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The features of nonlinear excitation (or soliton motion) and energy
transport in the �helical protein molecules arising from the energy

released in the hydrolysis of adenosine triphosphate (ATP) molecules,
which is a basic problem in life science and related to many biological
processes, are studied and reviewed systematically. Based on different
understanding of properties of structure of �helical protein molecules

some theoretical models of the nonlinear excitation and energy transport
along the molecular chains have been proposed and established, A brief
survey of past researches on different models and theories of energy,
including Davydov�s, Takeno�s, Yomosa�s, Brown et al�s, Schweitzer�s,

Cruzeiro-Hansson�s, Forner�s and Pang�s models were first stated and

reviewed in this paper. Subsequently we studied and reviewed mainly and
systematically the properties, thermal stability and lifetimes of the carriers
(solitons) transporting the energy at physiological temperature 300K in
Pang�s and Davydov�s theories. From these investigations we know that

the carrier (soliton) of energy transport in the �helical protein molecules

in Pang�s model has a higher binding energy, higher thermal stability and

larger lifetime at 300K relative to those of Davydov�s model, in which the

lifetime of the new soliton at 300K is enough large and belongs to the
order of 10-10 second orô/ô

0
700. Thus we can conclude that the soliton in

Pang�s model is exactly the carrier of the energy transport, Pang�s theory

is appropriate to �helical protein molecules.

 2012 Trade Science Inc. - INDIA

INTRODUCTION

What is life or life activity? In the light of
biophysicist�s view, the so-called life or life activity is

just processes of mutual changes and coordination and
unity for the bio-material, energy and bio-information

in the live systems. Their synthetic movements and co-
operative changes are just total life activity. Therefore
we can say that the bio-material is the foundation if life,
the energy is its center, the bio-information is the key of
life activity, but the transformation and transfer of bio-
information are always accompanied by the transport
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of energy in living systems[1]. Thus, the energy and its
transport are an fundamental and important process in
life activity. The energies needed are mainly provided
by that released in adenosine phosphate (ATP) hydroly-
sis in the living systems. Namely, an ATP molecule re-
acts with water, which results in the energy release of
0.43eV under normal physiological conditions. The re-
action can be represented by
 4 3 2

2 4 0.43ATP H O ADP HPO H eV       

where ADP is the adenosine diphosphate. The bio-en-
ergies needed in biological processes in the bio-tissues
come basically from this energy, namely, it is mainly used
in these processes, for example, the muscle contrac-
tion, DNA duplication and the neuroelectric pulse trans-
fer on the membranes of neurocytes as well as work of
calcium pump and sodium pump. Therefore, there is
always a process of energy transport from the produc-
ing place to required organisms in the living systems.
However, understanding of mechanism of the energy
transport in the living systems is a long standing prob-
lem which retains interesting up now. Plenty of the mod-
els of energy transport were proposed, but most of them
are not successful[1-4]. In general, ATP molecules bind
often to a specific site on the protein molecule, the en-
ergy supply for most protein activity and functions is
provided by the ATP hydrolysis. Thus the transport of
energy released by ATP hydrolysis is always related to
the protein molecules and their changes of conforma-
tion and configuration.

As it is known, the protein molecules are composed
of more than twenty different kinds of individual build-
ing blocks called amino acids. Each amino acid is again
constructed by an amino group (NH

2
), a carboxyl group

(COOH), and a side group, or radical attached to an á
carbon atom. The radical is what distinguishes one
amino acid from another. Amino acids polymerize to
form long chains of residues that constitute a protein
molecule. When two amino acids join together, they
release one water molecule and form a peptide bond.
When the polypeptide chain has been formed, it can
fold into a variety of complex three-dimensional con-
formations. Of particular are the three structural con-
figurations that recur over and over in proteins: the á �
helix, the ²-sheet and globular conformation. In the á-
helix the polypeptide chain is tightly coiled about its lon-
gitudinal axis. In the²sheet the chain can be visualized

as pleated strands of protein. The globular conforma-

tion is most complex since the chains are folded irregu-
larly into a compact near- spherical shape. Part of the
chain can often be in the á-helix or the²sheet configura-

tion[1,4,5].
Generally speaking, the energy can be converted

to a particular vibrational excitation within a protein mol-
ecule. A likely recipient exchange is the amide-I vibra-
tion. Their vibration is primarily a stretch and contrac-
tion of the C= O bond of the peptide groups. The amide-
I vibration is also a prominent feature in infrared and
Raman spectra of protein molecules. Experimental mea-
surement shows that one of the fundamental frequen-
cies of the amide-I vibration is about 0.205eV. This
energy is about half the energy released during the ATP
hydrolysis. Moreover, it remains nearly constant from
protein to protein, indicating that it is rather weakly
coupled to other degrees of freedom. All these factors
can lead to the assumption that the energy released by
ATP hydrolysis might stay localized and stored in the
amide-I vibration excitation. A biological role for vibra-
tional excited states was first proposed by McClare in
connection with a possible crisis in bioenergetics[6] (for
more information about McClare�s work see the article

by Luca Turin, in this issue[7]). Then, as an alternative to
electronic mechanisms, one can assume that the energy
is stored as vibrational energy in the C=O stretching
model (amide-I)of polypeptide chains in the protein
molecules. In view of the features of energy some theo-
retical models of the energy transport have been pro-
posed subsequently. In this review paper we will sur-
vey these theoretical models as well as their properties
and correctness.

THEORETICAL MODELS OF NONLINEAR
EXCITATION AND ENERGY TRANSPORT

IN PROTEIN MOLECULES

Davydov�s theory

It is well known that an inspection of the á-helix
structure reveals three channels of hydrogen-bonded
peptide groups approximately in the longitudinal direc-
tion with the sequence:�.H-N-C=O�H-N-

C=O�H-N-C=O�H-N-C=O�., where the dotted

lines indicate the hydrogen bond, Davydov worked out
this idea in the á-helix protein molecules, which is shown
in Figure 1, based on McClare�s proposal for explain-

ing the conformational changes responsible for muscle
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contraction[7,8], where the trigger is the energy donating
reaction of ATP hydrolysis. His theory has shown how
a soliton (nonlinear excitation) could travel along the
hydrogen-bonded spines of the á-helix protein molecu-
lar chains. Davydov�s assumption was that the first event

after the ATP hydrolysis is the storing of the energy re-
leased by the chemical reaction in a vibrational mode of
the peptide group. In 1973 Davydov suggested that
the amide-I energy could stay localized through the
nonlinear interactions of the vibrational excitation with
the deformation in the protein structure caused by the
presence of the excitation. The excitation and the de-
formation balance each other and form a soliton
(nonlear excvitation).

just Davydov theory of bioenergy transport in á-helical

protein molecules, which was proposed by Davydov
in1973[8-12]. The mathematical techniques that are used
to analyze Davydov�s soliton are analogous to some that

have been developed for the �polaron� effect suggested

by Landau[13,14] and studied by Pekar[15], Frohlich[16,17],
Holstein[18] and many others.

Therefore, Davydov�s first main addition to

McClare�s proposal was to point out a specific vibra-

tional band that is found in proteins and that is ideal for
the storage and propagation of energy. His second main
contribution to the field of bioenergetics was to realize
that the amide-I energy depends on the strength of the
hydrogen bond that may exist between the oxygen of
one peptide group and the nitrogen of another, Thus
Davydov took into account the coupling between the
amide-I vibration (intramolecular excitation or exciton)
and deformation of amino acid residues (or, acoustic
phonon) in the á-helix proteins and gave further the
Hamiltonian of the system[8-12], which is as follows
H = H

ex
 + H

ph
 + H

int
(1)

with
  0 1 1( )ex n n n n n n

n

H D B B J B B B B   

 
      (2)

 2

1

1
( )

2 2
n

ph n n
n

P
H w u u

M 

 
   

 
  and

 
int 1 1( )n n n n

n

H u u B B 

   (3)

which are the Hamiltonians of the excitons with energy


0
, the vibration of amino acid residue and their interac-

tion, respectively, where ( )n nB B is the exciton creation

(annihilation) operator at the nth site with an energy 
0

= 0.205 eV. They satisfy the commutation relation:
 , , , [ , ] 0.n m nm n m n mB B B B B B           (4)

Also in Eq. (84), the 
0 n nB B  denotes the kinetic energy

of the exciton, 1 1( )n n n nJ B B B B 

 
 represents the reso-

nant (or dipole-dipole) interaction between neighbor-

ing excitons, 
2 3

02J d r


is the resonance (or dipole-

dipole) interaction that determines the transition of an

exciton from one molecule to another. Then 
n nDB B  de-

notes the interaction of the exciton with the lattice or
peptide groups. D is the deformation excitation energy,

Figure 1 : Structure of �helical protein

Thus the energy can transport along the protein mol-
ecules in virtue of the motion of the soliton. This mecha-
nism can be described classically as follows. Vibrational
energy of the C=0 stretching (or amide-I ) oscillators
that it localized on the helix chains acts, through a phonon
coupling effect, to deform the structure of the amino acid
residue, the deformation of amino acid residues reacts,
again through phonon coupling, to trap the amide-I vi-
brational quanta and prevent its dispersion. Thus a soliton
is formed in this process. This effect is called self-trap-
ping of the amide-I vibrational quantum (or exciton). The
soliton can moves over a macroscopic distances along
the molecular chains keeping its shape and energy and
momentum and other quasi-particle properties. This is
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and is approximately a constant, u
n
 and P

n
 are the dis-

placement of the peptide groups and its conjugate mo-
ment, M is the mass of the peptide group, w is the spring
constant of the molecular chains and  = J/u

n
 is the

coupling constant between the exciton and vibrational
quantum of the peptide group (phonon). Obviously, the
Hamiltonian in Eq.(1) represents the elementary mo-
tions of the exciton and phonon as well as their interac-
tions in the systems.

Davydov used the following wave function to rep-
resent the collective states of excitation of the excitons
and phonons arising from the energy released by ATP
hydrolysis

 )t(D2 > =  | ( ) ( )t t   =

 
( ) exp [ ( ) ( ) ] 0n n n n n n

n n

i
t B t P t u    

  
 

 


(5a)

or

(5b)

where
 2

2 2 2 2| | ( )  =1n n nn
D P D D P D t  (6)

|0 = |0
ex

 |0
ph

 are the ground states of the exciton and
phonon, respectively, )a(a qq

  is annihilation (creation)
operator of the phonon with ware vector q, 

n
(t), 

n
(t)

= < |u
n
|>, 

n
(t) =  |P

n
|  and 

nq
(t) =

D
1
(t)|a

q
|D

1
(t)  are some undetermined functions of time.

Evidently, equation (5) is an excited state of single par-
ticle for the excitons, but it is a coherent state for the
phonons in Eq.(5). This is just basic features of
Davydov�s wave function.

Using the functional (t)|H|(t) and the varia-
tional approach, Davydov et al got:

 
 0 1 1 1 1( ) ( )n

n n n n ni W J
t


      

   


     


 (7)

and

 2 2
2 2

1 1 1 12
(2 ) ( )n n n n n

w

t M M

 
       


    


(8)

where,

In the continuity approximation the equations (7) and
(8) becomes:

 2 2

2

( , )
2 ( , ) 0,

2

x t
i x t

t m x x


 

  
    

   



 (9)

and

 2 2
22 0

02 2

2
( , ) ( , ) 0

r
v x t x t

t x M x


 

   
   

   
(10)

where  = 
0
 � 2J + W,  

0 0v r w M  is the sound
speed of the molecular chain. Clearly,
equation (9) is a nonlinear Schrödinger equation (NLSE)

having a soliton solution as given by

(11)

Thus from Eqs.(10)-(11) we can give the solution of
Eq. (10) as follows:

 2
0

02
0

( , ) tanh ( )
(1 )

Dr
x t x x vt

w s r

 


 
    

  
(12)

Equations (11)-(12) show clearly that the energy trans-
ports along the protein molecular chains in the form of
bell-type of soliton in Eq.(11). The soliton is localized over

a scale r
0
/

D
, where  2 2 2

1 / [(1 ) ], 4D D Ds Jw G J      ,

 2 2 2 1/2
0 0 0s / , v (w/M )v v r  is the sound speed in the

protein molecular chains, v is the velocity of the soliton,
r

0
 is the lattice constant. From the above result we know

that a positive means that when the hydrogen bond
length decreases, the energy of the amide I vibration
decreases, and vice versa. When  = 0, the amide I
energy does not depend on the relative positions of the
peptide groups and the amide I excitation propagates
from one peptide group to the next because of the di-
pole�dipole interactions J. In this case, an amide I ex-
citation that is initially located at one peptide group will
spread to other peptide groups, and the state will quickly
cease to be localized. On the other hand, when   0,
an excitation initially located at one peptide group will
induce a distortion of the associated hydrogen bond (a
compression for positive  and an expansion for nega-
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tive ), which, in turn, will decrease the energy of the
corresponding amide I state. When the (negative) in-
teraction energy is greater, in absolute terms, than the
distortion energy, which is always positive, the state of
the amide- I excitation together with the distortion has
an energy that is lower than the state of the amide-I
excitation in the absence of the distortion.

Evidently, the Davydov soliton contains only one
exciton, i.e., N = 

D
(t)|N� |D

(t), where the particle

number operator  � nn n
N B B


 . This shows that the

Davydov soliton is formed through self- trapping of one

exciton with binding energy  4 2
1 / 3BDE Jw  .

The Takeno soliton model

Takeno[19-22] proposed also an alternative model for
the propagation of bio- energy in the á-helix protein.
He regarded that the dispersion term in the Davydov
model in Eq.(1), may not be appropriate for the migra-
tion of vibrational energy, the exchange interaction is
more relevant for the excitons. Thus he generalized his
theory to deal with more complex systems where the
amide-I energy is coupled to both acoustic and optic
phonons. Then he denoted the Hamiltonian of the sys-
tem by

(13)
where q

n 
and p

n
 are the displacement and momentum

coordinates for the high frequency intramolecular
(amide-I) oscillator with mass m and frequency ù

0
, L is

the coupling strength between neighbouring oscillators,
which we have restricted to nearest neighbours. Also,
u

n 
and P

n
 are the displacement and momentum coordi-

nates for the molecule at site n; M and w are the mo-
lecular mass and intramolecular force constant. The last
term couples these two oscillating fields with coupling
constant A

a
.

In order to make a comparison with the Davydov
model, we now view Eq.(13) as a quantum Hamilto-
nian, with the displacement and momentum coordinates
replaced by operators. Thus we introduce creation and
annihilation operators for the high-frequency oscillator
at site n by the equations

   ;BB
2

ip;BB
2

q nn

2/1

0
nnn

2/1

0
n 







 


















 

(14)

thus the q
n
-dependent part of Eq.(13) can be written

 




























n
n1nn1n1nnn1n

0
nn

n
0s

BBBBBBBB

m
L

2
1

BBH




(15)

and

  1n1n
n

nnnnnn
0

a uuBBBB2BB
m4

A
'H 





 



(16)

Comparing Eq.(16) with the Davydov Hamiltonian in
Eq.(1) it is clear that there are additional 

nnBB  and B
n
B

n

terms both in the dispersive and interaction parts of the
quantum version of the Takeno Hamiltonian. The equa-
tion of motion for the Heisenberg operator B

n 
obtained

from Eq.(13) is

 1n1n1n1n
0

n0n

.

BBBB
m

L
BBi 







 







  1n1nnn
0

a uuBB
m2

A










(17)

This differs from corresponding equation in Davydov
theory, which is
i�B

n
 = 

0
B

n
 � J(B

n+1
 + B

n�1
) + B

n
(u

n+1
 � u

n�1
) (18)

The form of the equation in Eq.(18) is such that a phase
transformation

    h/t0-iE
nn etB

~
tB  (19)

removes the energy of the amide-I quantum from the
equation, that is the equation for B

n 
(t) is Eq.(18) but

without the term proportional to 
0
. Thus this simple

transformation removes from the equations of mo-
tion any knowledge of the magnitude of 

0
 relative to

other energies in the problem, for example, the Debye
energy of the acoustic phonon spectrum associated
with H

p
.

However, the presence of those terms in Eq.(17)
means that a phase transformation of the form in Eq.(19))
cannot remove the energy of the amide-I quantum 0

= 
0
 from the equation (18). Carrying out that transfor-

mation on Eq.(17) produces factors osaillating at 2
0

in the creation operator terms. In this formulation the
magnitude of E

0
 relative to other energies in the prob-

lem remains important. The lack of 

nnBB  and B
n
B

n
 terms

in the Davydov Hamiltonian has also been questioned
by Fedyanin et al.[23].
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We note that if we drop the creation operators from
Eq.(17), then we can relate the parameters of the two
theories by L = (

0
 / h)J, Aa = (2

0
 / h)

The equations of motion derived from the classical
Hamiltonian in Eq.(13) are

 
  0uuqA

qqL2qmqm

1n1nna

1n1nn
2
0n










(20a)

    0qqA
2
1

uu2uwuM 2
1n

2
1na1nn1nn  

 (20b)

Takeno used a continuum approximation to Eq.(20)
and obtained this way coupled nonlinear Klein-Gor-
don equations for the coordinates q (x, t) and u (x, t).
A rotating-wave approximation then finally leads to an
NLSEs (9)-(10), but now with a classical coordinate
for the amplitude of the amide-I vibration compared to
Davydov�s NLSE for the probability amplitude.

If Eq.(13) is augmented with the additional optic
mode and interaction term:

n
2
n0

n n

2
n0

2
n0op yqA

2
1

yK
2
1

yM
2
1

H  







 (21)

the equation of motion become

 
  0yqAuuqA

qqL2qmqm

nn01n1nna

1n1nn
2
0n










(22a)

    0qqA
2
1

uu2uwMu 2
1n

2
1na1nn1nn   (22b)

0qA
2
1

yKyM 2
n000n0  (22c)

Takeno[19-22] has used these equations to describe self-
trapped states in crystalline acetanilide, where the optic
mode mass is M

0
 = 1.56  10�27 kg (the reduced mass

of the N-H unit), and A
a
 = A

0
 since both acoustic and

optic mode couplings include the hydrogen bond. The
system is initially prepared in a state that had a large
local displacement in the vibron (amide-I) field, no en-
ergy in the optic field, and kinetic energy and displace-
ment of the acoustic field corresponding to 300K. Then
the wave-form graphs obtained from Eq.(22) show
essentially the kinetic energy in the vibron and optic
fields and the discrete gradient (u

n+1
 � u

n�1
) approxi-

mately 60ps into the simulation. The amide-I energy is
clearly still localized and a significant correlation is seen
to have developed in the acoustic and optic fields. Ad-
ditional studies of the Takeno model are clearly needed,
but it seems that the classical solitons described by

Eq.(22) are more stable at biologically relevant tem-
peratures than the Davydov soliton described by
Eqs.(9)-(10).

Yomosa�s model

Yomosa[24,25] proposed also another classical soliton
model for energy transport in the á helix proteins, in
which he thought solely the á-helix structure is stabi-
lized through the nonlinearity and asymmetry of the hy-
drogen bonds. Then the potential of the nth hydrogen
bond in the polypeptide chain can be approximately
represented by

  ,BrrArV 3
n

2
nnn   n1nn uur   (23)

where u
n
 is the displacement of the nth peptide group,

r
n
 is the elongation of the nth peptide bond. The lattice

constant is denoted by r
0
. The values of the constants A

and B can be determined from self-consistent-field
molecular orbital calculations[25]. Yomosa here choose
a cubic potential for reflecting the nonlinearity and asym-
metry of the hydrogen bond in Eq.(23). Then the Hamil-
tonian of the system is

      
n

3
1nn

2
1nn

n

2
n uuBuuAuM

2
1

H (24)

where M is the mass of the peptide group. The equa-
tions of motion in terms of r

n
 are:

   2
n

2
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2
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(25)

Yomosa introduces the continuum limit of (25)
(nr

0
x, r

n
r (x,t)) and looking only at right-going

waves he obtains a Korteweg-de Vries (KdV ) equa-
tion[24-26]:


 � 12


 + 


 = 0 (26)

where
 = x / r

0
 � (2A / M)1/2 t,  = (t / 24)(2A / m)1/2,

 = 3Br / A (27)

In terms of the original elongation r(x,t) the one-soliton
solution is given as
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
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Here 
0
 = (2A / m)1/2 r

0
 is the sound velocity. This ve-

locity indicates that Yomosa�s solitons are supersonic.

The parameter k to be in the range 2-3 by equating the
energy released during ATP hydrolysis (0.43eV) to the
energy of the KdV one-soliton in Eq. (28). This gives



166

Review
.The features of nonlinear excitation and energy transport RRBS, 6(6,7) 2012

an effective soliton width of about 4 0

A, that is, approxi-

mately on the validity of the continuum approximation.
The exact form of the potential in Eq.(23) is prob-

ably not very important; Yomosa[24] has also studied
the properties of a Toda-type potential, with a Lenard-
Jones potential[27], which shows effectively the same
phenomena as predicted by Yomosa�s continuum KdV

theory, that is, the formation and propagation of super-
sonic solitons. These molecular dynamics simulations
were also extended to biologically relevant tempera-
tures by addition of noise and damping force terms to
the equations of motion. When 0.43eV of energy was
initiated on one bond, coherent pulses of energy were
observed above the thermal noise for at least 25ps at
T=310K. A window of most efficient energy transport
was found around 40-60C; at lower temperatures the
viscosity of the solvent (modeled throughÃ) inhibited
transport, while at high temperatures the thermal noise
is the limiting factor.

It seems that the supersonic lattice solitons pro-
posed by Yomosa present a reasonable alternative to
the Davydov and Takeno models of transport of bio-
logical energy. These lattice solitons may also be more
efficient in doing mechanical work since they have no
rest energy associated with them. However, more theo-
retical and numerical work are still needed in this area.

The improved models of Davydov�s theory

Davydov�s idea yields a compelling picture for the

mechanism of bioenergy transport in protein molecules
and consequently has been the subject of a large num-
ber of works[28-95]. A lot of issues related to the Davydov
model, including the foundation and accuracy of the
theory, the quantum and classical properties and the
thermal stability and lifetimes of the Davydov soliton
have been extensively and critically examined by many
scientists[28-95] and the following questions have been of
particular concern. (1) What is the correct quantum
mechanical description of Davydov�s soliton at low

twmperature? (2) How does the soliton get started on
an alpha-helix proteins� ? (3) Is Davydov�s soliton stable

at the biological temperature 300K? If not, how long
will it last? (4) How may Davydov�s theory be general-

ized to include charge transfer and more general pro-
tein structures? Therefore, considerable controversy has
arisen in recent years concerning whether the Davydov
soliton can provide a viable explanation for energy trans-

port. It is out of question that the quantum fluctuations
and thermal perturbations are expected to cause the
Davydov soliton to decay into a delocalized state. Some
numerical simulations indicated that the Davydov soliton
is not stable at the biological temperature 300K[48-66,73-

78]. Other simulations showed that the Davydov soliton
is stable at 300K[28-35], but they were based on classi-
cal equations of motion which are likely to yield unreli-
able estimates for the stability of the Davydov�s soliton[9-

12]. The simulations based on the ID
2
 > state in Eq.(5a)

generally show that the stability of the soliton decreases
with increasing temperatures and that the soliton is not
sufficiently stable in the region of biological tempera-
ture. Since the dynamical equations used in the simula-
tions are not equivalent to the Schrödinger equation,

the stability of the soliton obtained by these numerical
simulations is unavailable or unreliable. The simulation[9]

based on the ID
1 
> state in Eq.(5b) with the thermal

treatment of Davydov[9,48], where the equations of mo-
tion are derived from a thermally averaged Hamilto-
nian, yields the wondering result that the stability of the
soliton is enhanced with increasing temperature, pre-
dicting that ID

1
>-type soliton is stable in the region of

biological temperature. Evidently, the conclusion is
doubtful because the Davydov procedure in which one
constructs an equation of motion for an average dy-
namical state from an average Hamiltonian, correspond-
ing to the Hamiltonian averaged over a thermal distri-
bution of phonons, is inconsistent with standard con-
cepts of quantum-statistical mechanics in which a den-
sity matrix must be used to describe the system. There-
fore, there exists not an exact fully quantum-mechani-
cal treatment for the numerical simulation of the Davydov
soliton. However, for the thermal equilibrium proper-
ties of the Davydov soliton, there is a quantum Monte
Carlo simulation[63,64]. In the simulation, correlation char-
acteristic of solitonlike quasiparticles occur only at low
temperatures, about T<10K, for widely accepted pa-
rameter values. This is consistent at a qualitative level
with the result of Cottingham et al.[65,66]. The latter is a
straightforward quantum-mechanical perturbation cal-
culation. The lifetime of the Davydov soliton obtained
by using this method is too small (about 10�12 � 10�13

sec) to be useful in biological processes. This shows
clearly that the Davydov solution is not a true wave
function of the systems. A through study in terms of
parameter values, different types of disorder, different
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thermalization schemes, different wave functions, and
different associated dynamics leads to a very compli-
cated picture for the Davydov model[50-62]. These re-
sults do not completely rule out the Davydov theory,
however they do not eliminate the possibility of another
wave function and a more sophisticated Hamiltonian of
the system having a soliton with longer lifetimes and
good thermal stability.

Indeed, the question of the lifetime of the soliton in
protein molecules is twofold. In Langevin dynamics, the
problem consists of uncontrolled effects arising from
the semiclassical approxima- tion. In quantum treat-
ments, the problem has been the lack of an exact wave
function for the soliton. The exact wave function of the
fully quantum Davydov model has not been known up
to now. Different wave functions have been used to
describe the states of the fully quantum- mechanical
systems[33-43]. Although some of these wave functions
lead to exact quantum states and exact quantum dy-
namics in the J=0 state, they also share a problem with
the original Davydov wave function, namely that the
degree of approximation included when J  0 is not
known. Therefore, it is necessary to reform Davydov�s
wave function.

Scientists had though that the soliton with a
multiquantum (n  2), for example, the coherent state
of Brown et al.[33], the multiquantum state of Kerr et
al.[62] and Schweitzer[66], the two-quantum state of
Cruzeiro -Hansson[52] and Forner[57], and so on, would
be thermally stable in the region of biological tempera-
ture and could provide a realistic mechanism for
bioenergy transport in protein molecules. In the Brown
et al�s model[33], the state of the excitons was denoted
by a coherent state vector |A(t), which is defined by
|A(t) = |a

1
(t) |a

2
(t) �| a

N
(t)

wherein |a
n
(t) is a pure coherent state defined by

 21
( ) exp[ ]exp[ ( ) ] 0

2n n n n ex
a t t a  

 

where the complex scalar a
n
(t) is the coherent-state

amplitude, which may take on all values in the complex
plane, The product state |A(t) may be defined by the
property that a

n
|A(t) = a

n
(t)|A(t) for all of the a

n
. The

expectation value of a Hamiltonian operator of the sys-
tem H[a, a+] in the state |A(t) is therefore a real scalar
function H[a(t), a*(t)] for all the a

n
(t) and their complex

conjugates. Thus we can presume that the starting Hamil-
tonian operator is in normal ordered form so that there

is no ambiguity in the relationship between H[a, a+] and
H[a(t), a*(t)]. Then we can obtain the properties of the
exciton-soliton in the system by general method. How-
ever, the assumption of the standard coherent state is
unsuitable or impossible for biological protein molecules
because there are innumerable particles in this state and
one could not retain conservation of the number of par-
ticles of the system and is also inconsistent with the fact
that the energy released in ATP hydrolysis can excite
only two quanta of amide-I vibration.

In the Schweitzer�s model[66] of the multiquantum
state the state of the excitons was denoted by

 1
( ) ( , ) 0 ( )( ) 0

!
m

nm nex exm nm
t m t t B

m
   

  

However, the assumption of a multiquantum state (m>2)
along with a coherent state is also inconsistent with the
fact that the bioenergy released in ATP hydrolysis can
excite only two quanta of amide-I vibration.

In Forner�s model of two-quanta[57], he represented
the state of the exciton by

 21
( ) ( ( ) ) 0

2!
n n exn

t t B   

Forner�s numerical results[54-60] shows that the soliton
of two-quantum state is more stable than that with a
one-quantum state.

Cruzeiro-Hansson[52] had thought that Forner�s
two-quantum state in the semiclassical case was not
exact. Therefore, he constructed again a so-called ex-
actly two-quantum state for the semiclassical Davydov
system as follows[52]:

 
   

N

nm n m ex
n,m

t {u },{P }, t B B 0 ,l l
l

   



  (29)

where   n nB B  is the annihilation (creation) operator

for an amide-I vibration quantum (exciton), u
l
 is the

displacement of the lattice molecules, P
l
 is its conjugate

momentum, and |0 >
ex

 is the ground state of the exci-
ton. He calculate the average probability distribution of
the exciton per site, and average displacement differ-
ence per site, and the thermodynamics average of the
variable,  1 1 2 2 ,P B B B B    as a measure of localiza-
tion of the exciton, versus quantity 2

1/JW   and
Ln( = 1 / K

B
T) in the so-called two-quantum state,

Eq.(29), where 
1
 is a nonlinear coupling parameter

related to the interaction of the exciton-phonon in the
Davydov model. Their energies and stability are com-
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pared with that of the one-quantum state. From the re-
sults of above thermal averages, he drew the conclu-
sion that the wave function with a two-quantum state
can lead to more stable soliton solutions than the wave
function with a one-quantum state, and that the usual
Langevin dynamics,whereby the thermal lifetime of the
Davydov soliton is estimated, must be viewed as un-
derestimating the soliton lifetime.

However, by checking carefully Eq.(29)[52], we can
find that the Cruzeiro-Hansson wave function does not
represent exactly the two-quantum state. To find out
how many quanta the state Eq.(29) indeed contains,
we have to compute the expectation value of the exci-

ton number operator.  nn n
N B B


 , in this state,

Eq.(29), and sum over the sites, i.e., the exciton num-
bers N are

(30)

where we use the relations
 2
[ , ] , 1n j nj nl

nl

B B    
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Therefore, the state, Eq.(29), as it is put forward[10]

in Eq.(29) deals, in contradiction to the author�s state-

ments, with four excitons (quanta), instead of two exci-
tons. Obviously it is not possible to create the four ex-
citons by the energy released in the ATP hydrolysis
(about 0.43 eV). Thus the author�s wave function is

still not relevant for protein molecules, and his discus-
sion and conclusion are all unreliable and implausible in
that paper[52].

We think that the physical significance of the wave
function, Eq.(29), is also unclear, or at least is very dif-
ficult to understand. As far as the physical meaning of
Eq.(29) is concerned, it represents only a combina-
tional state of single-particle excitation with two quanta
created at sites n and m; 

nm
 ({u

1
}, {P

1
}, t) is the prob-

ability amplitude of particles occurring at the sites n and
m simultaneously. In general, n=m and 

nm
  

n


m
 in

accordance with the author�s idea. In such a case it is

very difficult to imagine the form of the soliton formed
by the mechanism of self- trapping of the two quanta
under the action of the nonlinear exciton-phonon in-
teraction, especially when the difference between n
and m is very large. Hansson has also not explained
the physical and biological reasons and the meaning
for the proposed trial state. Therefore, we think that
the Cruzeiro-Hansson representation is still not an exact
wave function suitable for protein molecules. Thus,
the wave function of the systems is still an open prob-
lem today.

Recently, Cruzeiro L.et al[96-99] and Pouthier et
al[100,101] proposed a dynamical model of nonconserving
Davydov monomer involving a nonconserving Davydov
Hamiltonian for the energy transport, in which they
thought that the Davydov�s model cannot describe the

conversion of that energy into work, because it con-
serves the number of excitations. With the aim of de-
scribing conformational changes, they considered a
nonconserving generalization of the model, which is
found to describe essentially a contraction of the hy-
drogen bond adjacent to the site where an excitation is
present. Unlike the one-site Davydov model, that con-
traction is time dependent because the number of exci-
tations is not conserved. However, considering the time
average of the dynamical variables, the results reported
here tend to the known results of the Davydov model.

Meanwhile, K.Moritsugu et.al[102] and H.Fujisaki
et al[103] considered the anharmonic coupling between
the amide-I mode and intramolecular normal modes.
These models are helpful for solving the problem of
energy transport in protein molecules.

In one words, the above soliton theories of energy
transport in protein molecules attract the careful atten-
tion of the bioenergetics community. Obviously, they
cannot explain every aspect of energy transport and
protein dynamics, but they are motivating exciting ques-
tion and new experiments. There are clearly still many
open problems and no single theory presently has an-
swers to all questions. However, most of these models
stay only in the designs of mechanism of energy trans-
port, a deepened and complete investigation lacks now.
Therefore it now is quite required to continue work on
the extension and improvement of these theories for
forming a complete and correct theory of energy trans-
port in protein molecules.
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Pang�s model

The results obtained by many scientists over the years
show that the Davydov model, whether it be the wave
function or the Hamiltonian, is indeed too simple, i.e.., it
does not denoted elementary properties of the collec-
tive excitations occurring in protein molecules, and many
improvements to it have been unsuccessful, as mentioned
above. What is the source of this problem? It is well
known that the Davydov theory on bioenergy transport
was introduced into protein molecules from an exciton-
soliton model in generally one-dimensional molecular
chains[104-106]. Although the molecular structure of the
alpha-helix protein is analogous to some molecular crys-
tals, for example acetanilide (ACN) (in fact, both are
polypeptides; the alpha-helix protein molecule is the
structure of three peptide channels, ACN is the struc-
ture of two peptide channels. If comparing the structure
of alpha helix protein with ACN, we find that the hydro-
gen-boned peptide channels with the atomic structure
along the longitudinal direction are the same except for
the side group), a lot of properties and functions of the
protein molecules are completely different from that of
the latter. The protein molecules are both a kinds of soft
condensed matter and bio-self -organization with action
functions, for instance, self-assembling and self-reno-
vating. The physical concepts of coherence,
order,collective effects, and mutual correlation are very
important in bio-self-organization, including the protein
molecules, when compared with generally molecular
systems[107-111]. Therefore, it is worth studying how we
can physically describe these properties. We note that
Davydov operation also is not strictly correct. There-
fore, we think that a basic reason for the failure of the
Davydov model is just that it ignores completely the
above important properties of the protein molecules.

Let us consider the Davydov model with the present
viewpoint. First, as far as the Davydov wave functions,
both |D

1
 and |D

2
, are concerned, they are not true

solutions of the protein molecules. On the one hand,
there is obviously asymmetry in the Davydov wave func-
tion since the phononic parts is a coherent state, while
the excitonic part is only an excitation state of a single
particle. It is not reasonable that the same nonlinear
interaction generated by the coupling between the ex-
citons and phonons produces different states for the
phonon and exciton. Thus, Davydov�s wave function

should be modified, i.e., the excitonic part in it should

also be coherent or quasicoherent to represent the co-
herent feature of collective excitation in protein mol-
ecules. However, the standard coherent[33] and large-n
excitation states[66] are not appropriate for the protein
molecules due to the above reasons. Similarly,
Forner�s[57] and Cruzeiro-Hansson�s[52] two- quantum
states do not fulfill the above request. In view of the
above discussion, we proposed the following wave func-
tion of two-quanta quasi-coherent state for the protein
molecular systems[112-148]

(31)

where  nB (B
n
) is boson creation (annihilation) operator

for the exciton, |0>
ex

 and |0 >
ph

 are the ground states of
the exciton and phonon, respectively, u

n
 and P

n
 are the

displacement and momentum operators of the lattice
oscillator at site n, respectively.  is a normalization
constant, we assume hereafter that  = 1 for conve-
nience of calculation, except when explicitly mentioned.
The 

n
(t), 

n
(t) = <(t)|u

n
|(t)> and 

n
(t) =

<(t)|P
n
|(t)> are there sets of unknown functions.

A second problem arises for the Davydov Hamil-
tonian[8-12]. The Davydov Hamiltonian takes into ac-
count the resonant or dipole-dipole interaction of the
neighboring amide-I vibrational quanta in neighboring
peptide groups with an electrical moment of about 3.5D,
but why do we not consider the changes of relative
displacement of the neighboring peptide groups arising
from this interaction? Thus, it is reasonable to add the

new interaction term,     2 1 1 1n n n n m nu u B B B B  

  
  ,

into the Davydov Hamiltonian to represent correlations
of the collective excitations and collective motions in
the protein molecules, as mentioned above[8-12]. Although
the dipole-dipole interac- tion is small as compared with
the energy of the amide-I vibrational quantum, the
change of relati- ve displacement of neighboring pep-
tide groups resulting from this interaction cannot be ig-
nored due to the sensitive dependence of dipole-dipole
interaction on the distance between amino acids in the
protein molecules, which is a kind of soft condensed
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matter and bio-self- organization. Thus, we replace
Davydov�s Hamiltonian[112-148] by

(32)
where 

0
 = 0.205 ev is the energy of the exciton (C=0

stretching mode). The present nonlinear coupling con-
stants are 

1
 and 

2
. They represent the modulations of

the on-site energy and resonant (or dipole-dipole) in-
teraction energy of excitons caused by the molecules
displacements, respectively. M is the mass of a amino
acid molecule and w is the elasticity constant of the
protein molecular chains. J is the dipole-dipole interac-
tion energy between neighboring sites. The physical
meaning of the other quantities in Eq.(32) are the same
as those in the above explanations.

The Hamiltonian and wave function shown in
Eqs.(31)-(32) are different from Davydov�s. We

added a new interaction term,

    2 1 1 1 ,n n n n n nn
u u B B B B  

  
   into the original

Davydov Hamiltonian. Thus the Hamiltonian now has
an one-by-one correspondence on the interactions and
can represent the features of mutual correlations of the
collective excitations and of collective motions in the
protein molecules. We should point out here that the
different coupling between the relevant modes was also
considered by Takeno et al.[53-58] and Pang[73-95] in the
Hamiltonian of the vibron-soliton model for one-dimen-
sional oscillator-lattice and protein systems, respectively,
but the wave functions of the systems they used are
different from Eqs.(31)-(32).

Obviously, the new wave function of the exciton in
Eq.(31) is not an excitation state of a single particle, but
rather a coherent state, or more accurately, a
quasicoherent state because it is just an effective trun-
cation of a standard coherent state, retains only fore
three terms of expansion of a standard coherent state,
at the same time, when the 

n
(t) is small, for example,

|
n
(t)| <<1, it also can approximately represent math-

ematically as a standard coherent state:
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where 
n
|

n
(t)|2 = 1, n denotes the sites of amino acids.

Therefore we refer to it as quasi- coherent state due to
these characteristics. Thus Eq.(31) can represent simul-
taneously the coherent features of collective excitations,
phonons and excitons, in the proteins. The condition of
|

n
(t)|<<1 is also quite correct and resonable for the pro-

teins consisting of amino acids of several hundreds or
thousands because of 

n
|

n
(t)|2 = 1. Therefore, Eq.(33)

is justified and a correct representation. It is well known
that the coherent state is certainly normalized, then it is
natural that the |

n
(t) in Eq.(31) or |(t)> in Eq.(31)

should be also normalized. Thus we should choose  =
1 in Eq.(31). This means that we cannot choose other
values of   1 in Eq. (31), or else, |

n
(t) cannot rep-

resent as a standard coherent state in Eq.(33). With
that, in this case of   1, |

n
(t) is neither a quasi-

coherent state nor a excited state of single particle, that
is, has not any biological and physical meanings. This
shows clearly that choice of »=1 in Eq.(31) is correct
and reasonable. In such a case it is not an eigenstate of
number operator because of
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Therefore, the |(t)> represents indeed a superposi-
tion of multiquantum states. Concretely speaking, it is a
coherent superposition of the excitonic state with two
quanta and the ground state of the exciton. However, in
this state the numbers of quanta are determinate instead
of innumerable. To find out how many excitons this state
contains, we have to compute the expectation value of
the number operator N in this state and sum over the
states. The average number of excitons for this state is
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where we utilize Eq.(8) and the following relations[24]:
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Therefore, the new wave function in Eq.(31) is a quasi-
coherent state containing only two quanta, thus com-
pletely different from Davydov�s. The latter is an exci-

tation state of a single particle with one quantum and an
eigenstate of the number operator. In the meanwhile, as
far as the form of new wave function in Eq.(31) is con-
cerned, it is either two- quanta states proposed by
Forner[54-60] and Cruzeiro-Hansson[50-53] or a standard
coherent state proposed by Brown et al.[33-41] and Kerr
et al�s[61,62] and Schweitzer et al�s multiquanta
states[65,66]. Therefore, the wave function, Eq.(31), is
new for the protein molecular systems. It not only ex-
hibits the basic features of collective excitation of the
excitons and phonons caused by the nonlinear interac-
tion generated in the system but also agrees with the
fact that the energy released in the ATP hydrolysis (about
0.43 eV) may only create two amide-I vibrational
quanta, thus, it can also make the numbers of excitons
maintain conservation in the Hamiltonian, Eq.(32).
Meanwhile, the new wave function has another advan-
tage, i.e., the equation of motion of the soliton can also
be obtained from the Heisenberg equations of the cre-
ation and annihilation operators in quantum mechanics
by using Eqs.(31) and (32), but cannot be obtained by
the wave function of state of the system in other
models,including the one-quanta state[8-12] and the two-
quanta state[50-60]. Therefore,the above Hamiltonian and
wave function, Eqs.(31) and (32),are reasonable and
appropriate to the protein molecules.

We now derive the equations of motion in Pang�s
model. First of all, we give the interpretation of 

n
(t)

and 
n
(t) in Eq.(31). We know that the phonon part of

the new wave function in Eq.(31) depending on the dis-
placement and momentum operators is a coherent state
of the normal model of creation and annihilation opera-
tors. Utilizing again the above results and the formulas
of the expectation values of the Heisenberg equations
of operators, u

n
 and P

n
, in the state |(t),

  )t(H,u)t()t(u)t(
t

i nn 



 ,

  )t(H,u)t()t(P)t(
t

i nn 



 (37)

we can obtain the equation of motion for the 
n
(t) as
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From Eq.(38) we see that the presence of two quanta
for the oscillators increases the driving force on the
phonon field by that factor when compared with the
Davydov theory.

A basic assumption in the derivation is that |(t) in
Eq.(31) is a solution of the time- dependent Shrödinger

equation[26,149]: )t(H)t(
t

i 



  we can obtain
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In the continuum approximation we get from Eqs.(38)
and (39)
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(40)

and
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where  = x � x
0
 � t
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and s = /
0
. The soliton solution of Eq.(40) is thus

(42)

with
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These are just the form and representation of carrier
(soliton) of energy transport in Pang�s model.

THE PROPERTIES OF CARRIER
(SOLITON) OF ENERGY TRANSPORT AND

ITS LIFETIMES AT BIOLOGICAL
TEMPERATURE 300K

The properties of carrier (soliton) of energy trans-
port in protein molecules

Although forms of the above equations of motion
and corresponding solutions, Eqs.(40-43), are quite
similar to those of the Davydov soliton, the properties
of the new soliton have very large differences from the
latter because the parameter values in the equation of
motion and its solutions Eqs. (40) and (42), including
R(t), G

P
 and 

P
, have obvious distinctions from that

those of Davydov model. A straightforward result in
Pang�s model is to increase the nonlinear interaction

energy, G
P
(G

P
 = 2G

D
[1 + 2(

2
 / 

1
) + (

2
 / 

1
)2]) and

amplitude of the new soliton and decrease its width due
to an increase of 

P
(

P
 = 2

D
[1 + 2(x

2
 / x

1
) + (x

2
 /

x
1
)2]) when compared with those of Davydov soliton,

where  2 2
1 (1 )D x w s J    and  2 2

14 (1 )DG x w s   are the
corresponding values in the Davydov model. Thus the
localized feature of the new soliton is enhanced. Then
we can predict that its features and stability against the
quantum fluctuation and thermal perturbations increased
considerably as compared with the Davydov�s soliton.

As a matter of fact, the energy of soliton in Pang�s
model[112-148] becomes

0r
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(44)

The rest energy of the new soliton is

 4
1 2

0 0 2

8( )
2( 2 )

3

x x
E J

w J



   (45)

The effective mass of the new soliton is
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The binding energy of the new soliton is

  
4

1 2
2

8

3BP

x x
E

Jw

 
 (47)

The new soliton shown in Eq.(42) yields a localized
coherent structure with size of order 2r

0
/ì

p
 that propa-

gates with velocity v and can transfer energy E
S01

 2
0
.

Unlike bare excitons that are scattered by the interac-
tions with the phonons, but this soliton state describes a
quasi-particle consisting of the two excitons plus a lat-
tice deformation and hence a priori includes interaction
with the acoustic phonons. So the soliton is not scat-
tered and spread by this interaction of lattice vibration,
and can maintain its form, energy, momentum and other
quasiparticle properties moving over a macroscopic
distance. The bell-shaped form of the new soliton in
Eq. (42) does not depend on the excitation method. It
is self-consistent. Since the soliton always move with
velocity less than that of longitudinal sound in the chain,
then they do not emit phonons, i.e., their kinetic energy
is not transformed into thermal energy. This is an im-
portant reason for the high stability of the new soliton.
In addition the energy of the new soliton state is below
the bottom of the bare exciton bands, the energy gap

being 3/J4 2
p  for small velocity of propagation. Hence

there is an energy penalty associated with the destruc-
tion with transformation from the new soliton state to a
bare exciton state, i.e, the destruction of the new soliton
state requires simultaneous removal of the lattice dis-
tortion. We know in general that the transition prob-
ability to a lattice state without distortion is very small,
in general, being negligible for a long chain. Consider-
ing this it is reasonable to assume that the new soliton is
stable enough to propagate through the length of a typi-
cal protein structure.

Obviously, E
BP

 in Eq.(47) is larger than that of the
Davydov soliton. The latter is  4 2

1 3BDE x Jw . They
have the following relation:
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(48)

We can estimate that the binding energy of the new
soliton is about several decades larger than that of the
Davydov soliton. This is a very interesting result. It is
helpful to enhance thermal stability of the new soliton.
Obviously, the increase of the binding energy of the new
soliton comes from its two-quanta nature and the added

interaction.    2 1 1 1n n n n n ni
u u B B B B  

  
  , in the

Hamiltonian of the systems, Eq.(32). However, we see
from Eq.(48) that the former plays the main role in the
increase of the binding energy and the enhancement of
thermal stability for the new soliton relative to the latter
due to 

2
 < 

1
. The increase of the binding energy re-

sults in significant changes of properties of the new
soliton, which are discussed as follows.

In comparing various correlations to this model, it
is helpful to consider them as a function of a composite
coupling parameter like that of Young et al.[150] and
Scott[28-32] that can be written as
4

P
 = (

1
 + 

2
)2 / 2wD

(49)

where 
D
 = (w / M)1/2 is the band edge for acoustic

phonons (Debye frequency). If 4
P
 << 1, it is said to

be weak. Using widely accepted values for the physi-
cal parameters for the alpha helix protein molecule[8-

32,112-120],
J = 1.55  10�22 J.   w = (13 � 19.5) N/m.

M = (1.17 � 1.91)  10�25 kg   
1
 = 62  10�12 N.


2
 = (10 � 18)  10�12 N.   r

0
 = 4.5  10�10 m. (50)

we can estimate that the coupled constant lies in the
region of 4

P
 = 0.11 � 0.273, but 4

P
 = 

 
0.036 �

0.045 for the Davydov model, which is a weakly
coupled theory, but we can say that Pang�s model is

not a weakly coupled theory. Using again the notation
of Venzel and Fischer[151], Nagle[152], and Wagner and
Kongeter[153], it is convenient to define another com-
posite parameter[8-12]

 = J / 2w
D

(51)

In terms of the two composite parameters, 4
P

and , the binding energy of the new soliton in Pang�s
model can be written by
E

BP
 / J = 8(4

P
 / )2 / 3, M

sol
 = 2m

ex
[1 + 32(4

P
)2 /3]

From the above parameter values in Eq.(50), we
find  = 0.08. Utilizing this value, the E

BP
 / J versus 4

relations in Eq.(51) are plotted in Figure 2. However,
E

BD
 / J = (4

P
 / )2 / 3 for the Davydov model (here

  
2' 1 2 4 3 ,sol ex PM m    

    2
14 2D Dw    ,

then the E
BD

 / J versus 4
D
 relation is also plotted in

Figure 2. From this figure we see that the difference of
soliton binding energies between two models becomes
larger with increasing 4.

Figure 2 : Comparison of E
BD

 / J versus 4
D
 relation between

Pang�s model and Davydov�s model.

On the other hand, the nonlinear interaction energy
forming the new siliton in Pang�s model is G

P
 = 8(

1
 +


2
)2 / (1 � s2)w = 3.8  10�32 J, and it is larger than the

dispersion energy, J = 1.55  10�32 J, i.e., the nonlinear
interaction is so large than the latter in Pang�s model,

thus it can actually cancel or suppress the dispersion
effect in the dynamic equation,thus the new soliton is
stable in this case according the soliton theory[10,26,149].
However,the nonlinear interaction energy in the Davydov
model is only G

D
 = 4

1
2 / (1 � s2)w = 1.8  10�21 J, and

it is about three to four times smaller than G
P
. There-

fore, the stability of the Davydov soliton is weaker than
that of the new soliton.

Moreover, the binding energy of the new soliton in
Pang�s model is E

BP
 = (4.16 � 4.3)  10�21 J in Eq.(47),

which is somewhat larger than the thermal perturbation
energy, k

B
T = 4.13  10�21 J, at 300K and about four

times larger than the Debye energy, k = D
 = 1.2 

10�21 J (there 
D
 is the Debye frequency). This shows

that transition of the new soliton to a delocalized state
can be suppressed by the large energy difference be-
tween the initial (solitonic) state and final (delocalized)
state, which is very difficult to compensate for the exci-
ton with the energy of the absorbed phonon. Thus, the
new soliton is robust against quantum fluctuations and
thermal perturbation, therefore it has a large lifetime and
good thermal stability in the region of biological tem-
perature. In practice, according to Schweitzer et al.�s
studies, i.e., the lifetime of the soliton increases as 

p
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and T
0
 = 0


p
 / K

B
 increase at a given tempera-

ture[65], then we could roughly draw an inference that
the lifetime of the new soliton will increase considerably
as compared with that of the Davydov soliton due to
the increase of 

p
 and T

0
 because the latter are about

three times larger than those of the Davydov model.
However, the binding energy of the Davydov soliton

J10188.0J3wE 2124
1BD

 , and it is about 23 times

smaller than that of the new soliton, about 22 times
smaller than K

B
T, and about 6 times smaller than K

B
,

respectively. Therefore, the Davydov soliton is easily
destructed by the thermal perturbation energy and quan-
tum transition effects. Thus we can naturally obtain that
the Davdov soliton has only a small lifetime,and it is
unstable at the biological temperature 300 K. This con-
clusion is consistent at a qualitative level with the result
s of Wang et al.[63,64] and Cottingham et al.[65].

One can sum up the differences between Pang�s
model and the Davydov�s model, Eqs.(1)-(4), as fol-

lows. Firstly the parameter ì
p 
is increased (ì

p
 =2ì

D×






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









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1

2

1

2 )()(21 ). Secondly the nonlinear coupling

energy becomes G
p
 =2G

D
 >G

D
 resulting from the two-

quanta nature and the enhancement of the coupling the
coefficient (

1
+

2
). In fact, the nonlinear interaction,

G
p
, is increased by about a factor of 3 over that of the

Davydov soliton and is larger than the dispersion en-
ergy J in the equation of motion. A straightforward con-
sequence of these effects is that the binding energy of
new soltion or, in other words, the energy gap between
the solitonic and excitonic states are greatly increased

or  2 24 /3 /12 8BP p p BDE J G J E   . For -helical
protein molecules we can calculate the values of the
main parameters in this model by above parameter val-
ues listed in Eq.(50). These values and the corresponding
values in the Davydov model are simultaneously listed
in TABLE 1. From TABLE 1 we can see clearly that
Pang�s model produces considerable changes in the

properties of the new soliton, for example, large in-
crease of the nonlinear interaction, binding energy and
amplitude of the soliton, and decrease of its width as
compared to those of the Davydov soliton. This shows
that the new soliton in Pang�s model is more localized

and more robust against quantum and thermal fluctua-
tions and has enhanced stability[8-12,112-120] which implies

an increase in lifetime for the new soliton. From Eq.(38)
we also find that the effect of the two-quanta nature is
larger than that of the added interaction. We can there-
fore refer to the new soliton as quasi-coherent.

TABLE 1 : Comparison of parameters used in the Davydov
model and Pang�s model

Parameters

Models 
G 

(×10
-21J) 

Amplitude 
of soliton 

A� 

Width of 
soliton 
X 

(×10
-10m) 

Binding 
energy 

of 
soliton EB 

(×10
-21J) 

Pang�s Model 5.94 3.8 1.72 4.95 -7.8 

Davydov model 1.90 1.18 0.974 14.88 -0.188 

This feature of the Davydov soliton can be justified
by experiments. Lomdahl et al[61] gave the results of
computer simulation for Eqs.(7)-(8), which are shown
in Figure 3, which was obtained by soliton detector[61].
The results are presented with certain diagnostics: One
is of �waveform� graphs: that is, plots of |

n
|2 and the

discrete gradient 
n+1

 � 
n�1

 as a function of n at a given
time t. Also used are �soliton detector� plots: on the (t,
n)-plane, a mark was put at those times and positions
where both |

n
|2 exceeded a certain level and 

n+1
 �


n�1

 is negative. The temporal extent of such a marked
region shows the trajectory of a solution. In Figure 3
we see how several solitons are nucleated from ran-
dom initial conditions and how they move along the
chain. A correlation of the maximum in |

n
|2 and the

minimum in 
n+1

 � 
n�1

 is simultanously occurred, in
accordance with the characteristics of a solution, namely
Eqs. (11) and (12).

Figure 3 : The formation of Davydov soliton from initial
conditions consisting of one quantum of amide-I energy
distributed randomly along the molecular chains.

Davydov[8-12] also treated this situation. His analy-
sis was based on the Hamiltonian in Eq.(1) with wave
function in Eq.(2). After a number of approximations
he obtained an NLSE, but now with a temperature-
dependent coefficient for the nonlinear term. This coef-



Pang Xiao-Feng 175

Review
RRBS, 6(6,7) 2012

ficient goes to zero with increasing temperature and
vanishes at TH400K indicating that soliton solutions
should be stable for lower temperatures. This result is
in direct contradiction with Lomdahl et al�s computer

simulations of Eq.(13) at finite temperatures[61]. The
result of these simulations is as follows.

To describe the interaction of the system with a ther-
mal reservoir at temperature T, Lomdahl and Kerr[61]

added a damping force and noise force.
F

n
 = �m

n
 + 

n
(t) (52a)

to Eq,(8) for the molecular displacements. The corre-
lation function for the random noise was 

n
(t)

n�
(t�)

= 2mk
B
T(t � t�) (k

B
 is Boltzmann�s constant and

Ãis a phenomenological damping constant). This ex-
tension converts Eq.(8) to Langevin equations. The
effect of the above two terms is to bring the system to
thermal equilibrium; it was verified numerically that over
sufficiently long time intervals the mean kinetic energy
satisfied

  TNk
2
1

tm
2
1

B
n

2
n  (52b)

where <�> denotes time average. Equations (7) �

(8)with the damping force and noise force included still
imply the conservation of the norm in Eq.(6).

With the same diagnostics as in Figure 3, we show
the result of a simulation at T=300K in Figure 4, which
was obtained by soliton detector[61]. The initial condi-
tions were constructed to mimic what might happen
during ATP hydrolysis, A Davydov soliton (cf. Eqs.(11)
and (12)) has somehow been nucleated and now
evolves under the influence of the random forces. The
soliton is seen to disintegrate in a time corresponding
to about 3 picoseconds. The filamentary black regions
in this picture are seen to have a certain slope, which
corresponds to the sound velocity in the units used in
the calculation.

The calculation with Eqs.(7)-(8) and (52a) is a com-
bination of the above classical fluctuation -dissipation
relation in Eq.(52b) with quantum-mechanical equations
(7)-(8). The justification for this is that for the param-
eters relevant for á-helix, the highest acoustic frequency
max

 is about 100K. Since the equations are solved
near 300K, the occupation numbers of all phonon
modes are rather accurately given by the classical
Boltzmann distribution and under those circumstances
in Eq. (52b) is valid. At lower temperatures than say
TH200K, the above approach would not be valid.
The calculation with Eqs.(7)-(8) and Eq.(52a) is within
the canonical ensemble, where the temperature is con-
stant, but the energy allowed to vary. To check the con-
sistency of the result, calculations were also done in the
conventional microcanonical ensemble. The system was
prepared with the use of Eq.(52a) at T=300K, it was
then allowed to evolve only under the influence of the
deterministic equations (7)-(8). The result of these simu-
lations are essentially the same as presented above. The
soliton seems to disappear in a few picoseconds. Simi-
lar results were also obtained by Lawrence et al.[68].

These result can be interpreted as shoeing that the
wave function used by Davydov in Eq.(5), is not a good
approximation for description of soliton-like objects at
biological temperatures. The assumption that the state
vector is decomposable into a pure phonon part and
pure exciton part seems broken. The wave function that
the two components remain distinct at all times neglects
the phase- mixing characteristic of the evolution of the
coupled quantum-mechanical system. This deficiency
was also criticized on more general grounds by Brown
et al.[33-41]. Since these results are somewhat negative,
it is in order to state what cannot be concluded from
this. The ability of the Hamiltonian in Eq. (1) to support
soliton-like objects at finite temperatures is still open. It
is also not possible based on the simulations to say what
the lower temperature for soliton formation would be.

On the other hand, in order to investigate the influ-
ences of quantum and thermal effects on soliton state, which
are expected to cause the soliton to decay into delocalized
states, we postulate that the model Hamiltonian and the
wavefunction in Pang�s model together give a complete

and realistic picture of the interaction properties and al-
lowed states of the protein molecules. The additional in-
teraction term in the Hamiltonian gives better symmetry of
interactions. The new wavefunction is a reasonable choice

Figure 4 : The simulation of motion of Davydov soliton at
T=300K, the soliton disappears in a few picoseconds after its
formation.



176

Review
.The features of nonlinear excitation and energy transport RRBS, 6(6,7) 2012

for the protein molecules because it not only can exhibit
the coherent features of collective excitations arising
from the nonlinear interaction between the excitons and
phonons, but also retain the conservation of number of
particles and fulfill the fact that the energy released by
the ATP hydrolysis can only excite two quanta. In such
a case, using a standard calculating method[65,66,112-115]

and widely accepted parameters we can calculate the
region encompassed of the excitation or the linear ex-
tent of the new soliton, X = 2r

0
 / 

p
, to be greater

than the lattice constant r
0
 i.e., X > r

0
 as shown in

TABLE 1. Conversely we can explicitly calculate the
amplitude squared of the new soliton using Eq.(42) in

its rest frame as 
 

2 2

0

| ( ) | sec ( )
2

p p X
X h

r

 
  . Thus the

probability to find the new soliton outside a range of
width r

0
 is about 0.10. This number can be compatible

with the continuous approximation since the quasi-co-
herent soliton can spread over more than one lattice
spacing in the system in such a case. This proves that
assuming of the continuous approximation used in the
calculation is still qualitatively valid because the soliton
widths is large than the order of the lattice spacing, then
the soliton stability is improved. Therefore we should
believe that the above calculated results obtained from
Pang�s model is correct.

The lifetime of carrier (soliton) at physilogical tem-
perature 300K

5.1, Partially diagonalized form of the model
Hamiltonian

The thermal stability and lifetime of the soliton at
300K in the protein molecules is an centre and crucial
problem in the process of bioenergy transport because
the soliton possess certain biological meanings and can
play an important role in the biological process, only if
it has enough long lifetimes. In other word, the size of
lifetime of the soliton is often used to judge directly the
success and validity of the above theories of energy
transport containing Pang theory. Therefore, it is very
necessary to calculate carefully the lifetime of the soli-
tons in different models.

I now calculate first the lifetime of the new soliton
transporting the energy in Pang�s model. Thus we in-

troduce the following standard transformation[112-120]:

(53)
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We now diagonalize partially the model Hamilto-
nian in order to calculate the lifetime of the soliton in
Eq.(43) using the quantum perturbation method[65,66].
Since one is interested in investigating the case where
there is initially a soliton moving with a velocity v on the
chains, it is convenlent to do the analysis in a frame of
reference where the soliton is at rest. We should then
consider the Hamiltonian in this rest frame of the soliton,
which is H~  = H-vP, where P is the total momentum,

and P = 



q

qqqq BBaaq )( , where 
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Also, in order to have simple analytical expressions we
make the usual continuum approximation. This gives
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where (x) represents now the field operator corre-
sponding to B

n
 in the continuum limit (whereas before it

only indicated a numerical value). Here L=Nr
0
, � ð

<kr
0 
<ð, and 

q
 H  (w/M)1/2 r

0
.|q|, x = nr

0
. Since the

soliton excitation is connected with the deformation of
intermolecular spacing, it is necessary to pass in Eq.(56)
to new phonons taking this deformation into account.
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Such a transformation can be realized by means of the
following transformation of phonon operators[154,113-116]:

,
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b  ,
1 *
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a
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(57)

which describe phonons relative to a chain with a par-

ticular deformation, where b
q
| 00  ph

~ , b
q
 (b 

q ) is the

annihilation (creation) operator of new phonon.. Then
the Hamiltonian H~  is now
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where
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To describe the deformation corresponding to a soliton

in the subspace where there is  
L

xxdx
0

)()(  = 1.
From the above formulae we can obtain
V(x) = �2J

p
2 sec h2(

p
x / r

0
) (60)

In order to partially diagonalize the Hamiltonian in
Eq.(58) we introduce the following canonical transfor-
mation[65,66,112-115]
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The operators 

sA  and 

kA  are the creation operators for
the bound states C

s
(x) and delocalized state C

k
(x), re-

spectively. Thus the obtained partially diagonalized
Hamiltonian is as follows
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where 
q
 is determined by V(x) and the condition, (
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� vq) 
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 + qv) q , which is required to get the
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We now calculate the transition probability and
decay rate of the quasi-coherent soliton arising from
the perturbed potential by using the first-order quan-
tum perturbation theory developed by Cottingham, et
al[65,66], in which the influences of the thermal and quan-
tum effects on the properties of the soliton can be taken
into account simultaneously.

For the discussion of the decay rate and lifetime of
the new soliton state it is very convenlent to divide H~  in
Eq.(63) into H

0
+V

1
+V

2
, where
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where H
0
 describes the relevant quasi-particle excita-

tions in the protein. This is a soliton together with phonons
relative to the distorted lattice. The resulting delocal-
ized excitations belongs to an exciton-like band with
phonons relative to a uniform lattice. The bottom of the

band of the latter is at the energy 3/J4 2
p  relative to the

soliton, in which the topological stability associated with
removing the lattice distortion is included.

We now calculate the decay rate of the new soliton
along the following lines by using Eq.(67) and V

2
 in

Eq.(68) and quantum perturbation theory. Firstly, we
compute a more general formula for the decay rate of
the soliton containing n quanta in the system in which
the three terms contained in Eq.(31) is replaced by
(n+1) terms of the expression of a coherent state

exnn
n

10]B)t(exp[
1





 . Finally we find out the decay

rate of the new soliton with two-quanta. In such a case
H

0
 is chosen such the ground state, |n> has energy

W+n sE  in the subspace of excitation number equal to

n, i.e.,    

i
kii ABB|n n)lnAAnl(An| 

k
kss .

In this subspace the eigenstates have the simple form
|n-m,k

1
k

2
�k

m
, {n

q
} >

= mn
ph

q

qn
q

q
exmkkk

mn
S 0

~
1

n

d
AAAA

mn




 
 !

)(
0|)(

)!(

1
21
 (69)

where

qqqqq
Nn

mn
a

Nn
m

bd 



11

(m n, n and m are all intgers) (70)

with d
q
| mn

ph0
~   = 0. The corresponding energy of the

systems is

 








m

j q
qqk

sqnmkkmn

nvqE

EmnWnmE

1
1

2(0)
}{;1...1;

)(

)())/((1


(71)

sE  is the energy of a bound state with one soliton, kE

is the energy of the unbound (delocalized) state with

one exciton. When m=0 the excitation state is a n-type
soliton plus phonons relative to the chain with the de-
formation corresponding to the n-type soliton. For m=n
the excited states are delocalized and the phonons are
relative to a chain without any deformation. Further-
more except for small k, the delocalized states approxi-
mate ordinary excitons. Thus the decay of the soliton is
just a transition from the initial state with the n-type
soliton plus the new phonons:
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with corresponding energy E
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exkph

q

qn
q

q
0|A

n

a
k  



n)(0|
!

)(
| (73)

with corresponding energy E
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q
 caused by the part, V

2
, in the perturbation interac-

tion V. In this case, the initial phonon distribution will be
taken to be at thermal equilibrium. The probability of
the above transitions in lowest order perturbation theory
is given by
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We should calculate the transition probability of the
soliton resulting from the perturbed potential,(V

1
+V

2
),

at first-order perturbation theory. Following Cottingham
and Schweitzer[65,66], we estimate only the transition from
the soliton state to delocalized exciton states caused by
the potential V

2
, which can satisfactorily be treated by

means of perturbation theory since the coefficient F
~

(k,q) defined by Eq.(66) is proportional to an integral
over the product of the localized state and a delocal-
ized state, and therefore is of order 1/ N. The V

1
 term

in the Hamiltonian is an interaction between the delo-
calized excitons and the phonons. The main effect of
V

1
 is to modify the spectrum of the delocalized excitatons
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in the weak coupling limit (Jì
p
/ K

B
T

0 
<<1, the definition

of T
0
 is given below). As a result the delocalized excitons

and phonons will have their energies shifted and also have
finite lifetimes. These effects are ignored in our calcula-
tion since they are only of second order in V

1
.

Through tedious calculation we can finally obtain
the decay rate, which is as follows[112-120]
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This is just a generally analytical expression for the
decay rate of the soliton containing n quanta at any tem-
perature within lowest order perturbation theory. Note
that in the case where a phonon with wavevector k in
Eq.(76) is absorbed, the delocalized excitation pro-
duced does not need to have wavevector equal to k.
The wavevector here is only approximately conserved
by the sech2[ð(k-k�)r

0
 / 2n

1
] term. This is, of course,

a consequence of the breaking of the translation sym-
metry by the deformation. Consequently, we do not
find the usual energy conservation. The terms R

n
(t) and


n
(t) occur because the phonons in the initial and final

states are defined relative to different deformations.
We should point out that the approximations made

in the above calculation are physically justified because
the transition and decay of the soliton is mainly deter-
mined by the energy of the thermal phonons absorbed.
Thus the phonons with large wavevectors which fulfill
wavevector conservation make a major contribution to
the transition matrix element, while the contributions of
the phonons with small wavevector which do not fulfill
wavevector conservation are very small, and can be
neglected.

From Eqs.(75) and (76) we see that the 
n
 and

R
n
(t) and 

n
(t) and  = n

1
 mentioned above are all

changed by increasing the number of quanta, n. There-
fore, the approximation methods used to calculate 

n

and related quantities (especially the integral contained
in 

n
) should be different for different n.

We now calculate the explicit formula of the de-
cay rate of the new soliton with two-quanta (n=2) by
using Eqs.(75)-(76). In such a case we can compute
explicitly the expressions of this integral and R

2 
(t) and


2
(t) contained in Eqs.(75)-(76) by means of approxi-

mation. As a matter of fact, in Eq.(76) at n=2 the func-
tions R

2 
(t) and 

2
(t) can be exactly evaluated in terms

of the digamma function and its derivative. In the case
when the soliton velocity approaches zero and the
phonon frequency 

q
 is approximated by Mw/ |q|r

0
.

For t   (because we are interested in the long-
time steady behaviour) the asymptotic forms of R

2
(t)

and 
2
(t) are[112-120]
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At R
0
<1 and T

0
<T and R

0
 T/T

0
<1 for the protein

molecules, one can evaluate the integral including in
Eq.(75) by using the approximation. The result is
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The decay rate of the new solition with two-quanta, in
such an approximation, can be represented, from
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In fact, Cottingham et al[65,66] found out the decay
rate of Davydov�s solition using the quantum perturba-

tion method, which is represented as
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where

/TKR B
D
0D  , 2/1

2
1D

0 )
w

M
(

w

2
R




 , 2/1DD )

w
M

(
2




 (85)

Equation (84) can also be found out from Eq.(74) at
n=1.

Comparing Eq.(83) with Eq.(84) we find that the
decay rate of the new solition with two-quanta is con-
siderably different from that in the Davydov model not
only for the parameter�s values, but also the factors

contained in them. In Eq.(83) the factor,
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in Eq.(83) due to the two-quanta nature of the new
wavefunction and the additional interaction term in the
new Hamiltonian. In Eq. (83) the ·, R

0
 and T

0
 are not

small, unlike in the Davydov model. Using Eq.(50) and
TABLE 1 we find out the values of , R

0
 and To at

T=300K in both models, which are listed in TABLE  2.
From this table we see that the , R

o
 and T

o
 in Pang�s

model are about 3 times larger than the corresponding
values in the Davydov model due to the increases of ì

p

and of the nonlinear interaction coefficient G
p
. Thus the

approximations used in the Davydov model by

Cottingham, et.al[65,66] can not be applied in our cal-
culation of lifetime of the new soliton, although we uti-
lized the same quantum-perturbation scheme. Hence
we can audaciously suppose that the lifetimes of the
quasi-coherent soliton will greatly change.

Eqs.(75) and (81)[112-120], by
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 Ro To (K) (1013 / s) 
New model 0.529 294 6.527 

Davydov model 0.16 95 2.096 

TABLE 2 : Comparison of characteristic parameters in the
Davydov model and in our new model

The above expression, Eq.(83), allows us to com-
pute numerically the decay rate, 

2
, and the lifetimes of

the new soliton, ô = 1/
2
, for values of the physical

parameters appropriate to -helical protein molecules.
Using the parameter values given in Eq.(50), TABLES
1 and 2, v=0.2v

0 
and assuming the wavevectors are in

the Brillouin zone we obtain values of 
2
 between

1.54×1010S-1-1.89×1010S-1. This corresponds to the
soliton lifetimesô, of between 0.53×10-10S 0.65×10-10S
at T=300K, or /

0
=510-630, where 

0
=r

0
/v

0
 is the

time for travelling one lattice spacing at the speed of
sound, equal to (M/w)1/2=0.96×10-13S. In this amount
of time the new soliton, travelling at two tenths of the
speed of sound in the chain, would travel several hun-
dreds of lattice spacings, that is several hundred times
more than the Davydov soliton for which /

0
<10 at

300K[65,66].
Cottingham et al.[65,66] obtained from Eq.(83) that

the lifetime of Davydov soliton is only 10�12 � 10�13 Sec.,
i.e., Davydov soliton traveling at a half of the sound speed
can cover less than 10 lattice spacing in its lifetime. This
shows that the lifetime of Davydov soliton is too small
(about) to be useful in biological processes. This shows
clearly that the Davydov solution is not a true wave func-
tion of the systems. However, the lifetime is sufficiently
long for the new soliton excitation to be a carrier of en-
ergy. Therefore the quasi-coherent soliton is a viable
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mechanism for the energy transport at biological tem-
perature in the above range of parameters.

We are very interested in the relation between the
lifetime of the quasi-coherent soliton and temperature.
Figure 5 shows the relative lifetimes /

0
 of the new

soliton versus temperature T for a set of widely ac-
cepted parameter values as shown in Eq.(50). Since
one assumes that v<v

0
, the soliton will not travel the

length of the chain unless /
0
 is large compared with L/

r
0
, where L=Nr

0
 is the typical length of the protein mo-

lecular chains. Hence for L/r
0
H100, /

0
>500 is a rea-

sonable criterion for the soliton to be a possible mecha-
nism of the energy transport in protein molecules. The
lifetime of the quasi-coherent soliton shown in Figure 5
decreases rapidly as temperature increases, but below
T=310K it is still large enough to fulfill the criterion.
Thus the new soliton can play an important roles in bio-
logical processes[112-120].

We can also study the dependency of the soliton
lifetime on the other parameters by using Eq.(83).
We chose parameter values near the above accepted
values shown in Eq. (50). In Pang�s model we know

from Eq.(83) that the lifetime of the soliton depends
mainly on the following parameters: coupling con-
stants (

1
+

2
), M, w, J, phonon energy 

k
, as well

as on the composite parameters ì(ì=ì
p 
), R

0
 and T/

T
0
. At a given temperature, /

0
 increases as ì and

T
0
 increase. The dependences of the lifetime /

0
,at

300K on (
1
+

2
) and ì are shown in Figures 7 and

8, respectively[112-120]. Since ìis inversely propor-
tional to the size of the soliton, and determining the
binding energy in Pang�s model, therefore it is an

important quantity. We regard it as an independent
variable. In such a case the other parameters in Eq.
(83) adopt the values in Eq. (50). It is clear from
Figures 7 and 8 that the lifetime of the soliton, /

0
,

increases rapidly with increasing ìand (
1
+

2
). Fur-

thermore, when ì  5.8 and (
1
+

2
)7.5×10-11N,

which are values appropriate to Pang�s model, we

find /
0
>500. For comparison we show in Figure 8

the corresponding result obtained using Eq.(83).
For the original Davydov model as a dashed line

in Figure 8. Here we see that the increase in lifetime
of the Davydov soliton with increasing ìis quite slow
and the difference between the two models increases
rapidly with increasing ì. The same holds for the
dependency on the parameter (

1
+

2
) but the result

Figure 5 : Soliton lifetime ô relatively to ô
0
 as a function of

the temperature T for parameters appropriate to the á-helical
molecules in the new model in Eq.(31)

For comparison we plotted simultaneously log (
/ 

0
) versus the temperature relations for the Davydov

soliton and the new soliton with a quasi-coherent two-
quanta state in Figure 6. The temperature-dependence
of log ( / 

0
) of the Davydov soliton is obtained from

Eq. (84). We find that the differences of values of  /


0
 between the two models are very large. The value

of  / 
0
 of the Davydov soliton really is too small, and

it can only travel fewer than ten lattice spacings in half
the speed of sound in the protein chain[65]. Hence it is
true that the Davydov soliton is ineffective for biologi-
cal processes[65,66].

L
og

(
/

0)

T

Figure 6 : Log(/
0
) versus the temperature for the soliton.

The solid line is the result of the new model, the dashed line
is the result of the Davydov model.
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In Figure 9 we plot /
0
 versus . Since � des-

ignates the influence of the thermal phonons on the
soliton, it is also an important quantity. Thus, we regard
it here as an independent variable. The other param-
eters in Eq.(83) take the values in Eq.(50). From this
figure we see that /

0
 increases with increasing . There-

fore, to enhance  can also increase the value of /
0.

CONCLUSION

As it is known, the energy transport is a basic prob-
lem in life science and related to many biological pro-
cesses. Therefore it is very necessary to establish the
mechanism of energy transport and its theory, where
the energy is released by ATP hydrolysis. Scientists es-
tablished different theories of energy transport based
on different properties of structure of �helical protein

molecules, for example, Davydov�s, Takeno�s,

Yomosa�s, Brown et al�s, Schweitzer�s, Cruzeiro-

Hansson�s, Forner�s and Pang�s models, and so on.

We first review past researches on different models or
theories. Subsequently we studied and reviewed sys-
tematically the properties, thermal stability and lifetimes
at physiological temperature 300K for the carriers (soli-
tons) transporting the energy in Pang�s and Davydov�s

theories. From these investigations we know that the
carrier (soliton) of energy transport in Pang�s model

has a higher binding energy, higher thermal stability and
larger lifetime at 300K relative to those of Davydov�s
model, in which the lifetime of the new soliton at 300K
is enough large and belongs to the order of 10-10 sec-
ond orô/ô

0
700. Thus we can conclude that the new

soliton in Pang�s model is exactly the carrier of energy

transport, Pang�s theory is appropriate to �helical pro-

tein molecules.
Why then does the quasi-coherent soliton have such

high lifetime? From Eqs. (47) and TABLES 1 and 2 we
see that the binding energy and localization of the new
soliton increase due to the increase of the nonlinear in-
teractions of exciton-phonon interaction, i.e., the new
wave function with two-quanta state and the new Hamil-
tonian with the added interaction produce considerable
changes to the properties of the soliton. In fact, the non-
linear interaction energy in Pang�s model is

G
p
=8(

1
+

2
)2 /(1-s2)w=3.8×10-21J, and it is larger than

the linear dispersion energy, J=1.55×10-22J, i.e., the
nonlinear interaction is so large that it can really cancel

for the Davydov soliton is not drawn in Figure 7.
These results show again that the new soliton in Pang�s
model is a likely candidate for the mechanism of energy
transport in the protein molecules. In addition it shows
that a basic mechanism for increasing the lifetime of the
soliton in protein molecules is to enhance the strength
of the exciton-phonon interaction.

Figure 7 : /
0
 versus (

1
+

2
) relation in Eq.(83)

Figure 8 : /
0
 versus ì relation. The solid and dashed lines

are results of Eq.(83) and Eq.(84), respectively

Figure 9 : /
0
 versus  relation in Eq.(83)
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or suppress the linear dispersion effects in the dynamic
equation in this model. Thus we can conclude that the
new soliton is stable and localized according to the
soliton theory[26,149]. However, the nonlinear interaction

energy in the Davydov model is G
D 

= 4 2
1 /(1-

s2)w1.18×10-21J and it is 3-4 times smaller than G
p
.

Then the stability of the Davydov soliton is weak com-
pared to that of the new soliton.Moreover, the binding

energy of the new soliton in Pang�s model is E
BP

=4 2
p J/

3=7.8×10-21J in Eq.(47), which is about 2 times larger
than the thermal energy, K

B
T = 4.14 × 10-21J, at 300K,

and about 6 times larger than the Debye energy, K
B


= ùD
 = 1.2 × 10-21J (here 

D
 is Debye frequency),

and it is approximately equal to 
0
/4=8.2×10-21J, i.e., it

has same order of magnitude of the energy of the amide-
I vibrational quantum, 

0
. This shows that the new soliton

is robust due to the large energy gap between the
solitonic ground state and the delocalized state. In con-
trast the binding energy of the Davydov soliton is only

E
BD 

= 
Jw3 2

4
1  = 0.188 × 10-21 J which is about 41 times

smaller than that of the new soliton, about 23 times
smaller than K

B
T and about 6 times smaller than K

B
,

respectively. Therefore, it is easily destroyed by ther-
mal and quantum effects. Hence the Davydov soliton
has very small lifetime (about 10-12~10-13s), and it is
unstable at 300K[65,66]. Thus the new soliton can pro-
vide a realistic mechanism for the energy transport in
protein molecules.

The two-quanta nature for the quasi-coherent soliton
in Pang�s model plays a more important role in the in-

crease of lifetime than that of the added interaction be-
cause of the following facts.

(1) The changes of the nonlinear interaction energy

G
P
=2G
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2

1

2
 and 

p
 produced by the

added interaction in the Hamiltonian in Pang�s model

are G = G
P
(

2
0)�G

P
(

2
=0) = 1.08 G

D 
< G

P
(

2
=0)

= 2G
D
 and =

P
(

2
0)�

P
(

2
=0) =

1.08
D
<

P
(

2
=0) = 2

D
, respectively, where G

=2G
D
 and =2

D
 are just the results caused by

the two-quanta feature in Pang�s model. This means

that the effects of the added interaction on G
p
 and 

p

are smaller those of the two-quanta nature. Since
the two parameters G

P
 and 

P
 are responsible for

the lifetime of the soliton, then we can conclude that
the effect of the former on the lifetimes is smaller than
the latter.

(2) The contribution of the added interaction to the
binding energy of the new soliton is about

BD

4

1

2
BDBP E6.21EE 
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












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
 , which is smaller than

that of the two-quanta nature which is E "
BD  = 8E

BD
. Put-

ting them together in Eq.(47) we see that E
BP 
 41E

BD
.

(3) From the (
1
+

2
)-dependence of /

0
 in Fig-

ure 7 we find that /
0
100 at 

2
=0 which is about

20 times larger than that of the Davydov soliton un-
der the same conditions. This shows clearly that the
major effect in the increase of the lifetime is due to
the modified wave function. Therefore, it is very
reasonable to refer to the new soliton as the quasi-
coherent soliton.

The above calculation is helpful to resolve the
controversies on the lifetime of the Davydov soliton,
which is too small in the region of biological tem-
perature. In fact, modifying the wave function and
the Hamiltonian of the Davydov�s model, we find that

the stability and lifetime of the soliton at 300K in
Pang�s model increase considerably relative to those

in Davydov�s model, which are shown in TABLE 3.

TABLE 3 shows that Pang�s model repulse and refuse

the shortcomings of the Davydov model, the new
soliton is thermal stable at 300K and has so enough
long lifetime, thus it can plays important role in bio-
logical processes, it is possibly an actually carrier of
energy transport in the protein molecules. Thus the
quasi-coherent soliton is a viable mechanism for the
energy transport, Pang�s model is appropriate to �

helical protein molecules.

TABLE 3 : Comparison of features of the solitons between our model and Davydov model

Model 
Nonlinear 
interaction 
G(10-21J) 

Amplitude 
Width 
10-10m 

Binding 
energy 
(10-21J) 

Lifetime at 
300K 

(S) 

Critical 
temperature 

(K) 

Number of amino 
acid traveled by 

soliton in lifetime 
Our model 3.8 1.72 4.95 -7.8 10-9-10-10 320 Several handreds 

Davydov model 1.18 0.974 14.88 -0.188 10-12-10-13 <200 Less than 10 
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