VISIBLE SPECTROPHOTOMETRIC METHODS FOR THE DETERMINATION OF BACLOFEN

R. MRUTYUNJAYA RAO*, T. SIVA RAO, C. S. P. SASTRY and U. VIPLAVA PRASAD

Foods and Drugs Laboratories, Department of Organic Chemistry Foods, Drugs and Water, Andhra University, VISAKHAPATNAM - 530003 (A.P.) INDIA

Abstract

Three simple and sensitive methods (methods A, B and C) for the determination of baclofen (BC) in bulk samples and formulations are described. Mehod A ($\lambda_{\max } 520 \mathrm{~nm}$) is based on the reaction BC with safranin O (SFNO) to form an ion-association complex, which is extractable into chloroform aqueous phase; method $\mathrm{B}\left(\lambda_{\max } 520 \mathrm{~nm}\right)$ is based on the reaction of drug BC with brucine and sodium metaperiodate $\left(\mathrm{NaIO}_{4}\right)$ under acidic conditions forming coloured bruciquininone derivatives, while method $\mathrm{C}\left(\lambda_{\max } 450\right.$ nm) is based on the reaction of drug with 2,3-dichloro - 5-6-dicyno-1,4-benzo-quinone (DDQ). The concentration measurements are reproducible within a relative standard deviation of 1%.

Key words: Baclofen, Spectrophotometry.

INTRODUCTION

Baclofen is a central skeletal muscle relaxant, relative beta-2-agonist. This drug is official $\mathrm{BP}^{1}, \mathrm{USP}^{2}, \mathrm{EP}^{3}$, JP^{4}, Merck Index ${ }^{5}$, Martindale Extra Pharmacopoeia ${ }^{6}$, Remington ${ }^{7}$ and PDR^{8}. A survey of literature revealed that few methods based on $\mathrm{UV}^{9,10}$-visible spectrophotometry ${ }^{11-15}(\mathrm{BC})$ have been reported. This paper describes three methods (methods A, B and C). In method A , safranin O reacts with the drug to form ion-associate complex at pH 9.8, which is extractable into chloroform layer from aqueous layer ($\lambda_{\max } 520 \mathrm{~nm}$). In method B , brucine oxidises to quinine under acidic conditions, which in turn undergoes neucleophilic attack on the coupler (BC) to give coloured I-mono substituted bruciquinone derivative ($\lambda_{\max } 520 \mathrm{~nm}$). Method C involves complex formation of BC with DDQ ($\lambda_{\max } 500$ nm). The methods now proposed are applicable to bulk sample as well as formulations of BC.

[^0]
EXPERIMENTAL

A Milton Roy Spectronic 1201 and Systronics 106 digital spectrophotometers were used for the spectral and absorbance measurements. An Elico Li-120 digital pH meter was used for pH measurements.

Reagents

Aqueous solutions of safranine ($2.857 \times 10^{-4} \mathrm{M}$), brucine $\left(5.067 \times 10^{-3} \mathrm{M}\right), \mathrm{H}_{2} \mathrm{SO}_{4}$ $(2.3 \mathrm{M})$ and pH 9.8 ammonia buffer were prepared.

Standard drug solution

One $\mathrm{mg} / \mathrm{mL}$ stock solution of drug (BC) was prepared by dissolving 100 mg of drug in 100 mL of double distilled water for methods A and B. The working standard solutions of BC ($500 \mu \mathrm{~g} / \mathrm{mL}$ for method A and $200 \mu \mathrm{~g} / \mathrm{mL}$ method B) were prepared.

One $\mathrm{mg} / \mathrm{mL}$ stock solution of drug (BC) was prepared by dissolving 25 mg of drug in 25 mL of ethanol for method C. The working standard solution of BC $(50 \mu \mathrm{~g} / \mathrm{mL})$ was prepared by dissolving it in distilled water.

Sample drug solution

Table equivalent to 50 mg of active ingredient (BC) was transferred to a 50 mL volumetric flask; shaken thoroughly with 1 mL of 0.1 N HCl followed by dilution to 50 mL with distilled water and filtered to remove insoluble portion, if any and further diluted as in standard solution preparation.

One-mg/mL stock solution was prepared by dissolving 25 mg of BC equivalent tablet powder in 25 mL ethanol.

Recommended procedures

Method A: Aliquots of standard drug solution ($0.5-3.0 \mathrm{~mL}, 5.0 \mu \mathrm{~g} / \mathrm{mL}$; BC) were taken in a series of separating funnels and $5.0 \mathrm{~mL}\left(2.857 \times 10^{-4} \mathrm{M}\right)$ of safranine O and 1 mL of buffer (pH 9.8) solutions were added. The total volume of aqueous phase in each separating funnel was adjusted to 10 mL with distilled water and 10 mL of chloroform was added. The contents were shaken for 2 minutes. The two phases were allowed to separate and absorbence of the separated layers were measured at 520 nm against similarly prepared reagent blank. The amount of BC was calculated from the calibration curve.

Method B: Aliquots of the standard drug solution $(0.5-3.0 \mathrm{~mL}, 100 \mu \mathrm{~g} / \mathrm{mL}$; BC) were transferred into a series of 10 mL calibrated tubes. Three mL of $\left(5.067 \times 10^{-3} \mathrm{M}\right)$ brucine solution, 1.5 mL of $\left(9.35 \times 10^{-3} \mathrm{M}\right) \mathrm{NaIO}_{4}$ and 2.0 mL of $(2.3 \mathrm{M}) \mathrm{H}_{2} \mathrm{SO}_{4}$ were added to each tube and tota volume was made up to 10 mL with distilled water. The tubes were thoroughly shaken and placed in boiling water bath for 15 minutes. The reaction mixture was cooled to room temperature and made up to 10 mL with distilled water. The absorbence of each solution was measured at $\lambda_{\max } 520 \mathrm{~nm}$ against a reagent blank. The amount of BC in the sample was computed from the appropriate calibration graph.

Method C: Aliquots of drug solution (free base form) ($0.5-3.0 \mathrm{~mL}, 1000 \mu \mathrm{~g} / \mathrm{mL}$; BC) were taken in a series of 10 mL calibrated tubes and the chloroform in each tube was evaporated in a hot water bath to dryness. The residue was dissolved in 0.5 mL of methanol and 20 mL DDQ $\left(4.405 \times 10^{-3} \mathrm{M}\right)$ solution was added, shaken well and made up to mark with dichloromethane. Reagent blank was simultaneously prepared. The absorbance of solution was read at 500 nm against a reagent blank. The amount of the drug was computed from Beer's law plot.

RESULTS AND DISCUSSIONS

The reaction conditions were established by varying one parameter at a time and observing it's effect on the absorbance of the coloured species. In method A, the optimum conditions were found to be $4.0-6.0 \mathrm{~mL}$ of $\left(2.85 \times 10^{-4} \mathrm{M}\right)$ safranine O and 1 mL of buffer solution was found to be necessary to maintain the pH 9.8 for maximum colour development and waiting time of 1-5 minutes was found to give maximum colour intensity.

In method B , the optimum conditions were found to be $2.3 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(1.5-2.5 \mathrm{~mL})$, $2.5-3.5 \mathrm{~mL}$ of $5.067 \times 10^{-3} \mathrm{M}$ brucine and $1.2-1.8 \mathrm{~mL}$ of $9.35 \times 10^{-3} \mathrm{M} \mathrm{NaIO}_{4}$. Other oxidants such as $\mathrm{Fe}(\mathrm{III}), \mathrm{Cr}(\mathrm{VI})$, (IV), (V), IO_{3}^{-}and $\mathrm{S}_{2} \mathrm{O}_{8}^{-2}$ were tried instead of IO_{4}^{-}and found to be inferior. In method $\mathrm{C}, 1.5-2.8 \mathrm{~mL}$ of $\mathrm{DDQ}\left(4.405 \times 10^{-3} \mathrm{M}\right)$ solution was used and final dilution was done with dichloromethane.

The optical characteristics such as Beer's law limits, molar absorptivity,Sandell's sensitivity, correlation coefficient (r), regression equation, percent RSD range, of error (95\% confidence limits) are listed in Table 1.

Commercially available formulation tablets of BC were successfully analysed by the proposed and reference methods. The values obtained by proposed methods are given in Table 2. Recovery experiments were carried out by adding known amounts of the drug (BC)
to it's pre-analysed formulation and the results are presented in Table 2 . The commonly existing excipients and additives in tablets (BC) didn't interfere in the proposed methods.

Table 1: Optical and regression characteristics, precision and accuracy of the proposed methods for baclofen

	Method		
Parameter	A	B	C
	SFNO	Brucine- IO_{4}^{-}	DDQ
$\lambda_{\text {max }}(\mathrm{nm})$	520	520	500
Beer's Law Limits ($\mu \mathrm{g} . \mathrm{mL}^{-1}$)	2.5-15.0	5-30	2.5-150
Detection limit ($\mu \mathrm{g} . \mathrm{mL}^{-1}$)	3.693×10^{-1}	1.328×10^{-4}	9.56×10^{-2}
Molar absorptivity ($\mathrm{mole}^{-1} \mathrm{~cm}^{-1}$)	5.8767×10^{3}	3.654×10^{3}	2.679×10^{4}
Sandell's sensitivity ($\mu \mathrm{g} . \mathrm{cm}^{-2} / 0.01$ absorbance unit)	3.636×10^{-2}	5.847×10^{-2}	7.92×10^{-3}
Slope (b)	2.713×10^{-2}	1.729×10^{-2}	2.532×10^{-2}
Standard deviation on slope (S_{b})	3.43×10^{-4}	7.862×10^{-5}	5.333×10^{-5}
Intercept (a)	6.0×10^{-4}	-1.533×10^{-3}	-8.0×10^{-4}
Standard deviation in intercept (S_{a})	3.3399×10^{-3}	7.654×10^{-4}	8.068×10^{-4}
Standard error of estimation (S_{e})	3.387×10^{-3}	8.223×10^{-4}	8.944×10^{-4}
Correlation coefficient (r)	0.99968	0.9999	0.9999
Relative standard deviation (\%)*	0.6790	0.411	0.3741
0.05 level	0.7127	0.4314	0.3927
0.01 level	1.1177	0.6765	0.6159
\% Error in bulk samples ${ }^{* *}$	0.3636	-0.2906	0.2645

[^1]Table 2: Assay of BC in pharmaceutical formulations

Formulations*	Labelled Amount (mg)	Amount Found by proposed methods**				\% Recovery by proposed method***		
		$\begin{gathered} \text { A } \\ \text { SFNO } \end{gathered}$	$\frac{\mathrm{B}}{\text { Brucine- } \mathrm{IO}_{4}^{-}}$	$\begin{gathered} \text { C } \\ \text { DDQ } \end{gathered}$	Reference method	$\begin{gathered} \text { A } \\ \text { SFNO } \end{gathered}$	$\stackrel{\text { B }}{\text { Brucine }-\mathrm{IO}_{4}^{-}}$	$\begin{gathered} \text { C } \\ \text { DDQ } \end{gathered}$
Tablets	10	9.94 ± 0.09	9.94 ± 0.05	9.91 ± 0.06	9.95 ± 0.10	99.46 ± 0.91	99.48 ± 0.59	99.16 ± 0.65
		$\mathrm{F}=1.25$	$\mathrm{F}=0.31$	$\mathrm{F}=2.47$				
	25	$\mathrm{t}=0.12$	$\mathrm{t}=0.11$	$\mathrm{t}=1.09$			99.90 ± 0.16	99.86 ± 0.22
Tablets		24.96 ± 0.05	24.97 ± 0.04	24.96 ± 0.05	25.03 ± 0.05	99.87 ± 0.20		
		$\mathrm{F}=1.11$	$\mathrm{F}=1.73$	$\mathrm{F}=1.06$				
	10	$\mathrm{t}=0.99$	$\mathrm{t}=0.99$	$\mathrm{t}=0.99$	9.96 ± 0.10	99.43 ± 0.99	99.09 ± 1.24	99.47 ± 0.91
Tablets		9.94 ± 0.09	9.90 ± 0.12	9.94 ± 0.09				
		$\mathrm{F}=1.15$	$\mathrm{F}=1.36$	$\mathrm{F}=1.35$				
		$\mathrm{t}=0.90$	$\mathrm{t}=1.98$	$\mathrm{t}=1.34$				
Tablets	25	24.92 ± 0.06	24.92 ± 0.19	24.92 ± 0.06	24.98 ± 0.11	99.71 ± 0.25	99.70 ± 0.76	99.69 ± 0.27
		$\mathrm{F}=3.06$	$\mathrm{F}=2.92$	$\mathrm{F}=2.69$				
		$\mathrm{t}=0.95$	$\mathrm{t}=0.50$	$\mathrm{t}=1.02$				
Formulations fr ${ }^{ *}$ Average \pm sta reference metho ${ }^{* * *}$ Recovery of 1	m four dif dard devia . Theoreti 0 mg added	erent pharmac on on six deter al values at 95% to the pre-analy	atical companies minations, the t confidence lim zed pharmaceut	and $\mathrm{F}-$ test va it, $F=5.05, t=$ cal formulatio	ues refer to com 2.57 . s (average of th	parison of the ree determinat	proposed method	with the

ACKNOWLEDGEMENTS

The authors (R.M. R. and T.S.R) are thankful to UGC, New Delhi for the award of Teacher Fellowship.

REFERENCES

1. British Pharmacopoeia, HMSO, London (1999).
2. United States Pharmacopoeia, USP 24, USP Convention, Inc., Rockville (2000).
3. European Pharmacopoeia, $3^{\text {rd }}$ Edn., Council of Europe, Strasbourg, 1997 (supplement) (1999).
4. Japan Pharmacopoeia, $13^{\text {th }}$ Edn., (1996).
5. The Merck Index, $12^{\text {th }}$ Edn., Merck \& Co. Inc., New York (1996).
6. The Complete Drug Reference, Martindale Extra Pharmacopoeia, $32^{\text {nd }}$ Edn., The Pharmaceutical Press, London (1999).
7. Remington's The Science and Practice of Pharmacy $19^{\text {th }}$ Edn., (1995).
8. Physicians Desk, Krik Bright, G. F., Talanta, 13, 1 (1966).
9. H. Spahn, D. Krauss and E. Mutschler, Pharmaceutical Research, 5, 107-112 (1988).
10. S. N. Meyya Nathan, Mathew Philip and B. Suresh, Indian Drugs, 35(4), 183-188 (1998).
11. L. Ersoy, Pharmazie, 40, 803-804 (1985).
12. E. Guler, Acta Pharmacetuca Turcica, 27(3), 42-44 (1985).
13. S. N. Meyyanathan, Mathew Philip and B. Suresh, East. Pharm., 40, 153-154 (1977).
14. Rolf Karla, Bjarke Ebert, Christian Throkildsen, Claus Herdeis, Tommy Johansen, N. Nielsen, Birgitte and Povl. Krogsgaard-Larsen, J. Med. Chem., 42(11), 2053-2059 (1999).
15. Zafer Bilgic, Sedef Atmaca and Gulsen Iskender, Marmara Univ. Eczacilik Derg., 7(1), 1-7 (1991).

[^0]: *Author for correspondence; V. S. M. College, RAMACHANDRAPURAM - 533255, Dist.: E.G (A.P.) INDIA

[^1]: *Average of six determinations considered
 ** Average of three determinations

