam. Sixteen water samples are analysed by adopting standard analytical techniques of APHA. In this study, the tools used for data analysis are mainly experimental, aimed at defining possible relationships, trends, or interactions among the measured variables of interest. Descriptive statistics in the forms of mean, variance, standard deviation, standard error, median, range of variation and percentile at 95%, 75% and 25% are computed for eight water quality parameters. t-test is done under null hypothesis (H_0) by taking the assumption that the experimental data are consistent with the mean rating given by W.H.O. One-way ANOVA and confidential limit at 95% is also calculated by using ORIGIN 6.1 version. It is found that the inherent quality of waters in the tea garden belt of Darrang district, Assam is low and a suitable socio-economic and policy environment to maintain and improve water quality is also required.

Key words: pH, ANOVA, Sulphate, Phosphate, Nitrate, Water quality, Tea garden belt.

INTRODUCTION

Water is the most precious gift of the nature. It is indispensable for sustenance of life and is one of most important component which influences economic, agricultural and industrial growth of mankind. The effect of water on almost everything in our environment is far more significant than might be imagined. There is growing shortage of usable water resources and it is going to be one of the major issues of the twenty first century. Human

^{*} Author for correspondence; (Mobile) 098640-45328, (Phone) 0361-2672438

use of fresh water has registered a 35 fold increase in the last 300 years. As a whole, 3500 km³ of fresh water was withdrawn from different sources throughout the world for human use every year¹. Pollution of fresh water occurs due to three major reasons- excess nutrients from sewage, wastes from industries, mining and agriculture². W.H.O has given a set of guideline values for drinking water quality³. These guideline values, along with tolerance limits prescribed by the Indian Standard Institute (ISI)⁴ and EPA standards of USA are also important in determining water quality⁵. Every effort should be made to achieve a drinking-water quality as safe as practicable.

It is observed that the tea garden belt in Assam has lately been subjected to largescale human interference and pollution of water is rising at alarming rates due to the use of huge amount of agrochemicals for better production which contaminates ground water through percolation and rivers and other water bodies through surface run-off⁶. The loss of quality is causing health hazards and death of human which disturbs the whole ecology system of this region. The present research has been undertaken to study some of the water quality parameters in and around the selected tea gardens of Darrang district, Assam.

Study area

The study area Darrang district is situated in the eastern parts of India on the northeast corner of Assam.

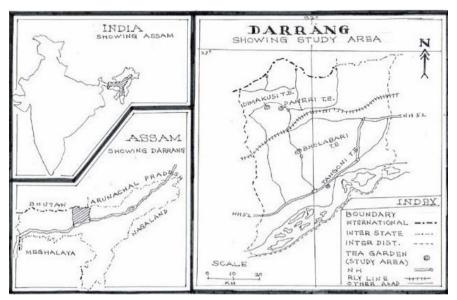


Fig. 1: Distribution of tea gardens in Darrang district

Located on the bank of mighty river Brahmaputra, the district is largely plain. The district lies between $26^{0}25'$ and $26^{0}55'$ northern latitude and $91^{0}45'$ and $91^{0}20'$ east longitude (approximately). The district covers an area of 3,465.30 sq. km and falls in the sub-tropical climatic region, and enjoys monsoon type of climate. There are twenty eight tea gardens apart from twenty privately owned tea gardens in the district (Fig. 1).

EXPERIMENTAL

Materials and methodology

Separate water samples were selected by random selection and compiled together in plastic bottles to set a representative sample. pH and conductivity were determined quickly after sampling. Samples were protected from direct sun light during transportation. The parameters studied are pH, conductivity, chloride (Cl⁻), sulphate (SO₄²⁻), nitrate (NO₃⁻), phosphate (PO₄³⁻), fluoride (F⁻) and iron (Fe). Standard analytical techniques were adopted for physico-chemical analysis of water samples⁷. The instruments were used in the limit of précised accuracy and chemicals used were of analytical grade.

In this study, the tools used for data analysis are mainly experimental, aimed at defining possible relationships, trends, or interactions among the measured variables of interest. The observed parameters are related graphically (Figs. 2-9). Descriptive statistics in the forms of mean, variance (V), standard deviation (SD), standard error (SE), median, range of variation, and percentile at 95%, 75% and 25% (P95%, P75%, P25%) are calculated and summarized in tabular forms (Tables 2-9). t-test is done under null hypothesis (H₀) by taking the assumption that the experimental chemical water quality data are consistent with the mean rating given by W.H.O (2004). The calculated value of t is compared with tabulated value at 5% level of confidence. Confidential limit (CL 95%) at 95% is also computed by adopting standard statistical equations. Statistical analysis along with one-way ANOVA is carried out using ORIGIN 6.1 version.

Sampling information

Water samples were collected in and around four selected tea gardens of Darrang district during June to November, 2007 (Table 1).

Sample No	Source	Place	Sample No.	Source	Place
A1	Tube Well	Tea Garden (Tangoni)	C1	Tube Well	Tea Garden (Dimakusi)
A2	Ring Well	Tea Garden (Tangoni)	C2	Supply Water	Tea Garden (Dimakusi)
A3	Tube Well	Outside Tea Garden (Tangoni)	C3	Tube Well	Outside Tea Garden (Dimakusi)
A4	Ring Well	Outside Tea Garden (Tangoni)	C4	Ring Well	Outside Tea Garden (Dimakusi)
B1	Tube Well	Tea Garden (Paneri)	D1	Tube Well	Tea Garden (Bhulabari)
B2	Supply Water	Tea Garden (Paneri)	D2	Ring Well	Tea Garden (Bhulabari)
В3	Tube Well	Outside Tea Garden (Paneri)	D3	Tube Well	Outside Tea Garden (Bhulabari)
B4	Ring Well	Outside Tea Garden (Paneri)	D4	Ring Well	Outside Tea Garden (Bhulabari)

Table 1. Water sampling locations

RESULTS AND DISCUSSION

Table 2: Water	test y	values	for p	Η
----------------	--------	--------	-------	---

Location	Α	В	С	D
1	7.39	6.92	6.61	6.40
2	7.51	6.91	6.60	6.38
				Cont

Location	Α	В	С	D	
3	7.20	6.39	6.49	6.91	
4	6.80	6.53	6.52	6.72	
	Statist	ical analysis			
Median	7.2	6.53	6.52	6.4	
Mean	7.22	6.68	6.55	6.60	
Variance	0.096	0.072	0.0035	0.066	
SD	0.311	0.269	0.0599	0.257	
SE	0.155	0.134	0.029	0.129	
Range	0.71	0.53	0.12	0.53	
WHO Rating	6.5-8.5	6.5-8.5	6.5-8.5	6.5-8.5	
t-test	8.206	13.482	65.753	14.739	
Comment (0.05 level)	S	S	S	S	
P 25%	7.2	6.53	6.52	6.4	
Р 75%	7.39	6.91	6.6	6.72	
P 95%	7.51	6.92	6.61	6.91	
95% CL	[6.73 - 7.78]	[6.25-7.11]	[6.46-6.64]	[6.19-7.01]	
One-Way ANOVA		F = 6.438, j	p = 0.0076		
Comment (0.05 level)	М	Means are significantly different			

Table 3: Water test values for conductance in mmho/cm	Table 3:	Water te	est values fo	r conductance	in mmho/cm
---	----------	----------	---------------	---------------	------------

Location	Α	В	С	D
1	2.6	2.0	2.5	2.4
2	2.4	2.4	2.4	2.2
3	0.6	2.5	3.8	2.3
4	2.2	2.4	3.6	2.1
				Cont

Location	А	В	С	D			
	Statistical analysis						
Median	2.2	2.4	2.5	2.2			
Mean	1.95	2.33	3.08	2.25			
Variance	0.837	0.049	0.529	0.017			
SD	0.915	0.222	0.727	0.129			
SE	0.457	0.111	0.364	0.065			
Range	2	0.5	1.4	0.3			
USPHS Rating (mmho/cm)	0.3	0.3	0.3	0.3			
t-test	3.608	18.265	7.629	30.209			
Comment (0.05 level)	S	S	S	S			
P 25%	2.2	2.4	2.5	2.2			
P 75%	2.4	2.4	3.6	2.3			
P 95%	2.6	2.5	3.8	2.4			
95% CL	[0.49-3.41]	[1.97-2.68]	[1.92-4.23]	[2.04-2.46]			
One-Way ANOVA		F = 2.556	, p = 0.104				
Comment (0.05 level)	Means are not significantly different						

Table 4: Water test values for chloride in mg/L

Location	Α	В	С	D
1	85.2	21.3	22.3	35.5
2	90.9	21.4	22.7	34.0
3	10.0	17.1	25.6	31.2
4	26.0	24.1	25.3	30.4
				Cont

Location	Α	В	С	D				
	Statistical analysis							
Median	26	21.3	22.7	31.2				
Mean	53.03	20.98	23.98	32.78				
Variance	1683.75	8.356	2.943	5.683				
SD	41.034	2.891	1.715	2.384				
SE	20.517	1.445	0.858	1.192				
Range	80.9	7	3.3	5.1				
WHO Rating (mg/L)	250	250	250	250				
t-test	9.601	158.459	263.529	182.251				
Comment (0.05 level)	S	S	S	S				
P 25%	26	21.3	22.7	31.2				
P 75%	85.2	21.4	25.3	34				
P 95%	90.9	24.1	25.6	35.5				
95% CL	[0-118.3]	[16.38-25.57]	[21.25-26.70]	[28.98-36.57]				
One-Way ANOVA	F = 1.965, p = 0.173							
Comment (0.05 level)	Means are not significantly different							

Table 5:	Water	test	values	for	sulphate	in mg/L	

Location	Α	В	С	D
1	4.9	0.7	1.3	23.6
2	2.5	0.8	1.3	21.1
3	22.0	2.1	11.1	20.2

Location	Α	В	С	D	
4	68.0	0.6	10.2	19.9	
	Sta	ntistical analysis	5		
Median	4.9	0.7	1.3	20.2	
Mean	24.35	1.05	5.98	21.2	
Variance	922.19	0.497	29.275	2.820	
SD	30.368	0.705	5.411	1.679	
SE	15.184	0.352	2.705	0.839	
Range	65.5	1.5	9.8	3.7	
WHO Rating (mg/L)	250	250	250	250	
t-test	14.861	706.495	90.201	272.497	
Comment (0.05 level)	S	S	S	S	
P 25%	4.9	0.7	1.3	20.2	
P 75%	22	0.8	10.2	21.1	
P 95%	68	2.1	11.1	23.6	
95% CL	[0-72.67]	[0.07-2.17]	[0-14.84]	[18.53-23.87]	
One-Way ANOVA		F = 2.168, p = 0.145			
Comment (0.05 level)	Ν	Means are not significantly different			

Table 6:	Water	test	values	for	nitrate	in	mg/L	

Location	Α	В	С	D
1	0.03	0.5	0.3	0.8
2	0.02	0.9	0.2	0.9
3	0.05	0.4	0.1	0.7
				Cont

Location	Α	В	С	D
4	0.7	0.3	0.06	0.8
	Stati	stical analysis		
Median	0.03	0.4	0.1	0.8
Mean	0.2	0.525	0.165	0.8
Variance	0.111	0.069	0.012	0.007
SD	0.334	0.263	0.108	0.082
SE	0.167	0.132	0.054	0.041
Range	0.68	0.6	0.24	0.2
WHO Rating (mg/L)	50	50	50	50
t-test	298.591	376.242	926.745	1205.149
Comment (0.05 level)	S	S	S	S
P 25%	0.03	0.4	0.1	0.8
P 75%	0.05	0.5	0.2	0.8
P 95%	0.7	0.9	0.3	0.9
95% CL	[0-0.73]	[0.11-0.94]	[0- 0.34]	[0.67-0.93]
One-Way ANOVA		F = 7.2168	, p = 0.005	
Comment (0.05 level)	Means are significantly different.			

Table 7:	Water test	t values for	phosphate	in mg/L
----------	------------	--------------	-----------	---------

Location	Α	В	С	D
1	2.60	0.05	0.71	0.65
2	0.15	0.49	0.02	0.78
3	0.12	0.51	0.52	0.75
4	0.09	0.70	0.48	0.69
				Cont

Location	Α	В	С	D		
	St	atistical analys	is			
Median	0.12	0.49	0.48	0.69		
Mean	0.74	0.4375	0.4325	0.7175		
Variance	1.538	0.076	0.087	0.003		
SD	1.240	0.275	0.292	0.059		
SE	0.620	0.138	0.146	0.029		
Range	2.51	0.65	0.69	0.13		
USPHS Rating (mg/L)	0.1	0.1	0.1	0.1		
t-test	1.032	2.453	2.272	21.103		
Comment (0.05 level)	NS	NS	NS	S		
P 25%	0.12	0.49	0.48	0.69		
P 75%	0.15	0.51	0.52	0.75		
P 95%	2.6	0.70	0.71	0.78		
95% CL	[0-2.71]	[0- 0.88]	[0- 0.89]	[0.62-0.81]		
One-Way ANOVA	F = 0.271, p = 0.845					
Comment (0.05 level)	Means are not significantly different					

Location	Α	В	С	D
1	0.41	0.28	3.0	3.0
2	0.28	0.31	2.9	3.1
3	0.35	2.9	0.36	3.0
4	0.65	2.9	0.39	3.0
				Cont

Location	Α	В	С	D
	Statist	ical analysis		
Median	0.35	0.31	0.39	3.0
Mean	0.423	1.598	1.663	3.025
Variance	0.026	2.262	2.212	0.003
SD	0.1607	1.50405	1.48729	0.05
SE	0.080	0.752	0.744	0.025
Range	0.37	2.62	2.64	0.1
WHO Rating (mg/L)	0.3	0.3	0.3	0.3
t-test	1.525	1.725	1.832	109
Comment (0.05 level)	NS	NS	NS	S
P 25%	0.35	0.31	0.39	3.0
Р 75%	0.41	2.9	2.9	3.0
P 95%	0.65	2.9	3.0	3.1
95% CL	[0.17-0.68]	[0-3.99]	[0-4.03]	[2.94-3.11]
One-Way ANOVA		F = 4.024	, p = 0.034	
Comment (0.05 level)	Means are significantly different.			

Table 9:	Water	test	values	for	fluorio	de in	mg/L

		0		
Location	Α	В	С	D
1	0.70	0.61	0.51	0.60
2	0.62	0.58	0.46	0.51
3	0.61	0.58	0.42	0.30
4	0.34	0.45	0.38	0.29
				Cont

Location	Α	В	С	D
	Statis	tical analysis		
Median	0.61	0.58	0.42	0.3
Mean	0.5675	0.555	0.4425	0.425
Variance	0.025	0.005	0.003	0.024
SD	0.157	0.071	0.056	0.155
SE	0.078	0.036	0.028	0.077
Range	0.36	0.16	0.13	0.31
WHO Rating (mg/L)	1.5	1.5	1.5	1.5
t-test	11.885	26.465	38.038	13.907
Comment (0.05 level)	S	S	S	S
P 25%	0.61	0.58	0.42	0.3
P 75%	0.62	0.58	0.46	0.51
P 95%	0.70	0.61	0.51	0.60
95% CL	[0.32-0.81]	[0.44-0.67]	[0.35-0.53]	[0.18-0.67]
One-Way ANOVA		F = 1.550	, p = 0.253	
Comment (0.05 level)	Means are not significantly different			
N.B.: NS = Non Sig	nifiant, S = Sig	gnifiant		

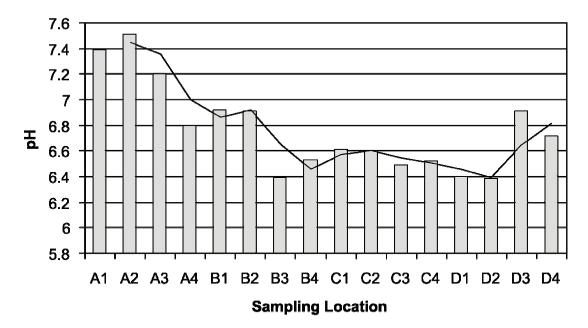


Fig. 2. Variation of pH among different sampling stations

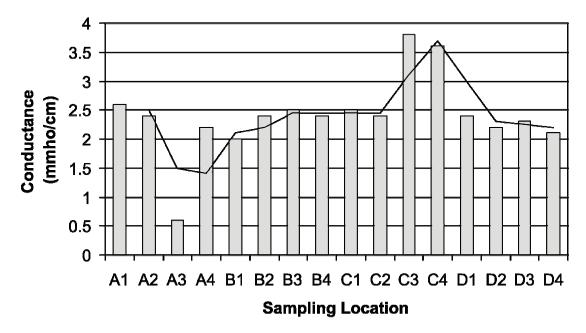


Fig. 3. Variation of conductance among different sampling stations

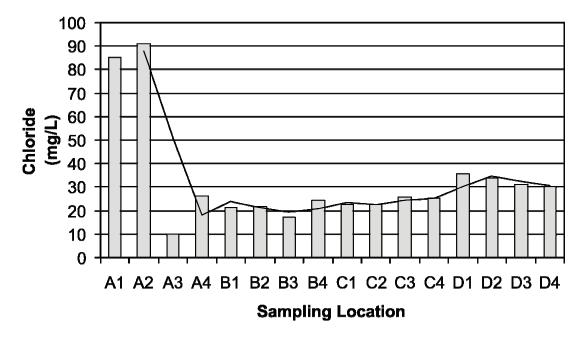


Fig. 4. Variation of chloride among different sampling stations

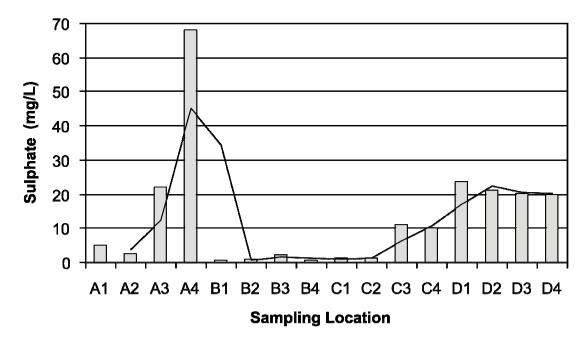


Fig. 5. Variation of sulphate among different sampling stations

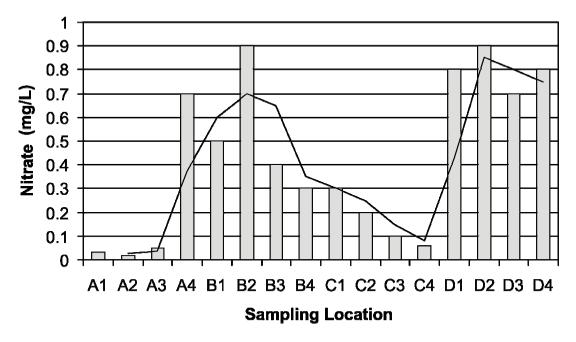


Fig. 6. Variation of nitrate among different sampling stations

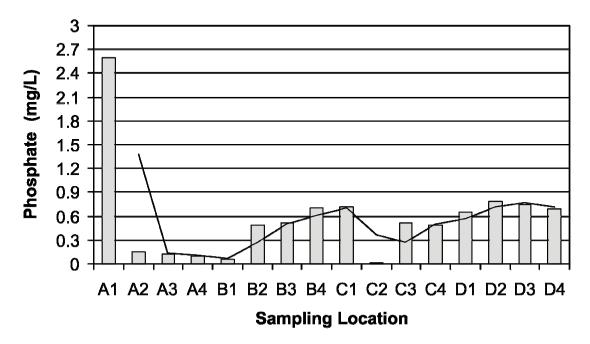


Fig. 7 Variation of phosphate among different sampling stations

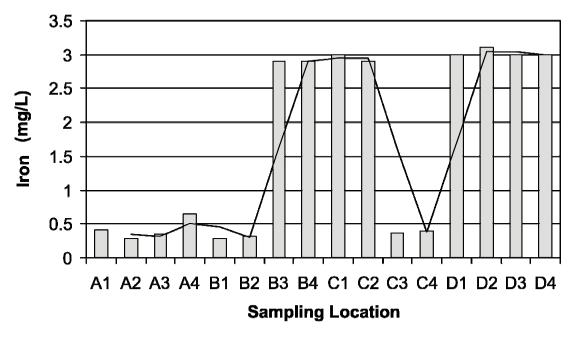


Fig. 8 Variation of iron among different sampling stations

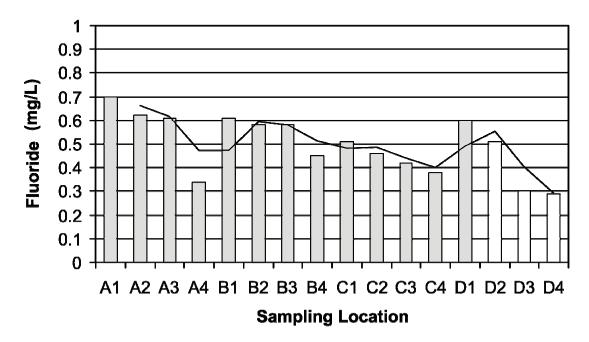


Fig. 9 Variation of fluoride among different sampling stations

Statistical observations

By comparing calculated |t| value with tabulated t at 5% probability level of significance, we may either reject or accept our null hypothesis H₀. If the value is significant then there will be evidence provided by our samples against our H₀. It is clear from the Tables 2-9 that proper water management is of urgent concern in the study area. The statistical values also show that most of the studied water quality parameters are significant implying that the null hypothesis may be rejected. The calculated confidential limit will give the range within which the unknown value of the parameter is expected to lie.

Environmental observations

In all the sampling stations, the variation of pH is narrow and in general, the pH is towards the acidic side except at sampling location No. A1, A2 and A3, where water is alkaline. The conductance of water in the study area have values greater than the maximum permissible limit (0.3 mmho cm⁻¹) of USPH and indicates that water is markedly polluted with its reference.

Chloride, sulphate and nitrate contents above the permissible limits can cause serious health problems to the consumer. Their concentrations in water under study are within the approved WHO guide line values for safe drinking water and no fixed trend of variation among the sampling stations could be ascertained, which may be due to precipitation, evaporation, human activity and waste disposal. The phosphate content of water needs serious attention as all of the samples except for A4, B1 and C2 exceeded the USPH guide line value of 0.1 mg/L.

The iron concentration is highest at source D2 that is 3.1 mg/L and minimum at source at A2 that is 0.28 mg/L. The data exceeds the WHO guideline value of 0.3 mg/L in most of the cases. The concentration of iron in water in the area is not suitable for food processing, dyeing, bleaching and many activities. The values for fluoride in water are ranging from 0.29 mg/L to 0.70 mg/L. In the present investigation, the fluoride concentrations were found to be within the permissible limit of W.H.O., but in some locations, where the fluoride concentration in water is less than 0.7 mg/L may cause dental carries.

CONCLUSION

The inherent quality of waters in and around the tea gardens of Darrang district,

Assam is low and a suitable socio-economic and policy environment to maintain and improve water quality is also lacking. It is, therefore, immediately required that the water sources be properly protected from potential contaminants, and that appropriate treatment be selected for future use of water in the region. Thus, village level - microanalysis of the impact of water availability and water quality on the quality of life of people needs to be done in the study area.

REFERENCE

- 1. D. K. Asthana and Meera Asthana, Environment, Problems and Solutions, S. Chand and Company Ltd. Publication, Chapter- Fresh Water (1999) p. 65-70.
- M. Mayback, D. V. Chapman and R. Helmer (Eds.), Global Environment Monitoring System, Global Fresh Water Quality, Basil Blackwell Ltd., Oxford (1989) p. 107-163.
- 3. WHO, Guide Lines for Drinking Water Quality, 3rd Edition, World Health Organisation, Jeneva (2004).
- 4. R. K. Trivedi (Ed.), Quality Criteria of Drinking Water prescribed by Indian Standard Institute (ISI), in, Environment Directory of India, Enviro Media, Karad (India) (1990) p. 279-281.
- 5. R. E. Train, Quality Criteria for Water, USEPA, Washington DC (1979).
- 6. B. Bhuyan, S. Kakati and H. P. Sarma, Poll. Res., 25(3), 571-575 (2006).
- 7. A. P. H. A, Standard Methods for the Examination of Water and Wastewater, 19th Ed. American Public Health Association, Washington DC, (1995).

Accepted : 24.06.2008