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ABSTRACT 
 
The absolute stability of a new class of Takagi-Sugeno (T-S) fuzzy Lurie control systems
with multiple time-delays is considered in this paper. By utilizing the Lyapunov stability
theory and the linear matrix inequality (LMI) approach, a novel delay-dependent
absolutely stable condition is derived. In addition, by using Simulink toolbox in
MATLAB, a simulation example is provided to demonstrate effectiveness of the proposed
result. 
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INTRODUCTION 
 

Since the notion of absolute stability was introduced by Lur'e[1], the theory of absolute stability has occupied an 
important place among exact mathematical methods being used in the design and analysis of control systems. So far, as the 
time-delay phenomenon is frequently encountered in various of engineering systems such as chemical process, long 
transmission lines and so on, the stabilization of Lurie systems with time-delay has attracted a large amount of attention over 
the past years[2,3]. In addition, several novel conditions for delay-dependent absolute stability of Lurie systems with multiple 
time-delays have been derived[4,5] by employing the Linear matrix inequality (LMI) approach. The advantage of this method 
is that it uses free weighting matrices to express those relationships. 

On the other hand, the Takagi-Sugeno (T-S) fuzzy models[6] can provide an effective representation of complex 
nonlinear systems. It is known that such models can be used to describe a nonlinear system in the form of a weighted sum of 
some simple linear subsystems, and then the nonlinear system can be stabilized by a model-based fuzzy controller. So, many 
researchers have paid great attention to the stability analysis and control synthesis of T-S fuzzy systems with time-delay [7,8]. 

However, as far as the authors know, the problem of the delay-dependent condition for absolute stability of T-S fuzzy 
Lurie systems with multiple delays were seldom studied up to now. We set a new T-S fuzzy Lurie control systems in this 
paper. Meanwhile, proper Lyapunov functions are defined and a novel delay-dependent absolutely stable condition is 
obtained by using the method of Lyapunov functional together with Linear matrix inequality (LMI) approach. 
 

PROBLEM FORMULATION 
 

The i th rule of the T-S fuzzy model for each 1, 2 , ,i r  is represented as follows: 

Plant Rule :i  If  1s t  is 1,iM 2 ( )s t  is 2 , , ( )i gM s t    is igM  THEN 
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Where      
1 2

, , , gs t s t s t    are the premise variables, ijM  1, 2 , ,j g  is a fuzzy set.   nx t R  denotes the 

state vector; , ,i ik iA B D   1, 2 , , ,i r    k  1, 2 , , m   are the coefficient matrices with appropriate dimensions; n
ib R

is the coefficient of the nonlinearities; nc R ; 0k   1,2, ,k m  is the time-delay;      
1
max ,0k

k m
C 

 
   is a 

continuous vector valued initial function; the nonlinearity functions  f   satisfy the following sector condition: 

 

           , | , ,f K 0 f f 0 0 0 f t 0              (2) 

 
The dynamic fuzzy model can be represented in the following form: 
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in which   ij jM s t  is the grade of membership of  js t  in ijM . In this paper, It is assumed that 

     
1

0, 0, 1, 2, , , 0.
r

i j
j

s t s t i r t 


       

 

Hence, the fuzzy basis functions satisfy   
1

1
r

i
i

h s t


 with    0,ih s t  1, , ,i r  0t  . 

 

Control rule :i IF  1s t  is    1 2,iM t s t is    2 , ,i gM t s t    is  igM t , THEN 

 

    , 1, 2 , ,iu t K x t i r     

 

where  1, 2 , ,q n
iK R i r      is the local controller gain. Using the fuzzy basis functions defined by (4),the overall  

fuzzy state feedback controller is represented by： 
 

     
1
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i i
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u t h s t K x t



 

 
Throughout this paper, we shall use the following lemmas: 

Lemma 1. (see [9].) For any constant symmetric matrix R , 0TM M  , scalar 0r  , vector function 

 : 0, ng r R , such that the integrations in the following are well defined, then 

 

       
0 0 0

Tr r rTr g s M g s ds g s ds M g s ds            
 

 
Lemma 2. (see Schur complement [10].) Given constant symmetric matrices 1 2 3, ,    with appropriate dimensions, where 

1 1
T    and 2 2

T   ，then 1
1 3 2 3 0T      ，holds if and only if 
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MAIN RESULITS 
 

Theorem1. The system (3) is absolutely stable, if there exist matrix ( 1,2, , )iK i r  and symmetric positive definite 

matrices  , , 1,2k kP Q R k m   and scalar 0  、 0  , such that the following LMIs hold: 
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Let denotes the elements below the main diagonal of a symmetric block matrix, 
 

1 2 1 2 3
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m

m k
k
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                . 

 
Proof. We define the Lyapunov-Krasovskii functional candidate as follows : 
 

         1 2 3 4 ,V t V t V t V t V t      (7) 

 
where 
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           
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 
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Then, the time derivative of  V t  along the trajectory of system (3) is given by 

 

         1 2 3 4 ,V t V t V t V t V t          (8) 

 
with 
 

     

           
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 
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By Lemma1, we have 
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Using (1) and (2),the following equation holds 
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From (8)~(12), we obtain 
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here we define： 
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where  1 2 3 4 3, , , , 1ij i ij i W i j r        are the same as the corresponding items in inequalities (5) and (6). If 

0ij  , then there exists a sufficient small scalar 0  , such that     2
V t x t   (for   0x t  ), which shows that the T-S 

fuzzy Lurie system with multiple time-delays described by (3) is absolutely stable. Using the Schur complement formula in 
Lemma2, we know that 0ij   is equivalent to (5) and (6). This completes the proof. 

 
SIMULATION EXAMPLE 

 

In this example, the T-S fuzzy Lurie system with multiple time-delays considered is with   0u t   and two rules for 2i  , 

1m  . 
 
Plant Rules. 

Rule1: IF 1( )s t  is 11M Then 

        
   
     

1 11 1 1 1

1

, 0

,

, , 0 ,

T

x t A x t B x t b f t t

t c x t

x

 



    

     
 
   



 
 

Rule2: IF 1( )s t  is 21M Then

        
   
     

2 21 1 2 2

1

, 0

,

, , 0 ,

T

x t A x t B x t b f t t

t c x t

x

 



    

     
 
   



 
 

with       tan 1,2if t t i   , 1 1.0  . The fuzzy basis functions for Rule 1 and Rule 2 are

   2
1 1 1( ) sin ( )h s t s t ,    2

2 1 1( ) cos ( )h s t s t . 

We suppose 
 

1 2 11 21

1 2

2 0 3 0 0.2 0.5 0.1 0.45
, , , ,

1 2 1 3 0.5 0.2 0.4 0.1

0.5 0.2 0.6
, ,

0.3 0.3 0.8

A A B B

b b c

            
                      
      

               
 
then 
 

1 1

2.3199 0.7415 2.3534 0.2223 1.9443 0.2483
, , ,

0.7415 0.2223 2.4531 0.2483 2.30202.2759

 0.72.7 563,076,

P Q R



     
          


 

 

 



 

 
Using the MATLAB Simulink Toolbox, the state response is shown in Fig.1. 
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