# Thermal behavior of $\boldsymbol{\beta}-\mathrm{PbO}_{2}$, a study of thermogravimetry and differential scanning calorimetry 

S.A.A.Sajadi<br>Sharif University of Technology, Institute of Water and Energy, P.O.Box 11365-8639 Tehran, (IRAN)<br>

## ABSTRACT

The compound lead (IV) oxide $\beta-\mathrm{PbO}_{2}$ was prepared in our laboratory. The Thermal behavior of this compound was studied using both techniques of Thermogravimetery and Differential Scanning Calorimetery under $\mathrm{O}_{2}$ gas atmosphere from 25 to $600^{\circ} \mathrm{C}$. The identityof products at different stages were confirmed by XRD technique. Results obtained using both techniques support same decomposition stages for this compound. Three distinct energy changes takes place, two endothermic and one exothermic in DSC results. The amount of $\Delta \mathrm{H}$ for each peak is reported.
© 2008 Trade Science Inc. - INDIA

## KEYWORDS

Lead (IV) oxide; XRD;
Thermal analysis;
Thermogravimetry; TGA;
Differential scanning calorimetry; DSC.

## INTRODUCTION

Lead compounds are used in different industries world-wide due to their chemical and physical characteristics ${ }^{[1-6]}$. One of the most important characteristics of the lead is its reactions with acids and bases as well as with air, which are well-known as oxidation. In consequence of these kind of reactions compounds like "lead (II) oxide, lead (IV) oxide, sulfate, lead carbonate, lead nitrate as well as alkaline lead acetate" have been produced. Some are the end product of a desired process but most of them are undesired byproducts and are known as disturb compounds ${ }^{[8,9]}$.

Lead (IV) oxide is one of the most important compounds used in lead-acid batteries, which are produced daily all over the world ${ }^{[5,7]}$.

Two morphology $\alpha$ and $\beta$ are known for lead(IV) and lead(II) oxide ${ }^{[3,7]}$. The goal of this work was to investigate the thermal properties of $\beta$-lead (IV) oxide in different temperature conditions. Pure lead (II) oxide has been reported to be the final product of thermal
decomposition process of number of different lead compounds ${ }^{[10-12]}$. The Morphology of these compounds were also reported ${ }^{[13-15]}$.

## EXPERIMENTAL

## Materials and equipment

$\beta$-Lead (IV) oxide was prepared in this labortory as described in this paper.
TGA: Thermogravimeter, Mettler TG50, coupled with a TA processor.
DSC: Differential Scanning Calorimeter, Mettler DSC25, coupled with a TA processor.
XRD: X-Ray diffractometer D 5000, Siemens, Kristalloflex.

## Preparation of $\boldsymbol{\beta}-\mathrm{PbO}_{2}$

$50 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}$ was poured into a beaker with about 460 ml of distilled water and all crystals were crushed until all $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}$ decomposed hydrolytically to $\beta-\mathrm{PbO}_{2}$. The precipitate was separated in a

## Fuld Paper

centrifuge after 10 minutes, filtered and washed with 460 ml of double distilled water four times. This product was washed with 50 ml water twice and collected on a glass frit after complete mixing. It was washed slowly four times with 25 ml acetone to remove any remaining water. It was dried immediately in vaccum desicator over blue gel ${ }^{[16]}$. The dried product has a cof-fee-brown color.

## X-ray diffraction of $\boldsymbol{\beta}-\mathbf{P b O}_{2}$

The lead (IV) oxide sample was prepared for Xray using Bedacryl and exposed with $\mathrm{CuK} \alpha 1$ radiation for two hours. Figure 1 shows the XRD diagram of the compound $\beta-\mathrm{PbO}_{2}$.

## TGA analysis of $\boldsymbol{\beta}-\mathbf{P b O}_{2}$

30.801 mg of $\beta-\mathrm{PbO}_{2}$ were weighted in a standard container from corundum. This sample was heated $\left(1^{\circ} \mathrm{C} /\right.$ min ) from 25 to $600^{\circ} \mathrm{C}$ under $\mathrm{O}_{2}$ gas atmosphere $(15 \mathrm{ml} /$ min ) (figure 2).

## DSC analysis of $\boldsymbol{\beta}-\mathbf{P b O}_{2}$

A sample of $\beta-\mathrm{PbO}_{2}$ were placed in a standard crucibles from aluminium and weighed accurately ( 30.967 mg ) using a microbalance. The sample was sealed with special equipment. The sealed crucible was placed in the DSC equipment and the sample was heated from 25 to $600^{\circ} \mathrm{C}$, with aheating rate of $5^{\circ} \mathrm{C} /$ min , under $\mathrm{O}_{2}$ gas atmosphere. DSC curve of this sample is shown in figure 3 .

## RESULTS AND DISCUSSION

## Thermal investigations of $\boldsymbol{\beta}-\mathrm{PbO}_{2}$

## TGA and DTG results

Both TGA and DTG curves of thermal decomposition of $\beta-\mathrm{PbO}_{2}$ is shown in figure 2 . The curve in the upper part shows the weight loss (vertical axis) versus increase in temperature (horizontal axis) and in the lower section of the same figure, first derivative of weight loss is shown in vertical axis versus temperature increase in horizontal axis.

So one can differentiate better between the stages of the thermal decomposition. The results indicate thermal decomposition consists of four separate stages in the temperature range of $25-600^{\circ} \mathrm{C}$ and summarized in


Figure 1: XRD diagram of $\boldsymbol{\beta}-\mathrm{PbO} 2$


Figure 2 : TGA diagram of $\boldsymbol{\beta}-\mathrm{PbO} 2$
TABLE 1: results from the thermal investigations of $\boldsymbol{\beta}-\mathrm{PbO}_{2}$ in range $25-600^{\circ} \mathrm{C}$ in $\mathrm{O}_{2}$ atmosphere ( $15 \mathrm{ml} / \mathrm{min}$ ), $1{ }^{\circ} / \mathrm{mim}$

| Phase <br> no. | Start <br> temp. <br> $\left[{ }^{\circ} \mathbf{C}\right]$ | Turning- <br> point <br> $\left[{ }^{\circ} \mathbf{C}\right]$ | End <br> temp. <br> $\left[{ }^{\circ} \mathbf{C}\right]$ | Weight <br> decrease <br> $[\mathbf{m g}]$ | Weight <br> decrease <br> $[\%]$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 25 | 100 | 200 | 0.527 | 1.711 |
| 2 | 250 | 318 | 350 | 0.890 | 2.89 |
| 3 | 350 | 390 | 450 | 0.370 | 1.20 |
| 4 | 500 | 574 | 600 | 0.693 | 2.25 |

TABLE 1.
The first stage takes place between $25-200^{\circ} \mathrm{C}$. The Calculations of weight loss shows that small quantities of water is present at the end of this region and it corresponds to a chemical formula of $\beta-\mathrm{PbO}_{2} 0.06 \mathrm{H}_{2} \mathrm{O}$. The DTG curve shows that the first stage in TGA curve actually consists of two different phenomena. First phenomenon is the loss of absorbed water and the second one is decomposition of the starting compound.

Spectroscopic quantitative analysis in this study also corroborates this finding as well.

The computed stoichiometry of decomposition products are in good agreement with experimental results (quantitative and percent decrease in weight).

## 1. First stage of decomposition $\left(\mathbf{2 5 - 2 0 0}{ }^{\circ} \mathrm{C}\right)$

A low heating rate of $1^{\circ} \mathrm{C} / \mathrm{min}$ was chosen to determine the real value of adsorbed quantity of water as well as finding out more information on what is taking place in this temperature range. The experiment was acomplished in the $\mathrm{O}_{2}$ atmosphere with a constant gas flow of $15 \mathrm{ml} / \mathrm{min}$.

As is to be inferred from the results of the figures 2 \& 3, the first phase of (decomposition ) pyrolysis reaction of $\beta-\mathrm{PbO}_{2}$ occurs in the range of $25-200^{\circ} \mathrm{C}$. As in the Case of $\beta-\mathrm{PbO}_{2}$ we observed here also the $\mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ separation Comparison of TGA \& DTG curve for this stage suggests two processes i.e. loss of adsorbed water followed by loss of $\mathrm{O}_{2}$.

By subtraction of the experiment-tally determined quantity of water (by spectrometric quantitative analysis) from the entire amount of weight loss one can approximately compute the separated $\mathrm{O}_{2}$-quantity and reach to the following formula $\beta-\mathrm{PbO}_{2} \cdot 0 \cdot 06 \mathrm{H}_{2} \mathrm{O} . \mathrm{X}-$ ray investigation supplied an identical XRD diagram to $\beta-\mathrm{PbO}_{2}$. now we wanted to compute the separated $\mathrm{O}_{2}$-quantity for the range $25-200^{\circ} \mathrm{C}$ by subtraction of the experimentally determined quantity of water from the entire decrease in weight approach. The kind of crystal of the product belonges therefore to the nonstoechiometric compound on (with broad homogeity range). The XRD analysis supplied a similar XRD diagram as $\beta-\mathrm{PbO}_{2}$. The evaluation of the results as well as spectrophotometric analysis the formula $\mathrm{PbO}_{1.823^{\circ}}$.

## 2. Second stage of decomposition ( $\mathbf{2 5 0 - 3 5 0}{ }^{\circ} \mathrm{C}$ )

From the experimentally results is to be used, that the product lost within the range $250-350^{\circ} \mathrm{C}$ about $3 \%$ of its weight. The experiment was acoomplished in the $\mathrm{O}_{2}$ atmosphere with a constant gas flow of $15 \mathrm{ml} / \mathrm{min}$. The X-ray analysis supplied a similar XRD diagram as $\mathrm{Pb}_{12} \mathrm{O}_{19}$. The evaluation of the results as well as spectrometric analysis the brutto formula: $\mathrm{PbO}_{1.425}$.

## 3. Third stage of decomposition $\left(350-450{ }^{\circ} \mathrm{C}\right)$

The third weight loss equals to about $1.2 \%$ starting material and occurs in the temperature range of 350$450^{\circ} \mathrm{C}$. The X-ray analysis of the product confirms presence of $\mathrm{Pb}_{3} \mathrm{O}_{4}$. This was checked by spectrometric analysis and the calculated brutto formula of $\mathrm{PbO}_{1.22}$ is reached.


Figure 3: DSC diagram of $\boldsymbol{\beta}-\mathrm{PbO} 2$


Figure 4 : The first stage of DSC diagram of $\boldsymbol{\beta}$ - PbO 2


Figure 5 : The second stage of DSC diagram of $\boldsymbol{\beta}-\mathrm{PbO} 2$

## 4. Fourth stage of decomposition $\left(500-6200^{\circ} \mathrm{C}\right)$

The fourth phase of thermal decomposition of $\beta$ $\mathrm{PbO}_{2}$ is completed with loss of about $2.3 \%$ in weight and PbO is identified as the chemical entity of the product.

## Fall Papro



Figure 6: The third stage of DSC diagram of $\boldsymbol{\beta}-\mathrm{PbO} 2$
We want to point out again that the pyrolysis of $\beta$ $\mathrm{PbO}_{2}$ within the range $25-600^{\circ} \mathrm{C}$ in the $\mathrm{O}_{2}$-atmosphere led to PbO , i.e. the reaction $\beta-\mathrm{PbO}_{2} \rightarrow \mathrm{PbO}$ ran off completely with approximately $600^{\circ} \mathrm{C}$. From the above TG diagram it is evident that the pyrolysis reaction of $\beta-\mathrm{PbO}_{2}$ in the range $25-600^{\circ} \mathrm{C}$ consists of four stages. The final decomposition product is PbO .

Therefore, study of thermal Behavior of $\beta-\mathrm{PbO}_{2}$, by Thermogravimetry suggests four different stages as discussed above. At first the compound losses water followed by loss of oxygen in separate stages and change of Pb (IV) to Pb (II). These changes occur at different temperatures and separate steps of thermal decomposition. These steps could be studied by using another technique (DSC) and energy of each step could be determined.

## DSC results

Both exothermic or endothermic reactions are shown in figure 3. This heat flow can be either exothermic or endothermic. The energy is shown on vertical axis in mW and temperature is recorded on horizontal axis in ${ }^{\circ} \mathrm{C}$. The TA processor was used to compute the enthalpy of an exothermic or endothermic reaction by entering the begining and the termination point of each deflection. A straight or a sigmoide base line can be selected which shows the change in $\mathrm{C}_{\mathrm{p}}$ of a sample due to change in temperature. The surface area under each peak is computed automatically by the TA processor. As results we receive $\Delta \mathrm{H}_{\text {exe }}$ or $\Delta \mathrm{H}_{\text {end }}$ in $\mathrm{J} / \mathrm{g}$.
If we compare the TGA \& DSC results as figures 2 and 3 with each other we see that they confirmed each other. DSC results of thermal decomposition of $\beta-\mathrm{PbO}_{2}$
are shown in figures 3-6. The first reaction shown in figure 3 is an exotherm and it starts at $110^{\circ} \mathrm{C}$ and ends at $195^{\circ} \mathrm{C}$. The area under the peak was computed by TA processor. This reaction is represented more largely and more exactly in the figure 4 . The maximum point of this reaction occurs at $156^{\circ} \mathrm{C}$. The $\Delta \mathrm{H}$ was $29.54 \mathrm{~J} / \mathrm{g}$, or $7.07 \mathrm{~kJ} / \mathrm{mol}$. A second reaction occurs between 330 and $390^{\circ} \mathrm{C}$. This reaction is an endotherm. This part of the curve is shown more largely and more exactly in the figure 5. The area under the curve is computed. The maximum of this reaction is at $373^{\circ} \mathrm{C}$. The $\Delta \mathrm{H}$ for this peak is $120.48 \mathrm{~J} / \mathrm{g}$ or $28.82 \mathrm{~kJ} / \mathrm{mol}$. The third peak (endothermic) starts at $400^{\circ} \mathrm{C}$ and ends at $450^{\circ} \mathrm{C}$ as shown in figure 3 . which is enlarged and shown in figure 6. The maximum of this reaction is at $431^{\circ} \mathrm{C}$. The value of $\Delta \mathrm{H}$ was computed to be $22.26 \mathrm{~J} / \mathrm{g}$ or $5.32 \mathrm{~kJ} / \mathrm{mol}$. These results confirms that the pyrolysis of $\beta \mathrm{PbO}_{2}$ between $25-450^{\circ} \mathrm{C}$ occurs in three separate steps (one exotherms and two endotherms).

## CONCLUSION

Thermal behavior of $\beta-\mathrm{PbO}_{2}$ was examined using TGA, DSC techniques and following pathway was obsereved for the thermal decomposition of $\beta-\mathrm{PbO}_{2}$ after XRD experiments confirms presence of $\mathrm{Pb}_{12} \mathrm{O}_{19}$ and $\mathrm{Pb}_{3} \mathrm{O}_{4}$ as compounds produced in the process of decomposition as well as identity of the final product $\mathrm{PbO}($ mixed $\alpha \& \beta)$ at $600^{\circ} \mathrm{C}$.
$\boldsymbol{\beta}-\mathrm{PbO}_{\mathbf{2}} \rightarrow \mathbf{P b 1 2 O}_{19} \rightarrow \mathbf{P b}_{\mathbf{3}} \mathbf{O}_{4} \rightarrow \mathbf{P b O}$

## REFERENCES

[1] E.W.Able; Comprehensive Inorg.Chem., 2, 105-146 (1973).
[2] Ullmann ; 5.Auflage 'Lead Alloys \& Lead Compounds', A15, 193-257 (1990).
[3] Gmelin; Lead Syst., 47 (1978).
[4] R.Giovanoli, R.Brutsch; Chemia, 32, 257-259 (1978).
[5] R.Glemser; Zeitsch.Anorg.Allg.Chem., 244, B382 (1971).
[6] E.Preisler; J.Appl.Electrochem., 6, 311 (1976).
[7] N.Greenwood; 'Chemie der Elemente', Verlagsgesellschaft VCH, 440-453 (1988).
[8] S.A.A.Sajadi, S.J.Hashemian; J.Science, A.Z.U., 14(2), 25-31 (2001).
[9] S.A.A.Sajadi; Scientific Soc.Appl.Chem., 8, 1-6
(2001).
[10] S.A.A.Sajadi; J.Science, T.U., 2 (2002).
[11] S.A.A.Sajadi, S.J.Hashemian; Sharif J.Science and Technology, 29, 57-62 (2005).
[12] E.Mueller; Zeitsch.F.Phys.Chem., 114, 129-156 (1925).
[13] H.Mauch; Hevetica Chim.Acta, 11, 86-87 (1957).
[14] S.A.A.Sajadi, A.A.Alamolhoda; Inorganic Materials, in press, (2006).
[15] S.A.A.Sajadi, A.A.Alamolhoda, S.J.Hashemian; Scientia Iranica, in press, (2006).
[16] R.Kuhn, I.Hammer; Chem.Ber., 83, 413 (1950).

