
[Type text] [Type text] [Type text]

2014

© Trade Science Inc.

ISSN : 0974 - 7435 Volume 10 Issue 14

BioTechnology

An Indian Journal
FULL PAPER

BTAIJ, 10(14), 2014 [8118-8125]

Variability modeling for software product line

Luo Daizhong1, Diao Shanhui2
1School of Software Engineer, Chongqing University of Arts and Sciences,

Chongqing, (CHINA)
2Department of Education Administrator, Chongqing University of Arts and

Sciences, Chongqing, (CHINA)
Luodaizhong@126.com

ABSTRACT

The variability model which captures the commonality and variability of the software
product families is very important in domain requirements modeling. In the software
product families, it will be difficult to establishing the variability model in the domain
analysis. An novel variability modeling method with the extended UML is presented for
variability modeling, it not only supports variability type of use cases such as optional,
alternative and or, but also supports variability constraint such as variant to variant,
variant to variation point and variation to variation point. We present the formal definition
of variability type and variability constraint, it helps us to validate the variability model
correctness. Finally, we illustrate the variability modeling approach with a mobile phone
SPL and then discuss about the formalization of variability type and constraint.

KEYWORDS

Software product line; Variability modeling; Variability type; Constraint, UML.

BTAIJ, 10(14) 2014 Luo Daizhong and Diao Shanhui 8119

INTRODUCTION

 Software Product Line (SPL) technology has become research spot and has been widely applied in domain engineer.
Product line engineering is a development paradigm that explicitly addresses reuses for software development, can
effectively promise large gains in productivity, quality and time to market reduction[1].
 Software product line is a reuse technology of software architecture. It develops requirement specifications, test cases,
components by identifying commonality features of similar productions in the special domain. The development process of
software product line includes two key activities, domain engineering and application engineering (Figure 1).

Figure 1 : Development process of Software Product Line

 Domain engineering includes three stages of domain analysis, domain design and domain implementation. The
primary task of domain engineering is identifying commonality of similar productions in special domain and defining
variability of production in software product line, developing domain artifacts that include architecture of software product
line, components, documents, requirement specification and test cases etc.
 Application engineering constructs a specific product with commonality core assets of software product line which
is needed in all application product and variability assets of domain artifacts which is needed in special application product.
The same as domain engineering, application engineering includes three stages of application analysis, application design,
application implementation.
 Variability modeling is a modeling technology for domain engineering, which needs to be integrated into the
software engineering traditional modeling technology with UML, but the traditional UML modeling technology do not
support for variability modeling. Literatures[3] suggested that the variability models are constructed by model difference and
merging. Literatures[4,5,12,13,14] presented an approach of modeling variants according to variant types. Base on the comparison
of variability modeling approaches[8], Literature[9] proposed the hierarchical variability modeling for software architectures,
Literatures[6,7,10,15,16] discussed the syntax and semantics for variability model, described the formal definition of the model.
But all the literatures are incomplete for lack of the dependency, constraint and formalization integrity. To address this
problem, we present an approach for variability modeling with the formal definition of variability type and variability
constraint.
 The remainder of this paper is structured as follows. Section 2 presents variability of software product line which
includes variation point, variant, variability type and variability constraint. Section 3 presents the approach of variability
modeling with the extended UML language, and formalization of variability type and constraint. Section 4 describes the
Mobile Phone case to illustrate the variability modeling approach. Finally Section 5 concludes this paper.

SOFTWARE PRODUCT LINE VARIABILITY

 The term variability refers to the ability of change in software product line. Variability means that the decision is
delayed to a specific time, and then binds variants according to requirement of application product. The variability in
different products is a unique function and specific requirements for application products, so the variability modeling is a key
activity of domain engineering. The variability of the software product line involves variation point, variant, variability type
and variability constraint.

8120 Variability modeling for software product line BTAIJ, 10(14) 2014

Variation point
 In software product line engineering, a variation point is a representation of a variability subject within domain
artifacts enriched by contextual information. Variability subjects and the corresponding variability objects are embedded into
the context of a software product line. They represent a subset of all possible variability subjects and a subset of all possible
variability objects from the real world, which are necessary to realize a particular software product line[1].

Variant
 A variant is a representation of a variability object within domain artifacts[1]. For example, a mobile company wants
to build phones in different colours, therefore a variation point “colour of a phone” (phone is the context of the variation
point) is defined. If an example mobile company builds white and blue phones, therefore only the variants ‘white (phone)’
and ‘blue (phone)’ are defined.

Variability type
 The variability type presents the conceptual relationships between the variation point and the variants, which refers
to the mandatory or variable form of bind the variants to the variation point. Mandatory defines the variant that must be
selected to the variation point, if the variation point is selected. Variable means if a variation point is selected, the variants of
the variation point may be selected with the form of Alternative, Optional, Or, Option Alternative, Optional Or.

Variability constraints
 The variability constraint refers to the valid combinations among variation point, variants. In other words, variability
constraints are combination rules when the variants are tailored or bound to the variation point. We identify the two
combination rules, i.e., Requires and Excludes, to capture the constraints between variant to variant, variant to variation point,
variation point and variation point. Requires define a relationship that the selection of a variant or a variation point requires
the selection of the other variants or variation points. Excludes define a relationship that the selection of a variant or a
variation point excludes the selection of the other variants or variation points.
 Variant to Variant Constraint. For example, variant requires variant refers to that a variant is selected, the other
variant must be selected. Variant excludes variant refers to that a variant is selected, the other variant must be not selected.
 Variant to Variation Point Constraint. For example, variant requires variation point refers to that a variant is
selected, all variants of the other variation point must be selected. Variant excludes variation point refers to that a variant is
selected, all variants of the other variation point must be not selected.
 Variation Point to Variation Point Constraint. For example, variation point requires variation point refers to that a
variation point is selected, the other variation point must be selected. Variation point excludes variation point refers to that a
variation point is selected, the other variation point must be not selected.

VARIABILITY MODELING

 Software product line modeling must describe the commonality and variability of the software products and their
constraint relationships[11]. The commonality of the software products which is stable can directly model with the UML
language, but the UML language does not support the variability modeling, so we must extend the UML language to address
the problem.

Identifying variability
 Variation points and variants are used to define the variability of a software product line. Thus, it is essential to
identify variation points and variants. In the following, we provide three basic steps for variability modeling. The first step is
to identify varieties in the real world, i.e. identifying the variability subject[1]. The second step is to define a variation point in
the context of the software product line. This step is necessary as there is a difference between variability in the real world
(represented by variability subjects) and variability in a software product line (represented by variation points). The third step
is to define the variants which are necessary to be bound to the variation point, and regards as variants of the variation point.
 The requirement analysis of domain engineering is a process for refining requirement and identifying variability. It
extracts the domain requirements from the similar software products and categorizes into common characteristics and
variable characteristics, we describe the difference product requirements with matrix (Figure 2). In Figure 2, a requirement
(as PRi) which emerges in all the products (as Producti) is classified as commonality category. A requirement (as PRo1) which
only emerges in some products (as Product1,Product3,Productn) is classified as variability category. The variability category
includes common, option, alternate, or etc. Or characters do not show in Figure 2, because or is a subset of option.

BTAIJ, 10(14) 2014 Luo Daizhong and Diao Shanhui 8121

Figure 2 : Requirements matrix for SPL

 The requirements matrix captures the basic requirements for the domain use case model. We explicitly depict the
roles and use cases in domain use case model with the extended UML language. TABLE 1 represents the notation of the
extended UML language in domain use case model.

TABLE 1 : Notation of the extended UML language

Concept UML Construct Stereotype
Common Role or Use-Case 《Common》
Option Role or Use-Case 《Option》

Alternate Role or Use-Case 《Alternate》
Or Role or Use-Case 《Or》

Optional Alternate Role or Use-Case 《Optional Alternate》
Optional Or Role or Use-Case 《Optional Or》

 According to the product requirements matrix, we can construct the domain use-case model with the extended UML
notation, and can revise the use-case model based on the requirements matrix and the reflected use case attributes.
 The overlap between a basic requirement and the other basic requirement should be separate from the use-case
model. Similarly, the overlap between a use case and the other use case should be separate from the use case model. If a use
case contains an optional basic requirement, we will separate the optional basic requirement from the domain use case model
by the extended UML language.

Dependency-constraint notation
 A variability model can depict variation point, variant, variability dependency and variability constraint. The key of
variability modeling is how to indicate the variability dependency with the use-case diagram, and combine effectively the
variants according to the constraint rules, and then make the variability model accords with the requirement of application
products.
 The variation point and the variants which belong to the variation point are associated with variability dependency.
One variant can associate with one or more variation points. Every variation point can include one variant at least or a set of
variants. We build the application product according to the variability constraint while variants and variation point are
tailored or bound. The variant must satisfy the variability dependencies and the variability constraint rules when the
application product binds a variant. To be able to graphically represent the variability dependency-constraint defined under
the variability model, we depict the variability dependency-constraint with the graphical notation for SPL in Figure 3,
dependency denotes by the solid line, constraint denotes by the dotted line.

Variability modeling with extended UML
 To implement the variability, we adopt the extended use-case model for variability modeling. Adding the roles and
the use cases according to the product requirements matrix, and then respectively depict the semantics of constraint
relationship among them by the commonality and variability. The whole process can be divided into four steps.

8122 Variability modeling for software product line BTAIJ, 10(14) 2014

 A. Establishing the initial use-case model. The roles or use case which emerges in every product will directly be
extract to the use-case model. The role or use case which emerges in part products will be identified with variable role or
variable use case.
 B. Revising the use-case model. The use-case describes the variable roles or use cases on variation points, thus the
use-case model include mandatory and variable use cases/roles.
 C. Describing the variable use case scenes with variability dependency. The variability dependency includes
variability type and associate. The variants of the variation point may be mandatory, optional, alternative, or, optional
alternative, optional or etc., the associate includes generalization, inclusion, extend relationship between the variation point
and the variants.
 D. Depicting the variability constraint. In use case model, the variability constraints include variant to variant
constraint, variation point to variant constraint, variation point to variation point constraint.
 We describe the use case/role by TABLE 1 while constructing the use-case model with UML. If we will describe the
variability type for use case/role, we need extend UML notation. TABLE 2 shows the variability category with the extended
UML notation. In TABLE 2, assuming the variation point Vp is selected, we have the following definitions on its variants:
• Mandatory-The variant v must be bound to the variation point Vp.
• Optional-The variant v may or may not be bound to the variation point Vp.
• Alternative-Only one variant from a set of variants such as v1 and v2 can be bound to the variation point Vp.
• Or-One or more variants from a set of variants such as v1 and v2 can be bound to the variation point Vp.
• Optional Alternative-One variant from a set of alternative variants such as v1 and v2 may or may not be bound to the

variation point Vp.
• Optional Or-One or more variants from a set of or variants such as v1 and v2 may or may not be bound to the variation

point Vp.

Figure 3 : The variability dependency-constraint notation for SPL

TABLE 2 : The notation of variability in the use-case diagram

Variability Type Logic Representation Cardinality Extended UML Notation

Mandatory Vp ⇔V 1

Optional V ⇒Vp 0,1

Alternative Vp ⇔(V1 ⊕V2) 1

Or Vp ⇔(V1 ⋁V2) 1..n

Optional Alternative (V1 ⊕V2)⇒Vp 0..1

Optional Or (V1 ⋁V2)⇒Vp 0..n

BTAIJ, 10(14) 2014 Luo Daizhong and Diao Shanhui 8123

Formalizing Constraint
 Variability constraint mechanism is used to establish the constraint relationship in the use-case model between
variant to variant, variation point to variant, variation point to variation point when variability is tailored or bounded in the
use-case model. According to the rules of variability dependency and variability constraint, the variability model tailored
which should satisfy the rules of variability dependency and variability constraint.
 When establishing an application product model, it needs to tailor variability model of software product line, and
decides whether to keep the variation point, but the model is still possible variable after tailoring. In order to ensure the
model is correct after tailoring or binding, we use propositional logic to describe the rules of variability dependency and
variability constraint.
 Software product line variability model includes variation point, the variant, the variability dependency between
variation point and variants, the variability constraint rules between variant to variant, variant to variation point, variation
point to variation point.
 Dependency Logic. When a variant is bound to variation point, Vp denotes variation point, v denotes variant, T(Vp)
predicates that variation point is selected. T(vi) predicates that a variant vi is selected in variation point Vp. T(Vp), T(vi) value
is:

 True Vp is selected
 False Vp is not selected
 True vi is selected when Vp is selected
 False vi is not selected when Vp is selected

 True Vp is selected
 False Vp is not selected
 True vi is selected when Vp is selected
 False vi is not selected when Vp is selected
 The four basic dependencies of Mandatory, Option, Alternative, Or can be defined as follow.
Binding variation point Vp must bind all the variants from a set of v1,v2, …,vn.
 Mandatory(Vp,v1, v2,…,vn) = T(Vp)⇔(T(v1)∧T(v2)∧……∧T(vn))
 The variants of v1,v2, …,vn are bound to variation point Vp optionally.
 Optional(Vp,v1, v2,…,vn) = T(v1)⋁T(v2)⋁……⋁T(vn))⇒T(Vp)
 Binding variation point Vp must bind only one variant from a set of v1,v2, …,vn.
 Aternative(Vp,v1, v2,…,vn) = T(Vp)⇔(T(v1) T(v2) …… T(vn))
 Binding variation point Vp must bind one or more variants from a set of v1,v2, …,vn.
 Or(Vp,v1, v2,…,vn) = T(Vp) (T(v1)⋁T(v2)⋁……⋁T(vn))
 Variant to Variant Constraint. There is a variant vi which is bound to the variation point VPk and belongs to its
member, denotes as B(VPk, vi). We can define as follow if two variants such as vi and vj that vi requires vj or vi exclude vj at the
same variation point VPk. Of course, vi and vj can not belong to the same variation point.
 Requires_V_V(vi, vj)=B(VPk, vi)→B(VPk, vj) 1≤i≤n, 1≤j≤n, i≠j
 Excludes_V_V(vi, vj)=B(VPk, vi)⊕B(VPk, vj) 1≤i≤n, 1≤j≤n, i≠j
 Variant to Variation Point Constraint. The variant-variation point constraint among a variant vi of the variation point
VPk and the other variation point VPm includes that vi requires VPm or vi excludes VPm. vi requires VPm means that the variant
vi requires the valid combinations of all variants which can be bound to the variation point VPm, vi excludes VPm means that
the variant vi excludes all the valid combinations of all variants which can be bound to the variation point VPm. We can define
the propositional logic for variant to variation point constraint as follow.
 Requires_V_VP (vi, VPm)=B(VPk, vi)→∀vj (B(VPm, vj)) 1≤i≤n, 1≤j≤n, i≠j

 Excludes_V_VP (vi, VPm)=B(VPk, vi) →﹁(∀vj (B(VPm, vj))) 1≤i≤n, 1≤j≤n, i≠j
 Variation Point to Variation Point Constraint. The constraint between the variation point VPk and the variation point
VPm includes that VPk requires VPm or VPk excludes VPm. VPk requires VPm means that any variant of the variation point VPk
requires the valid combinations of all variants which can be bound to the variation point VPm, VPk excludes VPm means that
any variant of the variation point VPk excludes all the valid combinations of all variants which can be bound to the variation
point VPm. We can define the propositional logic for variation point to variation point constraint as follow.
 Requires_VP_VP(VPk, VPm)=∃vi (B(VPk, vi))→∀vj (B(VPm, vj)) 1≤i≤n, 1≤j≤n, i≠j

 Excludes_VP_VP(VPk, VPm)=∃vi (B(VPk, vi)→﹁(∀vj (B(VPm, vj))) 1≤i≤n, 1≤j≤n, i≠j

T(vi)

T(Vp) =

8124 Variability modeling for software product line BTAIJ, 10(14) 2014

VARIABILITY MODEL OF MOBILE CASE STUDY

 In mobile phone SPL, the commonality provides basic mobile functions, the variability supports the various mobile
products by the special variants combination, then assembling the commonality and the variability to the new mobile phone
application software. The part use-case diagram for variability mobile phone SPL is showed in Figure 4. We use the extended
UML language to depict variability type, variability dependency and variability constraint. The mobile phone SPL(in short
MP) includes the mandatory use case such as “Dial Mode”, “Data Service”, “Operating System” and “Transmission Mode”,
the optional use case such as “IM Software”. “Operating System” use-case includes an alternative set of variants for
“Android”, “IOS”, “Windows Phone” and Symbian. “Transmission Mode” use-case includes an alternative set of variants for
“GPRS”, “3G” and 4G. The “IM Software” use case includes an optional set of variants for “Wechat”, “Fetion” and “UC”.
The “Dial Mode” use case includes a mandatory “PressKey Dial” and an optional “Voice Dial”, the “Data Service” use case
includes a mandatory “SMS” and an optional set of “Mobile Payment”, “GPS” and “Navigation”. The dependency is showed
as follow.

 Figure 4 Variability Use-Case Diagram for Mobile Phone SPL
 Mandatory(MP, Dial Model, Operating System, Data Service)=T(MP)⇔(T(Dial Model)∧T(Operating

System)∧T(Data Service))

 Optional(MP, Set Background, IM Software)=(T(Set Background)⋁T(IM Software))⇒T(MP)
 Alternative(Operating System, Android, IOS, Windows Phone, Symbian)=T(Operating
System)⇔(T(Android) T(IOS) T(Windows Phone) T(Symbian))
 Alternative(Transmission, GPRS, 3G, 4G)=T(Transmssion)⇔(T(GPRS) T(3G) T(4G))
 Mandatory(Dial Mode, PressKey Dial)=T(Dial Mode)⇔T(PressKey Dial))
 Optional(Dial Mode, Voice Dial)=T(VoiceDial) ⇒T(Dial Mode)

 Optional(IM Software, Wechat, Fetion, UC)=(T(Wetchat)⋁T(Fetion)⋁T(UC))⇒T(IM Software)

 Mandatory(Data Service, SMS) = T(Data Service)⇔T(SMS)
 Optional(Data Service, Mobile Payment, GPS, Navigation)=(T(Mobile Payment)⋁T(GPS)⋁T(Navigation))⇒T(Data
Service)
 The constraint for the variant “Navigation” requires the variant “GPS” can be depicts as fellow.
Requires_V_V(Navigation, GPS)=B(Data Service, Navigation)→B(Data Service, GPS)
 The variant “Wechat” requires the variant “GPS” of the variation point “Data Service”, at the same time it requires
the variation point “Transmission Model”, the constraints for variant “Wechat” can be depicts as fellow.
 Requires_V_VP(Wechat, Transmission)∧Requires_V_V(Wechat, GPS)

 =(B(IM Software, Wechat)→Alternative(Transmission Model, GPRS, 3G, 4G))∧(B(IM Software,
Wechat)→Mandatory(Data Service, GPS))

BTAIJ, 10(14) 2014 Luo Daizhong and Diao Shanhui 8125

 =(B(IM Software, Wechat)→(B(Transmission Model, GPRS) B(Transmission Model, 3G) B(Transmission
Model, 4G))∧(B(IM Software, Wechat)→B(Data Service, GPS))

CONCLUSIONS AND FUTURE WORK

 Variability modeling allows a developer to compose variants in different combinations tailoring the design to
specific requirements, to reuse variants in different application products. In our Mobile Phone case study, we propose an
approach of variability modeling with extended UML language base on the SPL variability analysis, the use case
requirement-matrix, mutual dependencies and constraints. The variability modeling approach not only supports the variable
type such as mandatory, optional, alternative, but also supports the constraint modeling for SPL variability. Finally, the
variability modeling of Mobile Phone case study verifies the effectiveness of the proposed method.
 Our future work will continually investigate the formalization representation for feature modeling, and solve the
potential conflicts among variants, variation points.

ACKNOWLEDGMENT

 The work was funded by the research project of Chongqing Nature Science Foundation (cstc2013 jcyjA40066) and
the research project of Chongqing University of Arts and Sciences Foundation(Y2013JX50).

REFERENCES

[1] Klaus Pohl, Günter Böckle, Frank van Der Linden; Software product line engineering-foundations[M], Principles, and
Techniques, Springer-Verlag Berlin Heidelberg, (2005).

[2] H.Gomaa; Designing software product lines with UML[C], IEEE software engineering workshop, IEEE Computer
Society, 160-216 (2005).

[3] K.Nie, L.Zhang, Z.Geng; Product line variability modeling based on model difference and Merge[C], Computer
Software and Applications Conference Workshops (COMPSACW), 2012 IEEE 36th Annual, IEEE, 509-513 (2012).

[4] S.H.Ripon; A unified tabular method for modeling variants of software product line[J], ACM SIGSOFT Software
Engineering Notes, 37(3), 1-7 (2012).

[5] S.Ripon, K.Azad, S.J.Hossain et al.; Modeling and analysis of product-line variants[C], Proceedings of the 16th
International Software Product Line Conference-Volume 2, ACM, 26-31 (2012).

[6] R.Michel, A.Classen, A.Hubaux et al.; A formal semantics for feature cardinalities in feature diagrams[C], Proceedings
of the 5th Workshop on Variability Modeling of Software-Intensive Systems, ACM, 82-89 (2011).

[7] A.Classen, Q.Boucher, P.Heymans; A text-based approach to feature modelling: Syntax and semantics of TVL[J],
Science of Computer Programming, 76(12), 1130-1143 (2011).

[8] K.Czarnecki, P.Grünbacher, R.Rabiser et al.; Cool features and tough decisions, A comparison of variability modeling
approaches[C], Proceedings of the Sixth International Workshop on Variability Modeling of Software-Intensive
Systems, ACM, 173-182 (2012).

[9] A.Haber, H.Rendel, B.Rumpe et al.; Hierarchical variability modeling for software architectures[C], Software Product
Line Conference (SPLC), 2011 15th International, IEEE, 150-159 (2011).

[10] Zou Shengheng, Zhang wei, Zhao haiyan; Modeling variability in software product family, Journal of Software, 16(1),
37- 49 (2005).

[11] K.Lee, K.C.Kang; Feature dependency analysis for product line component design[M], Software Reuse: Methods,
Techniques, and Tools, Springer Berlin Heidelberg, 69-85 (2004).

[12] Nunes, Vinicius; Variability management of reliability models in software product lines, An expressiveness and
scalability analysis, Proceedings-2012 6th Brazilian Symposium on Software Components, Architectures and Reuse,
SBCARS, 51-60 (2012).

[13] Simmonds, Jocelyn; Variability in software process models, Requirements for adoption in industrial settings, 2013 4th
International Workshop on Product Line Approaches in Software Engineering, Please Proceedings, 33-36 (2013).

[14] Peng, Xin, Liu, Jindu, Zhao, Wenyun; Towards feature-oriented variability reconfiguration in dynamic software product
lines, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), v 6727 LNCS, 52-68.

[15] Kulesza, Uirá, Oliveira, A.Edson; Modeling variabilities from software process lines with compositional and annotative
techniques, A quantitative study, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), v7983 LNCS, 153-168.

[16] Khosravi,Ramtin; Modeling variability in business process models using UML, Proceedings-International Conference
on Information Technology, New Generations, ITNG, 82-87 (2008).

