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ABSTRACT 

This paper presents anisotropic, homogeneous two-fluid cosmological models in a Bianchi type I space-time with a 
gravitational constant G and cosmological constant Λ . In the two-fluid model, one fluid represents the matter content of the 
universe and another fluid is chosen to model the CMB radiation. The radiation and matter content of the universe are in an 
interactive phase. We also discuss the behaviour of associated fluid parameters and kinematical parameters. 

Key words: Bianchi type I, Two-fluid, VariableG and Λ . 

INTRODUCTION 

Cosmological models with a cosmological constant are currently serious candidates to describe the 
dynamics of the Universe. Recent observations of Type-Ia supernovae with the red-shift up to about 1≤z  
provided evidence that we may beliving in a low mass-density universe, with the contribution of the non-
relativistic matter to the total energy density of the universe of order of 3.0≈Ωm (Riess et al., 1998; 

Perlmutter et al., 1998, 1999). The value of mΩ  is significantly less than unity (Ostriker and Steinhardt 
1995). Thus, a major art of matter content in the universe remains unobserved.  This leads to the assumption 
that there is some additional energy sufficient to reach the value 1=Ωtotal , predicted by inflationary theory. 
Several physical models have been proposed to give a consistent physical interpretation of these 
observational facts. The observational and theoretical features suggest that the most natural candidate for the 
missing energy is the vacuum energy density or the cosmological constant Λ (Weinberg 1989; Gasperini 
1988). But selection of cosmological constant as a vacuum energy faces a serious fine-tuning problem, 
which demands that the value of Λ  must be 120 orders of magnitude greater than its presently observed 
value. 

A number of authors studied cosmological models with a variable cosmological constant. Bertolami 
(1986) was the first to consider cosmological models in the variable cosmological constant as the 
form 2−∝Λ t . Chen and Wu (1990) studied Friedmann-Robertson-Walker (FRW) model with variable 
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cosmological constant as the form 2−∝Λ R , where R  is the average scale factor of the universe. Carvalho et 
al., (1992), Berman (1990), Waga (1993), Silviera and Waga (1994), and Vishwakarma (2000) also 
investigated cosmological models with a variable cosmological constant by considering a more general Λ  
term. Al-Rawaf and Taha (1996), Al-Rawaf (1998), Overdin and Cooperstock (1998), and Arbab (2003) 

investigated cosmological models with the cosmological constant of the form
R
R&&β=Λ , where β is a 

constant. Pradhan and Otarod (2006) presented exact solutions of Einstein’s field equations with perfect 
fluid for a locally rotationally symmetric (LRS) Bianchi type I space-time. They used a time-dependent 
declaration parameter and a variable cosmological term. 

The idea of a variable gravitational constant G in the frame work of general relativity was first 
proposed by Dirac (1937). Lau (1985), working in the frame work of general relativity, proposed 
modification linking the variation of G with that ofΛ . This modification allows us to use Einstein’s field 
equations formally unchanged since a variation in Λ is accompanied by a variation of G . A number of 
authors investigated FRW models using this approach (Abdel-Rahman 1990; Berman 1991; Sisterio 1991; 
Kalligas et al., 1992; Abdulssathar and Vishwakarma 1997). 

Recently, Debnah and Paul (2006) investigated FRW cosmological models with varying G and Λ  in 
the framework of 2R theory. Singh (2006) studied FRW cosmological models with variable G and Λ  in 
general relativity by using the state equation ργ )1( −=p , where γ  varies continuously as the universe 
expands. Following the same approach, Singh et al. (2007) also obtained solutions of Einstein’s field 
equations with the varying G and Λ  in the presence of bulk viscosity for a FRW universe. Ibotombi Singh 
and Sorokhaiban (2007) obtained exact solutions for Zeldovich fluid satisfying ( )nRRGG 00 /=  with 
variable G and Λ  for an FRW metric. 

Bianchi space-times provide spatially homogeneous and isotropic models of the universe as 
compared to the homogeneous and isotropic FRW models. Beesham (1994) and Chakraborty and Roy (1997) 
studied the Bianchi type cosmological models for perfect fluids, assuming the power law form for G andΛ . 

Vishwakarma (2001) has studied the magnitude red-shift relation for the type Ia supernovae data and 
the angular size red-shift relation for the updated compact radio sources data Gurvits (1999) by considering 
four variable Λ -models: ρ~,~,~ 22 ΛΛΛ −− HR and 2~ −Λ t . Ray and Mukhopadhayay (2004) have 
solved Einstein’s equations for specific dynamical models of the cosmological terms Λ in the form 

R
R

R
R &&&

~,~ 2

2

ΛΛ  and ρ~Λ  shown that the models are equivalent in the framework of flat RW space time. 

In this context, the aim of the present work is based on recent available observational information. In this 

paper the implication of cosmological models with cosmological terms of two different forms: 2

2

R
R&β=Λ , 

R
R&&α=Λ  are analyzed in the two-fluid model, one fluid represents the matter content of the universe and 

anther fluid is chosen to model the CMB radiation. 

The metric and the field equations 

We consider the plane symmetric metric in the form 
2222222 )( dzBdydxAdtds −+−=           …(1) 
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where A and B are functions of time t only. 

Einstein’s field equations with time-dependent gravitational and cosmological constants are given by 

ijijijij gtTtGRgR )()(8
2
1

Λ−−=− π          …(2) 

The energy momentum tensor for two-fluid source is  
r

ij
m

ijij TTT +=            …(3) 

where )(m
ijT is the energy momentum tensor for matter field and )(r

ijT is the energy momentum tensor    

for the radiation field which are given by 

ijm
m
j

m
imm

m
ij gpuupT −+= )()( ρ          …(4) 

ijr
r
j

r
ir

r
ij guuT ρρ

3
1

3
4)( −=           …(5) 

with 

1=m
i

m
i

ij uug                      1=r
i

r
i

ij uug         …(6) 

The off diagonal equations of (2) together with energy conditions imply the matter and radiation are 
both co-moving:  

)1,0,0,0()( =m
iu                       )1,0,0,0()( =r

iu         …(7) 

In Einstein’s theory, the principal of equivalence requires that G and Λ not enter the equation of 
motion of particle and photons; i.e., only ijg  must enter the usual conservation law for Einstein’s field 

equation ( ) 0;
)()(

; =+= j
ijrijmij

j TTT  (the semicolon denotes covariant divergence) and the vanishing 
covariant divergence of the Einstein tensor in (2) results in     

)(8 rmG ρρπ +−=Λ &&
           …(8) 

Using (3), (4), (5) and (7) the field equations (2) reduces to  

Λ+⎟
⎠
⎞

⎜
⎝
⎛ +−=++

3
8 r

mpG
AB

BA
B
B

A
A ρπ

&&&&&&
         …(9) 

Λ+⎟
⎠
⎞

⎜
⎝
⎛ +−=+

3
822

2
r

mpG
A
A

A
A ρπ

&&&
         …(10) 

( ) Λ++=+ rmG
AB

BA
A
A ρρπ822

2 &&&
         …(11) 

Here, an over dot denotes a derivative with respect to cosmic time t. 

Solutions of the field equations 

There are four equations (8-11) in seven unknowns. Thus, to get a solution we need three additional 
relations. These relations may be taken to involve field variables as well as physical variables. We attempt to 
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solve them by choosing an additional relation in the form of some physical condition signifying some 
particular scenario, viz., the two-fluid are in interactive phase and the matter distribution obeys theγ -law of 
equation of state. We assume that the expansion scalar θ  in the model is proportional to the shearσ . This 
condition leads to the relation between metric potential and further gravitational constant G  assuming 
(Beesham 1994).  

mmp ργ )1( −=             21 ≤≤ γ             …(12) 
nAB =              …(13) 

( )( )mbatnG ++= 2                        …(14) 

where n  is positive constant. 

Equations (9) and (10) lead to 

022

2

=−−++
A
A

A
A

AB
BA

B
B

A
A &&&&&&&&&

          …(15) 

Using equation (13) in equation (15), we get 

0)1( 2

2

=++
A
An

A
A &&&

            …(16)
 

The solution of equation (16) is given by 

( ) ( ) 2
1

2
1

2 ++ ++= nn batnA           …(17) 

and hence 

( ) ( ) 222 ++ ++= n
n

n
n

batnB           …(18) 

Using above, the space-time can be written as     

( ) ( ) ( ) ( ) 2
2

2
2

2
22

2
2

2
2

22 2)(2 dzbatndydxbatndtds n
n

n
n

nn ++++ ++−+++−=      …(19) 

In order to investigate the physical behaviour of the fluid parameters and cosmological and      
gravitational constants we consider two different cases as given in the following 

Case I :  

Using equation (9), (11) and (12), we get energy density of matter, energy density of radiation and 
total energy density as  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+
++

+
−

= ++ 2

2

23

2

))(2(9
4

)()2(
)12(2

)43(
18 mmm batn

a
batn

an β
γ

πρ       ...(20) 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−
++
+−

−
= ++ 2

2

23

2

))(2(9
3

)()2(
)12)(63(

)43(
18 mmr batn

a
batn

an γβγ
γ

πρ       …(21) 
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2

2

23

2

))(2(9)()2(
)12(8 ++ ++

−
++

+
= mm batn

a
batn

an βπρ  

Particular Cases 

(i) Dust model ( )1=γ : In order to investigate the physical behaviour of the fluid parameters we can 
consider the particular case of dust.  

The scalar of expansion, shear scalar and declaration parameter are given by 

bat
aH
+

== 3θ  

( ) ( )22

22
2

23
)1(

batn
na

++
−

=σ  

2=q  
For 1=γ , (20) and (21) imply density parameters as   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+++
−=Ω 2

2

)2(3
)2(4)12(18

n
nn

m
β  

( )2
2

2
)2()12(9

+
+++

=Ω
n

nn
r

β

 

3
β

=ΩΛ

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−+
−=Ω+Ω+Ω=Ω Λ 2

2

)2(
)12(3)2(1

n
nn

mr

 

In this case mρ  is negative and rρ is positive. 

(ii) Radiation Universe (
3
4

=γ ):  

The scalar of expansion, shear scalar and declaration parameter are given by
 

bat
aH
+

== 3θ  

( ) ( )22

22
2

23
)1(

batn
na

++
−

=σ  

2=q  

For
3
4

=γ , (20) and (21) imply density parameters as   

∞=Ωm  

∞=Ωr  
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(iii) Hard Universe ⎟
⎠
⎞

⎜
⎝
⎛ =

3
5γ :

  

The scalar of expansion, shear scalar and declaration parameter are given by 

bat
aH
+

== 3θ  

( ) ( )22

22
2

23
)1(

batn
na

++
−

=σ  

2=q  

For
3
5

=γ , (20) and (21) imply density parameters as   

2

2

)2(3
)2(4)12(18

+
+++

=Ω
n

nn
m

β  

( )2

2

23
)2(5)12(9

+
+−+−

=Ω
n

nn
r

β

 

3
β

=ΩΛ

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−+
−=Ω+Ω+Ω=Ω Λ 2

2

)2(
)12(3)2(1

n
nn

mr

 

Here mρ  is positive and rρ is negative. 

(iv) Zeldovich Universe ( )2=γ :  

The scalar of expansion, shear scalar and declaration parameter are given by 

bat
aH
+

== 3θ  

( ) ( )22

22
2

23
)1(

batn
na

++
−

=σ  

2=q  

For 2=γ , (20) and (21) imply density parameters as   

2

2

)2(3
)2(2)12(9

+
+++

=Ω
n

nn
m

β  

β−=Ω r  

3
β

=ΩΛ
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Here mρ  is positive and rρ is negative. 

Case II:  

Using equation (9), (11) and (12), we get energy density of matter, energy density of radiation and 
total energy density as  
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Particular Cases 

(i) Dust model ( )1=γ :  

The scalar of expansion, shear scalar and declaration parameter are given by 

bat
aH
+

== 3θ  

( ) ( )22

22
2

23
)1(

batn
na

++
−

=σ  

2=q  

For 1=γ , (22) and (23) imply density parameters as   

2

2
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Here both mρ and rρ  are positive. 
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(ii) Radiation Universe (
3
4

=γ ):  

The scalar of expansion, shear scalar and declaration parameter are given by
 

bat
aH
+

== 3θ  

( ) ( )22

22
2

23
)1(

batn
na

++
−

=σ  

2=q  

For
3
4

=γ , (22) and (23) imply density parameters as   

∞=Ωm  

∞=Ωr  

(iii) Hard Universe ⎟
⎠
⎞

⎜
⎝
⎛ =

3
5γ :  

The scalar of expansion, shear scalar and declaration parameter are given by 

bat
aH
+

== 3θ  

( ) ( )22

22
2

23
)1(

batn
na

++
−

=σ  

2=q  

For
3
5

=γ , (22) and (23) imply density parameters as  

2

2
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Here both mρ  and rρ  are positive. 

(iv) Zeldovich Universe ( )2=γ :  
The scalar of expansion, shear scalar and declaration parameter are given by - 
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bat
aH
+

== 3θ
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For 2=γ , (22) and (23) imply density parameters as   

2

2

)2(3
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Here both mρ  and rρ  are positive. 

CONCLUSION 

In this paper we have presented two-fluid cosmological models obeying Einstein field equations in 
plane symmetric universe with gravitational constant G and cosmological constant Λ  and considered two 
different cases comprising −γ law of equation of state for matter field. In all the cases, we get 2=q . This 
implies that these two fluids models are expanding with constant velocity. Also in all the cases, we get           

θ
σ  = constant. Therefore, these models do not approach isotropy for large value of t . The sign of 

deceleration parameter q indicates whether the model accelerates or not. The positive sign of 
)1(fq corresponds to decelerating model whereas the negative sign )01( pp q−  indicates acceleration and 

2=q  corresponds to expansion with constant velocity. The model comes out to be rotating as well as 
expanding ones, the rate of expansion decreases with time, which can be thought of as realistic models. In 
both cases mΩ and rΩ depends only on α,n  and β . 
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