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ABSTRACT KEYWORDS
The features of nonlinear excitation (or soliton motion) and energy Protein;
transport in the a—helical protein molecules arising from the energy Biological energy;
released in the hydrolysis of adenosine triphosphate (ATP) molecules, Soliton;
which is a basic problem in life science and related to many biological ATP hydrolysis;
processes, are studied and reviewed systematically. Based on different Amide;
understanding of properties of structure of a—helical protein molecules Exciton;
some theoretical models of the nonlinear excitation and energy transport Lifetime;
along the molecular chains have been proposed and established, A brief Amino acid;
survey of past researches on different models and theories of energy, Quasi-coherent state;
including Davydov’s, Takeno’s, Yomosa’s, Brown et al’s, Schweitzer’s, Binding energy.

Cruzeiro-Hansson’s, Forner‘s and Pang’s models were first stated and
reviewed in this paper. Subsequently we studied and reviewed mainly and
systematically the properties, thermal stability and lifetimesof the carriers
(solitons) transporting the energy at physiological temperature 300K in
Pang’s and Davydov’s theories. From these investigations we know that
the carrier (soliton) of energy transport inthe o—helical protein molecules
in Pang’s model has a higher binding energy, higher thermal stability and
larger lifetimeat 300K relative to those of Davydov’s model, in which the
lifetime of the new soliton at 300K is enough large and belongs to the
order of 10" second ort/t;>700. Thus we can conclude that the solitonin
Pang’s model is exactly the carrier of the energy transport, Pang’s theory
isappropriate to a—helical protein molecules.

© 2012 Trade ScienceInc. - INDIA

INTRODUCTION inthelivesystems. Their synthetic movementsand co-
operativechangesarejust total lifeactivity. Therefore

What is life or life activity? In the light of wecansaythat thebio-materia isthefoundationif life,
biophysicist’s view, the so-called life or life activityis  theenergy isitscenter, thebio-informationisthekey of
just processesof mutua changesand coordinationand  lifeactivity, but the transformation and transfer of bio-
unity for thebio-material, energy and bio-information  information are al waysaccompanied by thetransport
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of energy inliving systemsl. Thus, theenergy andits
trangport arean fundamental and important processin
lifeactivity. Theenergiesneeded aremainly provided
by that rel eased in adenosine phosphate (ATP) hydroly-
ssintheliving systems. Namely, anATPmoleculere-
actswith water, which resultsintheenergy release of
0.43eV under normal physiological conditions. There-
action can berepresented by

ATP* + H,O0— ADP* + HPOf’ +H" +0.43eV
whereADPisthe adenos ne diphosphate. The bio-en-
ergiesneededin biological processesinthebio-tissues
comebascdly fromthisenergy, namdy, itismainly used
inthese processes, for example, the muscle contrac-
tion, DNA duplication and theneurod ectric pulsetrans-
fer on themembranesof neurocytesaswell aswork of
calcium pump and sodium pump. Therefore, thereis
alwaysaprocessof energy transport from the produc-
ing placeto required organismsintheliving systems.
However, understanding of mechanism of the energy
transport in theliving systemsisalong standing prob-
lemwhich retainsinteresting up now. Plenty of themod-
elsof energy trangport were proposed, but most of them
arenot successful™, In general, ATPmoleculesbind
oftento aspecific siteon the protein molecule, theen-
ergy supply for most protein activity and functionsis
provided by theATPhydrolysis. Thusthetransport of
energy released by ATPhydrolysisisawaysrelated to
the protein mol eculesand their changes of conforma-
tionand configuration.

Asitisknown, the protein moleculesare composed
of morethan twenty different kindsof individud build-
ingblockscaledaminoacids. Eachaminoacidisagan
congtructed by anamino group (NH.,), acarboxyl group
(COOH), and asidegroup, or radica attachedtoan o
carbon atom. The radical iswhat distinguishes one
amino acid from another. Amino acidspolymerizeto
formlong chains of residuesthat constitute aprotein
molecule. When two amino acidsjoin together, they
rel ease onewater molecule and form apeptide bond.
When the polypeptide chain has been formed, it can
foldinto avariety of complex three-dimensional con-
formations. Of particular arethethreestructural con-
figurationsthat recur over and over in proteins. theo.—
helix, the2-sheet and globular conformation. In the a-
helix the polypeptidechainistightly coiled about itslon-
gitudina axis. Inthe?sheet the chain can be visualized
aspleated strands of protein. Theglobular conforma-

tionismaost complex sincethechainsarefoldedirregu-
larly into acompact near- spherical shape. Part of the
chain can oftenbeinthea-helix or the?’sheet configura-
tion(t49l,

Generally speaking, the energy can be converted
toaparticular vibrationd exctationwithinaproteinmol-
ecule. A likely recipient exchangeistheamide-l vibra-
tion. Their vibrationisprimarily astretch and contrac-
tion of the C= O bond of the peptide groups. Theamide-
| vibrationisalso aprominent featureininfrared and
Raman spectraof protein molecules. Experimental mea:
surement showsthat one of thefundamental frequen-
ciesof theamide-I vibration isabout 0.205eV. This
energy isabout half the energy released duringthe ATP
hydrolysis. Moreover, it remains nearly constant from
proteinto protein, indicating that it israther weakly
coupled to other degrees of freedom. All thesefactors
can lead to the assumption that the energy rel eased by
ATPhydrolysismight stay localized and stored inthe
amide-| vibration excitation. A biologica rolefor vibra-
tional excited stateswasfirst proposed by McClarein
connection with apossiblecrisisin bioenergetics® (for
moreinformation about McClare’s work see the article
by LucaTurin, inthisissué™). Then, asandterndiveto
€l ectronic mechanisms, one can assumethat theenergy
isstored asvibrational energy inthe C=0 stretching
model (amide-1)of polypeptidechainsinthe protein
molecules. Inview of thefeatures of energy sometheo-
retical models of the energy transport have been pro-
posed subsequently. Inthisreview paper wewill sur-
vey thesetheoretica modesaswell asther properties
and correctness.

THEORETICAL MODEL SOF NONLINEAR
EXCITATIONAND ENERGY TRANSPORT
INPROTEIN MOLECULES

Davydov’s theory

Itiswell known that an inspection of the a-helix
structure reveal sthree channels of hydrogen-bonded
peptide groups approximately in thelongitudina direc-

C=0...H-N-C=0...H-N-C=0...., where the dotted
linesindicatethe hydrogen bond, Davydov worked out
thisideainthea-helix proteinmolecules, whichisshown
inFigure 1, based on McClare’s proposal for explain-
ing the conformationa changesresponsiblefor muscle
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contraction®, wherethetrigger istheenergy donating
reaction of ATPhydrolysis. Histheory has shown how
asoliton (nonlinear excitation) couldtravel aong the
hydrogen-bonded spinesof the a-helix protein molecu-
lar chains. Davydov’s assumption was that the first event
after theATPhydrolysisisthe storing of theenergy re-
leased by thechemical reactioninavibrationd modeof
the peptide group. In 1973 Davydov suggested that
the amide-1 energy could stay localized through the
nonlinear interactionsof thevibrationa excitation with
thedeformationinthe protein structure caused by the
presence of the excitation. The excitation and the de-
formation balance each other and form a soliton
(nonlear excvitation).

Figurel: Sructureof a-helical protein

Thustheenergy can transport along the protein mol -
eculesinvirtueof themation of thesoliton. Thismecha
nism can bedescribed classicdly asfollows. Vibrationd
energy of the C=0 stretching (or amide-l ) oscillators
that itlocdized onthehdix chansacts, through aphonon
coupling effect, todeform the structure of theamino acid
residue, the deformation of amino acid residuesreacts,
again through phonon coupling, to trap theamide- vi-
brationa quantaand prevent itsdigperson. Thusasoliton
isformedinthisprocess. Thiseffectiscaled sdlf-trap-
ping of theamide-| vibrationa quantum (or exciton). The
soliton can movesover amacroscopi ¢ distancesaong
themolecular chainskeepingits shapeand energy and
momentum and other quasi-particleproperties. Thisis

just Davydov theory of bioenergy transport in a-helical
protein molecul es, which was proposed by Davydov
in1973&12, Themathematical techniquesthat are used
toandyze Davydov’s soliton are analogous to some that
have been devel oped for the ‘polaron’ effect suggested
by Landau™ 4 and studied by Pekar™!, Frohlich{617,
Holstein®® and many others.

Therefore, Davydov’s first main addition to
McClare’s proposal was to point out a specific vibra-
tiona bandthat isfoundin proteinsand that isideal for
thestorageand propagation of energy. Hissecond main
contribution to thefield of bioenergeticswastoredize
that the amide-1 energy depends on the strength of the
hydrogen bond that may exist between the oxygen of
one peptide group and the nitrogen of another, Thus
Davydov took into account the coupling between the
amide-| vibration (intramolecul ar excitation or exciton)
and deformation of amino acid residues (or, acoustic
phonon) in the a-helix proteinsand gave further the
Hamiltonian of the system®3, whichisasfollows
H=H,+H_ +H, @A)
with
He=2[(%-D)BB-J(BB..+B..B)] @

n
2

P 1
H ph = Z|:2|C/| +Ew(un _un—l):| and

n

H int = z Z(uml - un—l)Br: Bn (3
which arethe Hamiltonians of theexcitonswith energy
&, thevibration of amino acid resdueand their interac-
tion, respectively, where B, (B, ) istheexciton creation

(annihilation) operator at thenth Sitewith anenergy €,
=0.205eV. They satisfy thecommutation rel ation:

[Bn'ng]:gnm'[Bn'Bm]:[BrT'Br;]:O' (4)
AlsoinEq. (84), theg, B B, denotesthekinetic energy

of theexciton, J(B, B,., + B, ., B,) representsthereso-

nant (or dipole-dipol e) interaction between neighbor-
ing excitons, J = 282 / re istheresonance (or dipole-
dipole) interactionthat determinesthetransition of an

excitonfromonemoleculeto another. Then DB B, de-

notestheinteraction of theexciton with thelattice or
peptidegroups. D isthedeformation excitation energy,
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andisapproximately aconstant, u and P_ arethedis-
placement of the peptide groups and its conjugate mo-
ment, M isthemassof the peptide group, wisthespring
constant of the molecular chainsand y, = 0J/u_isthe
coupling constant between the exciton and vibrational
quantum of the peptide group (phonon). Obvioudy, the
Hamiltonianin Eq.(1) representsthe e ementary mo-
tionsof theexciton and phononaswell asther interac-
tionsinthesystems.

Davydov used thefollowing wavefunctionto rep-
resent the collective states of excitation of theexcitons
and phononsarising from the energy released by ATP

hydrolysis
D,()> = () >| B(t)) =

> eOB; exp(—%Z[ﬁn(t)Pn—ﬂn(t)un1j|0> (52)

or

D,(>=Y {

Z'Oﬂ?g(?)” -a, (a,

@, (t)B’ exp

\ 5

1Jfi

(30)

where

(D[R 1D, >=(D,|R D, >= Y [0, =1 (©)
[0 =0),, 10) " aretheground states of the exciton and
phonon, respectively, a, (a;) isannihilation (creation)
operator of the phononwithwarevector g, ¢, (t), B (t)
= <Olu |®>, = (t) = (PP |P) and o (t) =
(D, (1) |ah|Dl(t)> aresomeundetermined functionsof time,
Evidently, equation (5) isan excited state of single par-
ticlefor theexcitons, but itisacoherent statefor the
phonons in Eq.(5). This is just basic features of
Davydov’s wave function.

Using thefunctional (®(t)|H|®(t)) and thevaria-
tiona approach, Davydov et d got:

RS ) S A R
and

aatﬂz W (Zﬁ ﬁn 1 ﬁml) X (|(pn+l| |¢n l| ) (8)
where,

B, (0= ). 7, =(®(r)| B| (1)) =

> Review

déf” W= I‘Tir’l-ﬂ 9B,y ¥ +w(B, ,5’”_1:"'

In the continuity approximation the equations (7) and
(8) becomes:

o . W o
ih——A+——-2
{ a " amoae F

and
0 2;(r 5
T - 225 Lo -

where A =g, - 2] + W, v, =r,,/w/M isthe sound
speed of themolecular chain. Clearly,

equation (9) isanonlinear Schrodinger equation (NLSE)
having asoliton solution asgiven by

% (X R }¢(x H=0, (9

(10)

|
4 2| A
1'4"%} seC _#J['{—J (x—xy—vt) |
i I;
D d

#x.)=

, i . E,
expl (x—x, ‘1——3? (11)

.10 i
Thusfrom Eqs (10)-(11) we can givethe solution of

Eq. (10) asfollows:

Bxt)=— tanh[/:t’ (X=%— Vt)} (12)

(1 !) 0
Equations(11)-(12) show clearly that theenergy trans-
portsaong the protein molecular chainsintheform of

bdl|-typeof solitonin Eq.(11). Thesolitonislocdized over
ascaer/u,, where u, =—»2/1[(1-5")W],G, =4y
s* =v?/vZ,v, = r,(w/M)"?isthesound speed in the
protein molecular chains, v isthevelocity of thesoliton,
r,isthelatticeconstant. From the aboveresult weknow
that apositive y meansthat when the hydrogen bond
length decreases, the energy of theamidel vibration
decreases, and vice versa. When y = 0, the amide |
energy does not depend on therel ative positions of the
peptide groupsand theamide | excitation propagates
from one peptide group to the next because of the di-
pole-dipole interactions J. Inthiscase, anamidel ex-
citationthat isinitialy located at one peptide group will
spread to other peptidegroups, and thestate will quickly
ceaseto belocalized. Onthe other hand, when y 0,
anexcitationinitialy located a one peptidegroup will
induceadistortion of the associated hydrogen bond (a
compression for positivey and an expansionfor nega
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tivey), which, inturn, will decreasetheenergy of the
corresponding amidel state. When the (negative) in-
teraction energy isgreater, in absoluteterms, than the
distortion energy, whichisaways positive, the state of
theamide- | excitation together with thedistortion has
an energy that islower than the state of the amide-I
excitation intheabsence of thedistortion.

Evidently, the Davydov soliton containsonly one
exciton, i.e., N = (o, (1)|{lo, (1)), wherethe particle

number operator N = Zn B; B, . Thisshowsthat the
Davydov solitonisformed through self- trgpping of one

excitonwithbindingenergy E,, = -y, / 3Jw”.

TheTakeno soliton model

Takeno!*? proposed a so an dternative mode for
the propagation of bio- energy inthea-helix protein.
Heregarded that the dispersion termin the Davydov
modd in Eq.(1), may not be appropriatefor themigra:
tion of vibrationa energy, theexchangeinteractionis
morerdevant for theexcitons. Thushegenerdized his
theory to deal with more complex systemswherethe
amide-1 energy iscoupled to both acoustic and optic
phonons. Then hedenoted the Hamiltonian of the sys-
tem by

L1
H :E{} +— nm:gg
' 2m 2

P 1 1
y ‘H”f E n+l _” ) j|+T_4' -i, { x—l)

n | iV r:_-

ZL q_l{_qn :| £a

=H +H,+H' (13)
whereq_ and p, arethe displacement and momentum
coordinates for the high frequency intramolecular
(amide-) oscillator with massmand frequency o, L is
the coupling strength between neighbouring oscillators,
whichwe haverestricted to nearest neighbours. Al so,
u.and P, arethedisplacement and momentum coordi-
natesfor themoleculeat siten; M and w arethe mo-
lecular massand intramol ecul ar force congtant. Thelast
term couplesthesetwo oscillating fieldswith coupling
constant A,

In order to make acomparison with the Davydov
model, we now view Eq.(13) asaquantum Hamilto-
nian, with thedi splacement and momentum coordinates
replaced by operators. Thusweintroducecreation and
annihilation operatorsfor the high-frequency oscillator
at siten by theequations

=) e o =("2) ei-e,)

thusthe g -dependent part of Eq.(13) can bewritten

1 hL
Hs = Zh(&)o(B:Bn +E]— mo
0

Z( :1—+1B+"'Ban+1+Bn+1B +Bn+1B ) (15)
and
. hA
Hi= o 0;(5 B! +2B!B, +B,B, NUp ~Uoss) (16)

Comparing Eq.(16) withthe Davydov Hamiltonianin
Eq.(1) itisclear that there are additional B;B;andB B,
termsbothin thedispersiveand interaction partsof the
quantum verson of the Takeno Hamiltonian. Theequa
tion of motion for the Heisenberg operator B, obtained
fromEq.(13) is

IhB” = hmOBn _r:_L(B:+1 + Bn+l + B:—l + Bn—l)
®q
nA,
t— 2m 0 (B+ +B Xun+1 n l) (17)

Thisdiffersfrom corresponding equationin Davydov
theory, whichis

i’B.=¢B —J(B, ,+B_)+xB (u_ —u ) (18)
Theform of theequationin Eq.(18) issuch that aphase
transformation

B, (t)=B,(t)}e™™" (19)
removestheenergy of theamide-l1 quantum from the
equation, that istheequationfor B_(t) isEq.(18) but
without theterm proportional to e,. Thusthissimple
transformation removes from the equations of mo-
tion any knowledge of the magnitude of ¢ relativeto
other energiesintheproblem, for example, the Debye
energy of the acoustic phonon spectrum associated
withH .

However, the presence of thosetermsin Eq.(17)
meansthat aphasetransformation of theformin Eq.(19))
cannot removethe energy of theamide-I quantum 7w,
=g, fromtheequation (18). Carrying out that transfor-
mation on Eq.(17) producesfactors osaillating at 2o,
inthe creation operator terms. Inthisformulation the
magnitude of E; relativeto other energiesin the prob-
lemremainsimportant. Thelack of ' B*and B B, terms
inthe Davydov Hamiltonian has a so been questioned
by Fedyanin et al.[?3],
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Wenotethat if wedrop the creation operatorsfrom
Eq.(17), then we can rel ate the parameters of thetwo
theoriesby L = (o, / h)J, Aa= (2uw,/ h)x.

Theequationsof motion derived from the classical
HamiltonianinEq.(13) are

mq” +mmgqn _2L(qn+l +qn—l)+
A0, Uy, U, ,)=0 (20a)

M Un _W(un+1 _2un + un—l)_%Aa(qﬁJrl _qr21—l)= O (20b)

Takeno used acontinuum gpproximation to Eq.(20)
and obtained thisway coupled nonlinear Klein-Gor-
don equationsfor the coordinates q (x, t) and u (x, t).
A rotating-waveapproximation thenfinaly leadsto an
NLSEs (9)-(10), but now with aclassica coordinate
for theamplitude of theamide- vibration compared to
Davydov’s NLSE for the probability amplitude.

If EQ.(13) isaugmented with the additional optic
modeand interaction term:

1 1 1
Hap = 3| 3M o+ 5K 2 |+ Z3AEY,

n

(21)
the equation of motion become

md, +mezd, —2L(q,,, +9, ,)+ .

Aaqn(un+1_un—1)+A0qnyn =0 ( a)
1 ) )

Mun_w(u”+1_2un+u”*1)_EAa(Qn+1_qn71)=o (22b)

1
Moyn+Koyo+§AOQE =0 (220)

Takeno™*?2 has used these equati onsto describe self-
trapped satesin crystalline acetanilide, wheretheoptic
modemassisM = 1.56 x 10" kg (thereduced mass
of theN-H unit), andA_=A  since both acoustic and
optic mode couplingsincludethe hydrogen bond. The
systemisinitialy preparedin astatethat had alarge
loca displacement inthevibron (amide-l) field, noen-
ergy intheopticfield, and kinetic energy and displace-
ment of the acoustic fied correspondingto 300K. Then
the wave-form graphs obtained from Eq.(22) show
essentially thekinetic energy in the vibron and optic
fieldsand the discretegradient (u,,, —u, ) approxi-
mately 60psinto thesimulation. Theamide-l energy is
clearly ill localized and asignificant correlationisseen
to have devel oped in the acoustic and opticfields. Ad-
ditiond studiesof the Takeno modd areclearly needed,
but it seems that the classical solitons described by

Eq.(22) aremore stable at biologically relevant tem-
peratures than the Davydov soliton described by
Egs.(9)-(10).

Yomosa’s model

Yomosd?#! proposed d so another dlassica soliton
model for energy transport inthe o helix proteins, in
which hethought solely the a-helix structureis stabi-
lized through the nonlinearity and asymmetry of the hy-
drogen bonds. Then the potential of the nth hydrogen
bond inthe polypeptide chain can be approximately
represented by
V,(r,)=Ar?=Br?, r,=u,,—u, (23)
whereu, isthedisplacement of the nth peptide group,
r . istheelonggation of thenth peptidebond. Thelattice
constant isdenoted by r.. Theva uesof theconstantsA
and B can be determined from self-consi stent-field
molecular orbital cdculations®!. Yomosahere choose
acubicpotentid for reflecting thenonlinearity and asym-
metry of thehydrogen bond in Eq.(23). ThentheHamil-
tonian of thesystemis

H :%M Yuz+ Y [A@, -u,, ¥ -B(y, —Un-1)3] (24)

where M isthe mass of the peptide group. The equa-
tions of motionintermsof r.ae

Mr, =2A(r,., +r, -2, )- C%B(rnz+l +r2 - 2rn2) (25)

Yomosa introduces the continuum limit of (25)
(nr,—X, r —r (x,t)) and looking only at right-going
waves he obtainsaK orteweg-de Vries(KdV ) equa-
tion[2+2;

0.~ 120, +¢.. =0 (26)
where

é=x/1,—(2A/M)¥2t,t=(t/24)(2A m)*?,

$=3Br/A (27)

Intermsof theoriginal €ongation r(x,t) theone-soliton
solutionisgivenas

r(x,t)=—%kzsechz(L(x—vt)—SJ

r, (28)

k2
i = 1+—|.
with v Vo( +24)

Herev,=(2A/ m)*r isthesoundvelocity. Thisve-
locity indicatesthat Yomosa’s solitons are supersonic.
The parameter k to beintherange 2-3 by equating the
energy released during ATPhydrolysis (0.43eV) tothe
energy of theKdV one-solitonin Eq. (28). Thisgives
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an effective soliton width of about 4'&, thatis, approxi-

mately onthevaidity of the continuum approximation.

Theexact form of the potentia in Eq.(23) isprob-
ably not very important; Yomosa?! has also studied
the propertiesof aToda-type potentia, with aLenard-
Jones potential®, which showseffectively the same
phenomenaaspredicted by Yomosa’s continuum KdV
theory, that is, theformation and propagation of super-
sonic solitons. Thesemol ecular dynamicssimulations
were a so extended to biologically relevant tempera-
tures by addition of noiseand damping forcetermsto
the equations of motion. When 0.43eV of energy was
initiated on one bond, coherent pul ses of energy were
observed abovethethermal noisefor at |east 25ps at
T=310K.A window of mogt fficient energy transport
wasfound around 40-60°C; at |lower temperaturesthe
viscosity of the solvent (modeled throughl”) inhibited
transport, whileat high temperaturesthetherma noise
isthelimitingfactor.

It seemsthat the supersonic | attice solitons pro-
posed by Yomosa present areasonable aternativeto
the Davydov and Takeno model s of transport of bio-
logica energy. Theselattice solitonsmay also bemore
efficient in doing mechanica work sincethey haveno
rest energy associ ated with them. However, moretheo-
retical and numerical work arestill neededinthisarea

Theimproved modelsof Davydov’s theory

Davydov’s idea yields a compelling picture for the
mechanism of bioenergy transport in protein molecules
and consequently hasbeen the subject of alargenum-
ber of works?®%, A lot of issuesrelated to the Davydov
model, including the foundation and accuracy of the
theory, the quantum and classical propertiesand the
thermal stability and lifetimes of the Davydov soliton
have been extendvely and criticaly examined by many
scientists%% and thefoll owing questions have been of
particular concern. (1) What isthe correct quantum
mechanical description of Davydov’s soliton at low
twmperature? (2) How doesthe soliton get started on
andphahdix proteins’ ? (3) Is Davydov’s soliton stable
at thebiol ogical temperature 300K ? If not, how long
will itlast? (4) How may Davydov’s theory be general-
ized toinclude chargetransfer and more genera pro-
tein sructures? Therefore, consderable controversy has
ariseninrecent yearsconcerning whether the Davydov
soliton can provideaviableexplanaionfor energy trans-

port. Itisout of question that the quantum fluctuations
and thermal perturbations are expected to cause the
Davydov solitonto decay into adel ocaized Sate. Some
numerica S mulationsindicated thet the Davydov soliton
isnot stableat the biological temperature 300K #8667
78, Other s mulations showed that the Davydov soliton
isstable at 300K 2%, bhut they were based on classi-
cd equationsof motionwhicharelikdytoyield unrdi-
ableestimatesfor thestahility of the Davydov’s soliton®
4, Thesimulationsbased onthe 1D, > statein Eq.(5a)
generdly show that the stability of thesoliton decreases
withincreas ng temperatures and that the solitonisnot
sufficiently stablein theregion of biologica tempera-
ture. Sincethe dynamica equationsusedinthesmula-
tionsare not equivalent to the Schrodinger equation,
thestability of the soliton obtai ned by these numerical
smulationsisunavailableor unrdiable. Thesmulation
based on the ID, > state in Eq.(5b) with the thermal
treatment of Davydov®*8, where the equations of mo-
tion arederived from athermally averaged Hamilto-
nian, yieldsthewondering result that thestability of the
soliton isenhanced with increasing temperature, pre-
dictingthat 1D >-typesolitonisstablein theregion of
biological temperature. Evidently, theconclusionis
doubtful becausethe Davydov procedureinwhich one
constructs an equation of motion for an average dy-
namicd statefrom an averageHamiltonian, correspond-
ing to the Hamiltonian averaged over athermd distri-
bution of phonons, isinconsi stent with standard con-
ceptsof quantum-statistica mechanicsinwhichaden-
Sty matrix must beused to describethe system. There-
fore, thereexists not an exact fully quantum-mechani-
cd treetment for thenumerica Smulaion of theDavydov
soliton. However, for thetherma equilibrium proper-
tiesof the Davydov soliton, thereisaquantum Monte
Calosmulation®®4, |nthesmulation, correlation char-
acterigtic of solitonlike quasiparticlesoccur only at low
temperatures, about T<10K, for widely accepted pa-
rameter values. Thisiscongstent at aqualitativelevel
withtheresult of Cottingham et a.[%%l, Thelatterisa
straightforward quantum-mechanica perturbation ca-
culation. Thelifetime of the Davydov soliton obtained
by using thismethod istoo small (about 1012 — 10"
sec) to beuseful inbiological processes. Thisshows
clearly that the Davydov solution isnot atrue wave
function of the systems. A through study in terms of
parameter values, different types of disorder, different
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thermalization schemes, different wavefunctions, and
different associated dynamicsleadsto avery compli-
cated picturefor the Davydov model®®¢2, Thesere-
sultsdo not compl etely rule out the Davydov theory,
however they do not diminatethepossibility of another
wavefunction and amore sophisticated Hamiltonian of
the system having asoliton with longer lifetimesand
good thermd stahility.

Indeed, the question of thelifetimeof thesolitonin
protein moleculesistwofold. In Langevindynamics, the
problem consists of uncontrolled effectsarising from
the semiclassical approxima tion. In quantum treat-
ments, the problem has been thelack of an exact wave
functionfor thesoliton. Theexact wavefunction of the
fully quantum Davydov model has not been known up
to now. Different wave functions have been used to
describethe states of the fully quantum- mechanical
systems**4l, Although some of thesewavefunctions
lead to exact quantum states and exact quantum dy-
namicsinthe J=0 state, they a so shareaproblemwith
the original Davydov wavefunction, namely that the
degree of approximation included when J= Qisnot
known. Therefore, itisnecessary toreform Davydov’s
wavefunction.

Scientists had though that the soliton with a
multiquantum (n> 2), for exampl e, the coherent state
of Brown et a.[*3, the multiquantum state of Kerr et
al.%? and Schweitzer®d, the two-quantum state of
Cruzeiro -Hansson® and Forner®™!, and so on, would
bethermally stableintheregion of biological tempera:
ture and could provide a realistic mechanism for
bioenergy transport in protein molecules. Inthe Brown
et a’s model®, the state of the excitonswas denoted
by acoherent state vector |A(t)), whichisdefined by
A®D) = [, ) ®...|a (D)
wherein[a (1)) isapure coherent state defined by

8,0) =Pl | Jexpla, (9a31]0),

where the complex scalar a (t) isthe coherent-state
amplitude, which may takeondl vauesinthecomplex
plane, The product state |A(t)) may be defined by the
property that a JA(t)) =a (1)|A(t)) for al of thea . The
expectation va ue of aHamiltonian operator of thesys-
temH[a, a’ inthestate|A(t)) isthereforeared scaar
functionH[a(t), a (t)] for dl thea (t) and their complex
conjugates. Thuswe can presumethat thestarting Hamil-
tonian operator isin normal ordered form so that there

isnoambiguity inthereationship between H[a, a'] and
H[a(t), & (t)]. Thenwe can obtain thepropertiesof the
exciton-soliton inthe system by generd method. How-
ever, theassumption of the standard coherent stateis
unsuitableor impossiblefor biologica proteinmolecules
becausethereareinnumerableparticlesinthisstateand
onecould not retain conservation of thenumber of par-
ticlesof thesystemand isa soincons stent with thefact
that the energy released in ATPhydrolysis can excite
only two quantaof amide-l vibration.

Inthe Schweitzer’s model(® of the multiquantum
statethe state of the excitonswas denoted by

00)= %, am0]0), == 0 (O(E))"]0),

However, theassumption of amultiquantum state (m>2)
aongwithacoherent stateisa soinconsi stent with the
fact that the bioenergy released inATPhydrolysiscan
exciteonly two quantaof amide-l vibration.

In Forner‘s model of two-quantal>, herepresented
the state of the exciton by

(1)) ==%(Zn(pn(t)8r:)2|0>ex

Forner’s numerical resultst®%! showsthat the soliton
of two-quantum stateis more stable than that witha
one-quantum state.

Cruzeiro-Hansson®3 had thought that Forner’s
two-quantum statein the semiclassical casewas not
exact. Therefore, he constructed again aso-called ex-
actly two-quantum statefor the semiclassical Davydov
systemasfollowd®2:

6(0)= 3 om (U} ARY. VBB,

n,m=I

0>, (29)
whereB, ( B, ) istheannihilation (creation) operator
for an amide-1 vibration quantum (exciton), u, isthe
displacement of thelatticemol ecules, P, isitsconjugate
momentum, and |0>_ istheground state of theexci-
ton. Hecd culatethe average probability distribution of
theexciton per site, and average displacement differ-
ence per site, and the thermodynamicsaverage of the
variable, P = BB, — B, B,,asameasure of localiza-
tion of the exciton, versus quantity v = Jw/y? and
LnB(B =1/K,T) intheso-called two-quantum state,
Eq.(29), wherey, isanonlinear coupling parameter
related to the interaction of theexciton-phononinthe
Davydov model. Their energiesand stability arecom-
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pared with that of the one-quantum state. From there-
sultsof abovethermal averages, he drew the conclu-
sion that thewave function with atwo-quantum state
canlead to more stable soliton sol utionsthan thewave
function with aone-quantum state, and that the usual
Langevindynamicswhereby thetherma lifetimeof the
Davydov solitonisestimated, must beviewed asun-
derestimating thesoliton lifetime,

However, by checking carefully Eq.(29)%%2, wecan
find that the Cruzeiro-Hansson wavefunction does not
represent exactly the two-quantum state. To find out
how many quantathe state EQ.(29) indeed contains,
we haveto compute the expectation val ue of the exci-

ton number operator. N = Zn B; B,, in this state,

Eq.(29), and sum over thesites, i.e., theexciton num-
bersN are

N=<@> B.B,|¢>=2 0wl

n ijlmn

<0/B;B,B;B,B!B[0 >

ex

- E (ﬂj:f;{lﬁ e -;{3;:';9]: )+

1]
E (‘?’;:‘?’:l + QLo ) =4
nl

whereweusetherdations

nJ Zkonl :

«<0[B/ 0>, =,<0[B/B,|0>, =,<0|B!B,,B|0>, =..=0

Therefore, thestate, Eq.(29), asitis put forward™
inEq.(29) deds, in contradictionto the author’s state-
ments, with four excitons (quanta), instead of two exci-
tons. Obvioudy itisnot possibleto createthefour ex-
citons by the energy released in the ATP hydrolysis
(about 0.43 eV). Thusthe author’s wave function is
still not relevant for protein molecules, and hisdiscus-
sonandconcdlusonaredl unreliableandimplausiblein
that paper®2.

Wethink that the physical significanceof thewave
function, Eq.(29), isadso unclear, or at least isvery dif-
ficult to understand. Asfar asthe physi cal meaning of
Eq.(29) is concerned, it represents only a combina-
tional stateof single-particleexcitation with two quanta
createda sitesnandm; ¢ ({u,},{P,},t) istheprob-
ability amplitudeof particlesoccurring a thesitesnand
msimultaneously. Ingeneral, n=mand¢__# ¢ @,_in

(30)

[B,.B/]1=

accordancewith theauthor’s idea. In such a case it is
very difficult toimaginetheform of thesoliton formed
by the mechanism of self- trapping of thetwo quanta
under the action of the nonlinear exciton-phononin-
teraction, especially when the difference between n
and misvery large. Hansson has a so not explained
the physical and biological reasonsand the meaning
for the proposed trial state. Therefore, wethink that
the Cruzeiro-Hansson representationistill not an exact
wave function suitablefor protein molecules. Thus,
thewavefunction of the systemsisstill an open prob-
lem today.

Recently, Cruzeiro L.et a®* and Pouthier et
al(2%1°% proposed adynamical model of nonconserving
Davydov monomer involvinganonconsarving Davydov
Hamiltonian for the energy transport, in which they
thought that the Davydov’s model cannot describe the
conversion of that energy into work, becauseit con-
servesthe number of excitations. With theaim of de-
scribing conformational changes, they considered a
nonconserving generalization of themodel, whichis
found to describe essentially acontraction of the hy-
drogen bond adjacent to thesitewherean excitationis
present. Unlikethe one-site Davydov model, that con-
tractionistime dependent because the number of exci-
tationsisnot conserved. However, consderingthetime
average of thedynamica variables, theresultsreported
heretend to theknown results of the Davydov mode.

Meanwhile, K.Moritsugu et.al**? and H.Fujisaki
et a™® considered theanharmonic coupling between
theamide-1 mode and intramol ecular normal modes.
These modelsare hel pful for solving the problem of
energy trangportin protein molecules.

Inonewords, the above soliton theories of energy
trangport in protein molecul esattract the careful atten-
tion of the bioenergetics community. Obviously, they
cannot explain every aspect of energy transport and
protein dynamics, but they aremotivating exciting ques-
tion and new experiments. Thereareclearly still many
open problemsand no single theory presently hasan-
swerstodl questions. However, most of thesemodels
stay only inthe designs of mechanism of energy trans-
port, adeepened and completeinvestigationlacksnow.
Thereforeit now isquiterequired to continuework on
the extension and improvement of thesetheoriesfor
forming acompleteand correct theory of energy trans-
port in protein molecules.
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Pang’s model

Theresultsobtained by many scientigsover theyears
show that the Davydov model, whether it bethewave
functionor theHamiltonian, isindeedtoosmple, i.e.., it
doesnot denoted elementary propertiesof the collec-
tiveexcitationsoccurringin protein mol ecules, and many
improvementstoit havebeen unsuccessful, asmentioned
above. What isthe source of thisproblem? It iswell
known that the Davydov theory on bioenergy transport
wasintroduced into protein moleculesfrom an exciton-
soliton model ingeneraly one-dimensiona molecular
chaing'%1%l, Although the molecular structure of the
apha-hdix proteinisand ogousto somemolecular crys-
tal's, for example acetanilide (ACN) (infact, both are
polypeptides; the alpha-helix protein moleculeisthe
structure of three peptide channels, ACN isthe struc-
ture of two peptide channds. If comparing the structure
of dphaheix proteinwithACN, wefind that the hydro-
gen-boned peptide channel swith the atomic structure
alongthelongitudina direction arethe same except for
thesidegroup), alot of propertiesand functionsof the
protein moleculesare compl etely different from that of
thelatter. The protein moleculesareboth akinds of soft
condensed matter and bio-sdlf -organizationwith action
functions, for instance, self-assembling and salf-reno-
vating. The physical concepts of coherence,
order,collectiveeffects, and mutud correlationarevery
important in bio-salf-organization, including theprotein
molecules, when compared with generaly molecular
systemg 711, Therefore, it isworth studying how we
can physically describe these properties. Wenote that
Davydov operation alsoisnot strictly correct. There-
fore, wethink that abasic reason for thefailureof the
Davydov model isjust that it ignores completely the
aboveimportant propertiesof the protein molecules.

Let usconsider the Davydov mode withthe present
viewpoint. Firgt, asfar asthe Davydov wavefunctions,
both |D,) and |D,), are concerned, they are not true
solutions of the protein molecules. On the one hand,
thereisobvioudy asymmetry intheDavydov wavefunc-
tion sincethe phononic partsisacoherent state, while
theexcitonic partisonly an excitation stateof asingle
particle. It isnot reasonabl e that the same nonlinear
interaction generated by the coupling between the ex-
citons and phonons produces different statesfor the
phonon and exciton. Thus, Davydov’s wave function
should bemodified, i.e., theexcitonic partinit should

al so be coherent or quasi coherent to represent the co-
herent feature of collective excitation in protein mol-
ecules. However, the standard coherent™ and large-n
excitation stateg®! are not appropriatefor the protein
molecules due to the above reasons. Similarly,
Forner’st>1 and Cruzei ro-Hansson’s?® two- quantum
states do not fulfill the above request. In view of the
abovediscuss on, weproposed thefollowingwavefunc-
tion of two-quantaquasi-coherent statefor the protein
molecular systemg 11214l

(1) >=|p(1) > |B (1) >=

-

1+ 9,()) B+ T0,(1)B; | ||,

l.
|

[ — , skl
x,exp«‘i—;—?ELﬁx{r_}Px—JTJ,{r_]ux_IIf|O::-Pj, (31)

where B, (B,) isboson creation (annihilation) operator
for theexciton, |0>,_ and|0>, aretheground states of
the exciton and phonon, respectively, u and P, arethe
displacement and momentum operators of thelattice
oscillator at siten, respectively. A isanormalization
constant, we assume hereafter that . = 1 for conve-
nienceof cd culation, except when explicitly mentioned.
The o (1), B,(t) = <Oy | (t)> and = (t) =
<®(1)[P |d(t)> arethere sets of unknown functions.
A second problem arisesfor the Davydov Hamil-
tonian®12, The Davydov Hamiltonian takesinto ac-
count theresonant or dipole-dipoleinteraction of the
neighboring amide-1 vibrational quantain neighboring
peptidegroupswith an dectrical moment of about 3.5D,
but why do we not consider the changes of relative
displacement of the neighboring peptidegroupsarisng
fromthisinteraction? Thus, itisreasonableto add the

new interaction term, ;(Z(Llnﬂ—un)( BB+ 3;3%1),
into the Davydov Hamiltonian to represent correlaions
of thecollectiveexcitationsand collectivemationsin
the protein molecul es, asmentioned above®3. Although
thedipole-dipoleinterac- tionissmall ascompared with
the energy of the amide-1 vibrational quantum, the
change of rel ati- ve displacement of neighboring pep-
tidegroupsresulting from thisinteraction cannot beig-
nored dueto the sensitive dependence of dipole-dipole
interaction on the distance between amino acidsin the
protein molecules, whichisakind of soft condensed
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matter and bio-self- organization. Thus, we replace
Davydov’s Hamiltonian*2148 py
H = Hﬁ.‘f +H_.'J.ii + Hi.ur =

SI_ECBTB‘?. o J-{ 'B.:B;'H'. +Br.' B.:+'. } I+

'\—‘ —+£11{{ —u, ) :
2M 2 )
+Y [X] I:”.>:+] _H'r—l }B:B?i +
;{E[” _H P{B:HBH +‘E:TBP+1” (32)

wheree = 0.205 ev istheenergy of theexciton (C=0
stretching mode). The present nonlinear coupling con-
stantsarey,, andy,. They represent the modul ations of
the on-siteenergy and resonant (or dipole-dipole) in-
teraction energy of excitons caused by themolecules
displacements, respectively. M isthemassof aamino
acid molecule and w isthe el asticity constant of the
protein molecular chains. Jisthedipole-dipoleinterac-
tion energy between neighboring sites. The physical
meaning of the other quantitiesin Eq.(32) arethesame
asthoseinthe above explanations.

The Hamiltonian and wave function shown in
Eqgs.(31)-(32) are different from Davydov’s. We
added a new interaction term,

> % (Upa—u,)(BL,B, +B;B,,), intotheorigind

n+1 n —n+l

Davydov Hamiltonian. Thusthe Hamiltonian now has
an one-by-one correspondenceon theinteractionsand
can represent thefeatures of mutual correlationsof the
collectiveexcitationsand of collectivemotionsinthe
protein molecul es. We should point out herethat the
different coupling between there evant modeswasaso
considered by Takeno et al.5*% and Pang™*! in the
Hamiltonian of thevibron-soliton modd for one-dimen-
sond oscillator-latticeand protein systems, respectively,
but the wave functions of the systemsthey used are
different from Egs.(31)-(32).

Obvioudy, thenew wavefunction of theexcitonin
Eq.(31) isnot an excitation state of asingleparticle, but
rather a coherent state, or more accurately, a
quasicoherent state becauseit isjust an effectivetrun-
cation of astandard coherent state, retainsonly fore
threetermsof expansion of astandard coherent state,
at thesametime, whenthe ¢ (t) issmall, for example,
|, (1) <<1, it also can approximately represent math-

ematically asastandard coherent state:

lo(t) >~ eXp[—%ZI @, (O eXD{Z%(t)B‘SH 10>

(33)

exp{Z . (t)B? —¢;Bn]} |0>

where2. Jo (F = 1, ndenotesthesitesof amino acids.
Thereforewerefer to it asquasi- coherent state dueto
thesecharacterigtics. ThusEq.(31) canrepresent smul-
taneoudy the coherent features of collectiveexcitations,
phononsand excitons, inthe proteins. Thecondition of
lp, (t)I<<lisdsoquitecorrect and resonablefor the pro-
teinscong sting of amino acids of severa hundredsor
thousandsbecauseof 2_ o (1) = 1. Therefore, Eq.(33)
Isjustified and acorrect representation. Itiswell known
that the coherent stateiscertainly normalized, thenitis
natural that the |o (t)) in Eq.(31) or |@(t)>in Eq.(31)
should be a so normdized. Thuswe should choose =
1inEq.(31). Thismeansthat we cannot choose other
valuesof 1= 1inEq. (31), or else, |o (1)) cannot rep-
resent as a standard coherent state in Eq.(33). With
that, in thiscase of A = 1, |, (t)) is neither aquasi-
coherent state nor aexcited state of single particle, that
IS, hasnot any biological and physical meanings. This
showsclearly that choice of »=1inEq.(31) iscorrect
and reasonable. Insuch acaseit isnot an el genstate of
number operator because of

olt)={ S, (te}

[;qancpn(t)B‘n]z}o >o = 2<p(t)—[2+;cpn(t)8‘n)o>ex (34)

Therefore, the |p(t)> representsindeed a superposi-
tion of multiquantum states. Concretely spesking, itisa
coherent superposition of theexcitonic statewithtwo
guantaand theground state of theexciton. However, in
thisstatethenumbersof quantaare determinateinstead
of innumerable. Tofind out how many excitonsthisstate
contains, we haveto computethe expectation va ue of
the number operator N in thisstate and sum over the
states. Theaverage number of excitonsfor thisstateis

N =<g(t|Nfolt)>= X <o(tB:8, folt)
“{ze 0z Zor)
(gnrogo )

Njo(t)>= >B;B,

(35)
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wherewetilize Eq.(8) and thefollowing rel ationg4:

2 2 t

Yle.t) =1 e ()" =1[B,.B;,1=8,, (36)

n m

«<0[B; [0>,=,<0|B;B, |0>,=,<0|B;B, [0>,
=,<0|BB,B, |0>,=.,<0|B;B,B/B, |0>,,
=,<0|B,B,B/BB;|0>,=,<0|B,B,B/B BB, |0>,..=0

n=m=1

Therefore, thenew wavefunctionin Eq.(31) isaquas-
coherent state containing only two quanta, thus com-
pletey different from Davydov’s. The latter is an exci-
tation sate of asingle particlewith onequantumand an
elgenstate of the number operator. Inthemeanwhile, as
far astheform of new wavefunctionin Eq.(31) iscon-
cerned, it is either two- quanta states proposed by
Forner®™-%1 and Cruzeiro-Hansson!>*%¥ or astandard
coherent state proposed by Brown et al .51 and Kerr
et al’sl®1%2 and Schweitzer et al s multiquanta
stated%>%, Therefore, thewavefunction, Eq.(31), is
new for the protein molecular systems. It not only ex-
hibitsthebasic features of collectiveexcitation of the
excitonsand phonons caused by the nonlinear interac-
tion generated in the system but also agreeswith the
fact that theenergy released in the AT Phydrolysis (about
0.43 eV) may only create two amide-I vibrationa
quanta, thus, it can aso makethe numbersof excitons
maintain conservation in the Hamiltonian, Eq.(32).
Meanwhile, the new wavefunction hasanother advan-
tage, i.e., theequation of motion of thesoliton canaso
be obtai ned from the Hei senberg equations of the cre-
ation and annihilation operatorsin quantum mechanics
by using Egs.(31) and (32), but cannot be obtained by
the wave function of state of the system in other
models,including theone-quantastate®'4 and thetwo-
quantastate>*®, Therefore theaboveHamiltonianand
wavefunction, Egs.(31) and (32),are reasonable and
appropriateto the protein molecules.

We now derivethe equations of motionin Pang’s
model. First of dl, wegivetheinterpretation of 3 (t)
and  (t) in Eq.(31). Weknow that the phonon part of
thenew wavefunctionin Eq.(31) dependingonthedis-
placement and momentum operatorsisacoherent state
of thenorma mode of creationand annihilation opera-
tors. Utilizing again the aboveresultsand theformulas
of theexpectation va ues of the Hei senberg equations
of operators, u and P, inthe state |D(t)),

ih§<¢(t)|un|¢(t)> =(@)u,.H]o),

2 (2Ipjow) = (@)u,.H]ew) 37

we can obtain the equation of motion for the 3 (t) as
MB, (t) = WB,... (1)~ 28, (1) + B, (1)]

20O ~Jon a0+ 2

%40 0010 01 (1)

+0ufor: - 05 0] (38)
From Eq.(38) we seethat the presence of two quanta
for the oscillators increases the driving force on the
phonon field by that factor when compared with the
Davydov theory.

A basicassumptioninthederivationisthat |®(t)) in
Eq.(31) isasolution of thetime- dependent Shrodinger

ifi

equationi?614: ir %I(W)} = H|®(t)) we can obtain

ih%% (1) = €@, (1) = I[@,.. (1) + @, , (V)]+
2a[Bo 2 (D) +B, 1 (D], (1)

~ % oBras )+ B (%[0 (1) + 0 ()]
+§(W(t)—%ka(t)um(t)—fcm(t)ﬂ(t)]}pn(t) 39)

In the conti nuum approximation we get from Egs.(38)
and (39)

ih%(p(X,t): R(t)o(x,t)—

2 2 40
8 2 0x.0)-G ot} ox.) (40
X
and
op(x,t) _ap(xt)  4u+x) 2
= =- t
o& X w(1-5")r, 0 (ay

whereg=x-x,- vt

R(t)=so—2J+§{W(t>—§zbim(t)nm (t)—a‘:ma)ﬂ(t)]}

ands=v/v,. Thesoliton solution of Eq.(40) isthus
L2

e ry % :
&(x.7) =| '(?” : sec hé_{ﬂ'p g J{x—x, —1';‘_}]><
|'l [ i l
exp4i x—x,)—E — |}
P |._ ._Mtg( o) —E.~ J 42)
with
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_8(ntn)
) w(l— sz)

_2nt )2

He = W(l—SZ)J :

(43)
These arejust the form and representation of carrier
(soliton) of energy transport in Pang’s model.

THE PROPERTIESOF CARRIER
(SOLITON) OFENERGY TRANSPORT AND
ITSLIFETIMESAT BIOLOGICAL
TEMPERATURE 300K

Thepropertiesof carrier (soliton) of energy trans-
port in protein molecules

Although formsof the above equations of motion
and corresponding solutions, Egs.(40-43), are quite
similar to those of the Davydov soliton, the properties
of thenew soliton havevery largedifferencesfromthe
latter becausethe parameter valuesin the equation of
motion and itssolutions Egs. (40) and (42), including
R(t), G, and ., have obvious distinctions from that
those of Davydov model. A straightforward result in
Pang’s model is to increase the nonlinear interaction
energy, G(G, = 2G,[1+2(x, /1) + (x,/ x,)7) and
amplitudeof thenew soliton and decreaseitswidth due
to an increase of p(u, = 2u[1+ 2(x, /X)) + (X, /
X,)’]) when compared with those of Davydov soliton,
where 1, =3¢ /W(1-s)J and G, = 4x?/w(l-s*) arethe
corresponding vauesinthe Davydov model. Thusthe
localized feature of the new solitonisenhanced. Then
we can predict that itsfeaturesand stability against the
quantum fluctuation and thermd perturbationsincreased
consderably ascompared with the Davydov’s soliton.

Asamatter of fact, theenergy of solitonin Pang’s
model %148 becomes

E=<®(t)|H |®(t) =ri [ 2ar?

(22" 4Rt - otxo o

1 E[M(aﬂ(x,t))z +Wr0(aﬂ(x,t))2]dx
Mo =°2 ot ox

h (44)
= EO +EM so|v2

Therest energy of thenew solitonis

£ = 2(s, - 23)- B %)

45
3w’J (49
Theeffective mass of thenew solitonis
8(x, +x,)" (9s? + 2—3¢*
Mo =2m,, + ()| 3 ) (46)
3w’ (1-5°) vj
Thebinding energy of thenew solitonis
—8( %, + X )4
EBP :3\1]—sz (47)

Thenew soliton shownin Eq.(42) yieldsalocalized
coherent structurewith size of order 2nr / By that propa
gateswith velocity v and cantransfer energy E | 2¢,.
Unlike bareexcitonsthat are scattered by theinterac-
tionswith the phonons, but thissoliton state describesa
quasi-particle cons sting of thetwo excitonsplusalat-
ticedeformation and henceapriori includesinteraction
with the acoustic phonons. So the solitonisnot scat-
tered and spread by thisinteraction of latticevibration,
and canmaintainitsform, energy, momentum and other
guasi particle properties moving over amacroscopic
distance. Thebell-shaped form of the new solitonin
Eq. (42) doesnot depend on the excitation method. It
issdf-consistent. Since the soliton adwaysmovewith
veocity lessthanthat of longitudind soundinthechain,
thenthey do not emit phonons; i.e., their kinetic energy
isnot transformed into thermal energy. Thisisanim-
portant reason for the high stability of the new soliton.
Inadditiontheenergy of thenew soliton stateisbelow
the bottom of the bare exciton bands, the energy gap

being 4u2J/3 for small velocity of propagation. Hence

thereisan energy penalty associated with the destruc-
tionwith transformationfromthenew soliton satetoa
bareexciton sate, i ., thedestruction of thenew soliton
staterequiressimultaneousremoval of thelatticedis-
tortion. Weknow in general that the transition prob-
ability to alattice statewithout distortionisvery small,
ingenerd, being negligiblefor along chain. Consider-
ingthisitisreasonableto assumethat thenew solitonis
stable enough to propagatethrough thelength of atypi-
ca proteinstructure.

Obviously, E,,inEq.(47) islarger than that of the

Davydov soliton. Thelatter is E,, =—x;'/3w?. They
havethefollowing relation:
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We can estimatethat the binding energy of the new
solitonisabout several decadeslarger thanthat of the
Davydov soliton. Thisisavery interestingresult. Itis
hel pful to enhancethermal stability of the new soliton.
Obvioudy, theincrease of the binding energy of thenew
soliton comesfrom itstwo-quantanatureand theadded
interaction. Y, 7, (U1 —U,)(B..4B, +B;B,,,), inthe
Hamiltonian of the systems, Eq.(32). However, wesee
from Eq.(48) that theformer playsthemainroleinthe
increase of the binding energy and the enhancement of
therma stability for thenew solitonrelaivetothelatter
duetoy, <y,. Theincrease of the binding energy re-
sultsin significant changes of properties of the new
soliton, which arediscussed asfollows.

In comparing variouscorrelationsto thismodd, it
ishelpful to consider them asafunction of acomposite
coupling parameter like that of Young et al.!**! and
Scott!?32 that can be written as
4ma, = (3, + %) 2w ey, (49)
where o, = (w / M)*?isthe band edge for acoustic
phonons (Debyefrequency). If 4o, <<1,itissaidto
beweak. Using widely accepted valuesfor the physi-
cal parametersfor the alphahelix protein molecule®
32,112-120] '

J=155x102J. w=(13-19.5) N/m.

M =(117-1.91) x 10 kg ¥, =62x 10> N.
x,=(10-18) x 10" N. r =45x 10" m. (50)
we can estimate that the coupled constant liesin the
region of 4mo,, = 0.11 - 0.273, but 4no, = 0.036 -
0.045 for the Davydov model, which is a weakly
coupled theory, but we can say that Pang’s model is
not aweakly coupled theory. Using againthe notation
of Venzel and Fischer™4, Nagle**3, and Wagner and
Kongeter!*3, it is convenient to define another com-
posite parameter®12

y=J3/2pw, (51

In terms of the two composite parameters, 4o,
andy, thebinding energy of the new solitonin Pang’s
model can bewritten by
E,./J=8(4na,/y)?/3,M_ =2m_[1+ 32(4na,)? /3]

From the above parameter valuesin Eq.(50), we
findy=0.08. Utilizingthisvaue, theE, ./ Jversus4na.

> Review

relationsin Eq.(51) are plotted in Figure 2. However,
E.,/J= (4na,/y)?/ 3for the Davydov model (here

My =m, | 1+2(47ep/7)’ 3] ara, = 22 /20,
thenthe E,, / Jversus4no relationisalso plottedin
Figure 2. Fromthisfigurewe seethat thedifference of
soliton binding energiesbetween two model shecomes
larger withincreasing 4.

2

BT

0.2 new model

Davydoviodel

ool 001 o:1
Are

Figure2: Comparison of E,_/J versus4ma,, r elation between
Pang’s model and Davydov’s model.

0.002

Ontheother hand, the nonlinear interaction energy
forming thenew silitonin Pang’s model is G, = 8(y,, +
x,)° 1 (L-s)w=3.8x 10 J, anditislarger thanthe
dispersionenergy, J=1.55x 102 J,i.e., thenonlinear
interaction isso largethan thelatter in Pang’s model,
thusit can actually cancel or suppressthe dispersion
effect inthe dynamic equation,thusthenew solitonis
stableinthis case according the soliton theory!0.26149,
However,thenonlinear interaction energy inthe Davydov
model isonly G, =4,/ (1-s)w=1.8x10?*'J,and
itisabout threeto four timessmaller than G,,. There-
fore, the stability of the Davydov solitonisweaker than
that of thenew soliton.

Moreover, thebinding energy of thenew solitonin
Pang’s model is E = (4.16-4.3) x 10! Jin Eq.(47),
whichissomewhat larger thanthetherma perturbation
energy, K, T=4.13x 10" J, at 300K and about four
timeslarger thanthe Debyeenergy, kO = 0, =1.2 x
107" J(there o, isthe Debyefrequency). Thisshows
that transition of the new soliton to adel ocalized Sate
can be suppressed by the large energy difference be-
tweentheinitia (solitonic) stateand final (delocalized)
gate, whichisvery difficult to compensatefor theexci-
tonwith theenergy of the absorbed phonon. Thus, the
new soliton isrobust against quantum fluctuationsand
thermal perturbation, thereforeit hasalargelifetimeand
good thermal stability intheregion of biological tem-
perature. In practice, according to Schweitzer et al.’s
studies, i.e., thelifetime of the soliton increaseﬁasup
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and T, = vy, / Kgm increase at a given temperar
ture!®l, then we could roughly draw an inferencethat
thelifetimeof thenew solitonwill increase considerably
as compared with that of the Davydov soliton dueto
theincrease of p and T, becausethelatter are about
threetimeslarger than those of the Davydov model.
However, the binding energy of the Davydov soliton

Ego =%} /3w*J =0.188x10"J ,anditisabout 23times

smaller than that of the new soliton, about 22 times
smallerthan KT, and about 6timessmaller thanK O,
respectively. Therefore, the Davydov solitoniseasly
destructed by thethermal perturbation energy and quan-
tum trangition effects. Thuswecan naturdly obtain that
the Davdov soliton hasonly asmall lifetime,anditis
unstableat the biologica temperature 300K. Thiscon-
clusonisconsstent at aquaitativeleve withtheresult
sof Wang et al .[¢3¢4 and Cottingham et al .[%!,

One can sum up the differences between Pang’s
model and the Davydov’s model, Egs.(1)-(4), as fol-
lows. Firstly the parameter ) isincreased (u AT

[1+ 2(%) + (%)2] ). Secondly the nonlinear coupling
1 1

energy becomes G =2G,, >G,, resulting from thetwo-
guantanatureand the enhancement of the couplingthe
coefficient (y,+ ). Infact, the nonlinear interaction,
G, isincreased by about afactor of 3 over that of the
Davydov soliton andislarger than the dispersion en-
ergy Jintheequation of motion. A strai ghtforward con-
sequence of these effectsisthat the binding energy of
new soltion or, in other words, the energy gap between
the solitonic and excitonic statesare grestly increased
or BEp=-4£1/3=-G/12J=8F,,. For a-helical
protein mol eculeswe can cal cul ate the val ues of the
main parametersinthismodel by above parameter val -
uesligedin Eq.(50). Thesevduesand thecorresponding
vauesinthe Davydov mode aresmultaneoudy listed
inTABLE 1. From TABLE 1 we can seeclearly that
Pang’s model produces considerable changes in the
properties of the new soliton, for example, largein-
crease of thenonlinear interaction, binding energy and
amplitude of the soliton, and decrease of itswidth as
compared to those of the Davydov soliton. Thisshows
that the new soliton in Pang’s model is more localized
and morerobust against quantum and thermal fluctua
tionsand hasenhanced stability!®21212 whichimplies

anincreaseinlifetimefor thenew soliton. From Eq.(38)
weasofindthat the effect of thetwo-quantanatureis
larger than that of the added interaction. We can there-
forerefer to the new soliton as quasi-coherent.

TABLE 1: Comparison of parameter sused in the Davydov
model and Pang’s model

. widthof Binding
Parameters> Amplitude soliton ene;gy
1! 21, Of soliton 0
Models\ C1079) 7 (xl’gﬁom) soliton Es
(x107J)
Pang’s Model 5.94 3.8 1.72 4.95 -7.8
Davydov model 1.90 1.18 0.974 14.88 -0.188

Thisfeatureof the Davydov soliton can bejustified
by experiments. Lomdahl et al®" gave the results of
computer smulationfor Egs.(7)-(8), whichareshown
in Figure 3, which was obtained by soliton detectort®Y.
Theresultsare presented with certain diagnostics: One
isof “waveform” graphs: that is, plots of |¢ [?and the
discretegradient B ,, — 3, , asafunctionof natagiven
timet. Also used are ‘soliton detector’ plots: on the (t,
n)-plane, amark was put at thosetimesand positions
where both | [ exceeded acertain level and 8 ,, —
B,,, isnegative. Thetempora extent of suchamarked
region showsthetrgectory of asolution. In Figure 3
we see how severa solitons are nucleated from ran-
dominitia conditionsand how they moveaongthe
chain. A correlation of the maximumin |o [ and the
minimumin B . —B,  issmultanously occurred, in
accordancewiththe characterigticsof asolution, namey
Egs. (11) and (12).

100,

1200
Figure 3: Theformation of Davydov soliton from initial
conditions consisting of one quantum of amide-l energy
distributed randomly along themolecular chains.

Davydov®*Z also treated thissituation. Hisanaly-
siswasbased ontheHamiltonianin Eq.(1) with wave
functionin Eq.(2). After anumber of approximations
he obtained an NL SE, but now with atemperature-
dependent coefficient for the nonlinear term. Thiscoef-
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ficient goesto zero with increasing temperature and
vanishesat TH~400K indicating that soliton solutions
should bestablefor lower temperatures. Thisresultis
indirect contradiction with Lomdahl et a’s computer
simulations of Eq.(13) at finitetemperaturesd®. The
result of thesesmulationsisasfollows.
Todescribetheinteraction of the sysemwith ather-
mal reservoir at temperature T, Lomdahl and K erri®!
added adamping forceand noiseforce.
F,=—mI'B_+n (1) (52a)
to Eq,(8) for the molecular displacements. The corre-
lation functionfor therandomnoisewas(n (tn (1))
=2mI'k, To(t - t") (k, isBoltzmann’s constant and
I'is a phenomenological damping constant). Thisex-
tension converts Eq.(8) to Langevin equations. The
effect of theabovetwo termsisto bringthesystemto
thermd equilibrium; it wasverified numericaly that over
aufficiently long timeintervalsthemean kinetic energy
sisfied

<Z§mﬂ§(t)>=§NkBT

n

(52b)

where <...> denotes time average. Equations (7) —
(8)with thedamping forceand noiseforceincluded ill
imply the conservation of thenormin Eq.(6).

With the samediagnosticsasin Figure 3, we show
theresult of asmulation a T=300K in Figure4, which
was obtai ned by soliton detector(®Y. Theinitial condi-
tionswere constructed to mimic what might happen
duringATPhydrolyss, A Davydov soliton (cf. Egs.(11)
and (12)) has somehow been nucleated and now
evolvesunder theinfluence of therandomforces. The
solitonisseento disintegratein atime corresponding
to about 3 picoseconds. Thefilamentary black regions
inthispictureare seento have acertain slope, which
correspondsto the sound velocity intheunitsusedin
thecalculation.

Figure4: Thesimulation of motion of Davydov soliton at
T=300K, thesoliton disappear sin afew picosecondsafter its
formation.

> Review

Thecaculationwith Egs.(7)-(8) and (52a) isacom-
bination of theabove classi cal fluctuation -dissipation
relationin Eq.(52b) with quantum-mechanicd equations
(7)-(8). Thejustificationfor thisisthat for the param-
etersrelevant for a-hdix, thehighest acoustic frequency
no_ isabout 100K. Sincethe equationsare solved
near 300K, the occupation numbers of all phonon
modes are rather accurately given by the classical
Boltzmann distribution and under those circumstances
inEq. (52b) isvalid. At lower temperaturesthan say
TH~200K, the above approach would not be valid.
Thecaculaionwith Egs.(7)-(8) and Eq.(524) iswithin
the canonical ensemble, wherethetemperatureiscon-
stant, but the energy allowed to vary. To check thecon-
sstency of theresult, caculationswerea sodoneinthe
conventiona microcanonica ensemble. Thesystemwas
prepared with the use of Eq.(52a) at T=300K, it was
then alowed to evolve only under theinfluence of the
deterministic equations(7)-(8). Theresult of thesesmu-
lationsareessentialy the sameaspresented above. The
soliton seemsto disgppear in afew picoseconds. Simi-
lar resultswere al so obtained by Lawrenceet al 1.

Theseresult can beinterpreted asshoeing that the
wavefunction used by Davydov in Eq.(5), isnot agood
approximation for description of soliton-like objectsat
biologica temperatures. Theassumptionthat the state
vector is decomposableinto apure phonon part and
pureexciton part ssemsbroken. Thewavefunctionthat
thetwo componentsremaindigtinct a al timesneglects
the phase- mixing characteristic of theevolution of the
coupled quantum-mechanica system. Thisdeficiency
wasa so criticized on moregenera groundsby Brown
et al B4, Sincetheseresults are somewhat negative,
itisin order to state what cannot be concluded from
this. Theability of theHamiltonianin Eq. (1) to support
soliton-likeobjectsat finitetemperaturesistill open. It
isaso not poss blebased on thes mulationsto say what
thelower temperaturefor soliton formationwould be.

Ontheother hand, in order toinvestigate theinflu-
encesof quantumandthemd efectsonsalitonstate, which
areexpected to causethesolitonto decay into delocdized
dates, wepostul atethat themodel Hamiltonian andthe
wavefunctionin Pang’s model together give a complete
andredigtic pictureof theinteraction propertiesand a-
lowed states of the protein molecules. Theadditiond in-
teractiontermintheHamiltonian givesbetter symmetry of
interactions Thenew wavefunctionisareasonablechoice
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for the protein moleculesbecauseit not only can exhibit
the coherent features of collective excitations arising
from thenonlinear interaction between theexcitonsand
phonons, but a so retain the conservation of number of
particlesand fulfill thefact that theenergy rel eased by
theATPhydrolysiscan only excitetwo quanta. In such
acase, using astandard cal cul ating method(6566.112-115
and widely accepted parameterswe can calculate the
region encompassed of theexcitation or thelinear ex-
tent of the new soliton, AX = 2nr,/ p, to be greater
than the lattice constant ri.e., AX >r_ asshownin
TABLE 1. Conversely we can explicitly calculatethe
amplitude squared of the new solitonusi ng Eq.(42) in

itsrest frameasl #(X) = > o sechz(2

0

probability to find the new soliton outside arange of
widthr,isabout 0.10. Thisnumber can be compatible
with the conti nuous approximation sincethe quasi-co-
herent soliton can spread over more than onelattice
spacing inthe systemin such acase. Thisprovesthat
assuming of the continuousapproximation usedinthe
cdculationisgtill quaitatively valid becausethe soliton
widthsislargethantheorder of thelattice spacing, then
the soliton stability isimproved. Thereforewe should
believethat the above ca cul ated resultsobtained from
Pang’s model is correct.

Thelifetimeof carrier (soliton) at physilogical tem-
perature300K

5.1, Partially diagonalized form of the model
Hamiltonian

Thetherma stability and lifetime of the soliton at
300K inthe protein moleculesisan centreand crucial
probleminthe processof bioenergy transport because
the soliton possess certain biological meaningsand can
play animportant roleinthebiological process, only if
it hasenough long lifetimes. In other word, the size of
lifetimeof thesoliton isoften used tojudge directly the
success and validity of the above theories of energy
transport containing Pang theory. Therefore, itisvery
necessary to calculate carefully thelifetime of the soli-
tonsin different models.

| now calculatefirst thelifetimeof thenew soliton
transporting the energy in Pang’s model. Thus we in-
troducethefollowing standard transformati on*12129;

I 12
T |

™ @, |

H,,:T_
n i on
g | 2N

ign, '.

r;rfq +a, ]

+

ignr, {,_ﬂ_q _ aq }

Mhe, }
e

N (53)

-

2 Gy lod
Wherej = /1, @, = 2(w/M)* S|n(7) , thusEQ.(32)
becomes

H =Z[80
+ 1 +
%hwq(aqaq+2)+\/_2[gl(q)8 B, +

~J(B!B,,, +B*,B,)|+

n=n+l

(54
9.(a)(B}B,,, + B/B,,,)](a, +a’,)e""
where
1/2
6.(a) = 2x1i[2M o, ] Sinroa;
1/2
gz(q)=xz[2Mhmq] G >

We now diagonalize partialy themodel Hamilto-
nianin order to calculatethelifetimeof thesolitonin
EQq.(43) using the quantum perturbati on method®¢,
Sinceoneisinterested ininvestigating the casewhere
thereisinitialy asolitonmovingwithavelocity v onthe
chains, itisconvenlent to do theanalysisin aframe of
referencewherethesolitonisat rest. We should then
congder theHamiltonianinthisrest frameof thesoliton,
whichis g = H-vP, where Pisthetotal momentum,

andP= ZhQ(a;aq -B;B
q

Also, inorder to havesmpleandyticd expressonswe
maketheusua continuum gpproximation. Thisgives

ignro B+

q),whereB \/—Ze

~ oL op* 0
H=[ c|x2{(.g0 —20)¢* (x)<p(x)+Jr§aia—‘p

inv( op* + oy 00 ~ .
z[aX(P(X)—(P () ox H‘qu:h(mq qv)aga, + (56)

%Z 2[911(q)+Zglz(q)](atq+aq)joL dxe€*o* (X)p (X)

where ¢(x) represents now the field operator corre-
spondingto B, inthecontinuum limit (whereasbeforeit
only indicated anumerical value). Here L=Nr, — =
<kr,<m, and o H ~ (W/M)*r|q|, x = nr,. Sincethe
soliton excitation isconnected with the deformation of
intermolecular spacing, it isnecessary to passin Eq.(56)
to new phononstaking this deformationinto account.
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Such atransformation can berealized by meansof the
following transformation of phonon operatorg®>11>116l;

which describe phononsrel aiveto achainwith apar-
ticular deformation, where bq| 5)ph =0, bq (by)isthe
annihilation (creation) operator of new phonon.. Then
theHamiltonian [ isnow

b, =a

+ +
q p bq_aq_

_— o
H= jo 2dx@(X)[g, — 23 + V (X) - IrZ ——

.. 0
o + |h&]<p(x)+

1 .
> @y —aqv)[bib, +— (o bf +abi)]+ W+
ql q q-q \/N q-q q-q (58)
WZ 2[9,(a) + 29, (@)1 (b, + bq)IOL dxeo* (X)p(x)
where
1
=th(wq —-av)la, [
q
1 . .
V() = 2100 + 29, ()] (@, +0g)e” (59)
q

To describethe deformation corresponding to asoliton

in the subspace where there is j’: dxe* (X)e (X) = 1.

From theaboveformulaewe can obtain

V(X) =-2Jp? sech¥(pu x /1)) (60)
Inorder to partidly diagondizetheHamiltonianin

Eq.(58) weintroducethefollowing canonicd transfor-

mati onl65.66.112-115]

o)=Y ACi(x), @' (x) = X C{(XA]

J ]

where

(61)

[Ci9C; (9dx =5, 3" C] (x')C;(x) = 8(x— X)),
i

[dx|c;(0 =1 (62)

Theoperators A* and A; arethecreation operatorsfor
the bound states C (x) and del ocalized state C, (), re-
spectively. Thusthe obtained partially diagonalized
Hamiltonianisasfollows

H=W+EAA, + T EAA, +X (0, —qu)bib, +
k q
1

IN

L S Fk Kb, +b)ALA, -

kk'q

3 (o, —qu)(blo, +alb,)(1-ATA) +
q

(63)

L S Ek.a)b?, +b,)ATA, —AIA)

VNG

and

C.(x)= (;‘T")“2 sech(p, x /1) expliixv/ 2Jr2],
0

h°V 2
with Es = {GO_ZJ_TI_OZ_HPJ] (64a)
tanh(u x/r,)—ikr i
C (="t (b f’) © explikx+ %],
JYNro[p, —ikrg] 2Jr,
h°V?
E, = 2|:80—2\]— 212 —J(kro)z} (64b)

where

F(k.k',a) = 20, (a) + 29,(9)], dxe“C;.(x)C, (x)

ipRdro
[t +i(k +a)ro][p, —ikrg] (65)

~ 2(g,(q) + 292(q)]{1—

~ FIK, (k +0),0]8xx4q

F(k.a) = 2[g,(a) + 29, (@)] ], dxeC;. (X)C, (x)

2n iqr,
B, +ikrg]

= [9:(a)+29,(9)]
Vo, {[

sech[m(k —q)ro/ 2m,]

(66)

where o, isdetermined by V (x) and the condition, ((oq
—vq) o, = ((oq +qV) a; , whichisrequired to get the
factor, (1-A?A,), inthe j in Eq.(63). Thuswefind

- i, +x2) [ M
wp, (1-5%)| 2o,

q

1/2
] (@, +qv)csch(rar,/2u,) and

W= % uﬁJ.

We now calculate the transition probability and
decay rate of the quasi-coherent soliton arising from
the perturbed potential by using thefirst-order quan-
tum perturbation theory devel oped by Cottingham, et
a®%l inwhichtheinfluencesof thethermal and quan-
tum effectson the properties of the soliton can betaken
into account s multaneoudy.

For the discussion of the decay rateand lifetime of
thenew soliton gtateitisvery convenlent todividej in
Eq.(63) intoH +V +V,, where
Ho=W+EAA +Y EAA +Y i(o,-vq)b b, +

k q

ﬁ;h(mq - vg)(a,by +a;bq)(l—A;AS) (67)
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and

—z|:(1<,|<+q,q)(btq +b)ALA,

W &

:%%F(k,q)(b‘_‘q +b)(ATA, —A*A ) 69)

where H, describestherel evant quasi-particleexcitar
tionsintheprotein. Thisisasolitontogether with phonons
relativeto thedistorted lattice. Theresulting delocal-
ized excitations belongsto an exciton-like band with
phononsrelativetoauniform|attice. Thebottom of the
band of thelatter isat theenergy 4Jp’ /3 relativetothe
soliton, inwhich thetopol ogical stability associated with
removingthelatticedistortionisincluded.

We now ca culatethe decay rate of the new soliton
along thefollowing linesby using Eq.(67) and V,in
Eq.(68) and quantum perturbation theory. Firstly, we
computeamoregenera formulafor thedecay rate of
the soliton containing n quantainthesysteminwhich
thethreeterms contained in Eq.(31) isreplaced by
(n+1) terms of the expression of a coherent state

1
xeXIO[Z ¢,(1)B; 110>, . Finaly wefind out thedecay

rate of thenew soliton with two-quanta. Insuch acase
H, is chosen such the ground state, [n> has energy

W-+nE. inthesubspace of excitation number equal to
nie. <NIXBB In>=<nl(AJA .+ A{A,)In>=n
1 b | i K .

Inthissubspacethe eigenstateshavethe smpleform

|n-m,k1k2...km,{nq} >
1 (d*)
_ n-mA+ A+ LAY 10 10 n-m
= (n_m)( s) kml >ex \/E >l (69)
where
dzp Mt _o_n-m1.
q~— Mq n \/N q~ “%q n \/ﬁ q

(m<n,nand mareall intgers) (70)
withd | 0 >n™ = 0. The corresponding energy of the

systemsis

E@

n-m;kq.. krnl {nq)

= (1= (M/n)*)W + (n—m)E~ +

> El +Y h(w, -va)n, ()
=1 q

E! istheenergy of abound state with onesoliton, E|,
istheenergy of the unbound (del ocalized) statewith

oneexciton. When m=0theexcitation stateisan-type
soliton plus phononsrel ativeto the chain with the de-
formation corresponding to the n-type soliton. For m=n
theexcited statesare del ocalized and the phonons are
relativeto achain without any deformation. Further-
moreexcept for small k, the del ocdized states approxi-
mateordinary excitons. Thusthe decay of thesolitonis
just atransition from theinitial state with the n-type
soliton plusthe new phonons:

[n>=— 1 H(b+)nq (A" 0>, IO> 2
\/ﬁ ( |)1/2 (7 )
with corresponding energy E { nq} = W+n

Bs+ 2.h(@, =V tothefinal statewith delocalized
excitonsand theorigina phonons.

(@)™
q \/E
with correspondingenergy E{n } =nFk + Zq: h(w, - va)

n, caused by the part, V., inthe perturbation interac-
tionV. Inthiscase, theinitid phonondistributionwill be
taken to beat therma equilibrium. The probability of
theabovetrangtionsin lowest order perturbation theory

isgivenby

|ak >=TI 0>, (A)" 0>,

(73)

\A/ 1 t f(t " (ph)
W:Fjodt _[Odt {;lzm <n|
exp IH;I ]Vzexp(_”;"t ]|ock'>.

(74)

<ak’ |exp(”_|;_;’t ]Vz exp[_”;]|ot j|n >}

Weshould ca culatethetransition probability of the
soliton resulting from the perturbed potentia (V. +V.),
at first-order perturbation theory. Following Cottingham
and Schweitzer®®, weegtimateonly thetrangtion from
the soliton stateto del ocali zed exciton states caused by
thepotentia V,,, which can satisfactorily betreated by
means of perturbation theory since the coefficient g
(k,q) defined by Eq.(66) isproportional to anintegral
over the product of thelocalized state and adel ocal -
ized state, and thereforeisof order 1/,/N. TheV, term
inthe Hamiltonian isan interaction between thedel o-
calized excitonsand the phonons. The main effect of
V, istomodify thespectrum of thedel ocalized excitatons
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intheweak coupling limit (Ju p/ K, T,<<1,thedefinition
of T, isgivenbelow). Asaresult thedel ocdized excitons
and phononswill havether energiesshiftedanddsohave
finitelifetimes. Theseeffectsareignoredin our cacula-
tionsincethey areonly of secondorderin V..

Through tedious cal culation we can finally obtain
the decay rate, whichisasfollowg12120

r,=lim—-=
t—>o dt

2 x?
- - k) +20g., (k) I?
nulth%hgl() 9,(K)|

(r,k)? sech?[r(k —k)ro/2nu,]

T B
{exp[—i(nJ(k’ro)z +n(n? —gn)ufat/h + 75
0O |

where
Ry =~z Dl i -expl-io, ~ k)il
oy P S0’ (o, —kv)] 76)

4
SO="1 Zkl exp[Bh(o, —kv)]—1
Thisisjust agenerdly analytical expressonfor the
decay rate of the soliton containing n quantaat any tem-
peraturewithinlowest order perturbation theory. Note
that in the case where aphonon with wavevector k in
Eq.(76) is absorbed, the delocalized excitation pro-
duced does not need to have wavevector equal to k.
Thewavevector hereisonly approximately conserved
by the sech?[n(k-k’)r,/ 2np,] term. Thisis, of course,
aconsequence of the breaking of thetrand ation sym-
metry by the deformation. Consequently, we do not
findtheusual energy conservation. ThetermsR (t) and
€ (t) occur becausethe phononsintheinitia and final
statesare defined rel ativeto different deformations.
We should point out that the approximations made
intheabovecdculaionarephyscaly justified because
thetransition and decay of the solitonismainly deter-
mined by the energy of thethermal phononsabsorbed.
Thusthephononswith largewavevectorswhich fulfill
wavevector conservation makeamaor contributionto
thetrangition matrix element, whilethe contributions of
the phononswith smal wavevector which do not fulfill
wavevector conservation arevery small, and can be
neglected.

From Egs.(75) and (76) we see that theT". and
R (1) and & (t) and p = nu, mentioned above are all
changed by increasing the number of quanta, n. There-
fore, the approximation methodsused to calculatel”,
and rel ated quantities (especially theintegra contained
inT" ) should bedifferent for different n.

We now calcul atethe explicit formulaof the de-
cay rate of the new soliton with two-quanta (n=2) by
using Egs.(75)-(76). In such acase we can compute
explicitly theexpressonsof thisintegral and R, (t) and
&,(t) containedin Eqs.(75)-(76) by meansof approxi-
mation. Asamatter of fact, in Eq.(76) at n=2 thefunc-
tionsR, (t) and & (t) can beexactly evaluated interms
of thedigammafunctionanditsderivative. Inthecase
when the soliton vel ocity approaches zero and the
phonon frequency o, isapproximated by /w/m [qlr,-
For t — oo (because we are interested in the long-
time steady behaviour) the asymptotic formsof R(t)
and ﬁz(t) argl112-120]

Rz(t)=—R0[|n(%(’)at)+1.578+%iu] (77)
&,(t) = —nR k;Tt/i (where coth%coat ~1) (78)
i.e, IT_ifosz(t)=_ﬂt » N=7R/Br=nRKT/h (79)
R, = At +X2)2 (M /W)1/2 _ 2J},lpl’0 ’
ThW nhv,,
where (80)

a

2
o, =2 Wyz 1 _pe /K,
T M

AtR <land T <T and R, T/T <1for theprotein
molecules, one can evaluate theintegral includingin
Eq.(75) by using the approximation. Theresultis

1 o ) , 4
EReJ'o dtexp{— i[23(k'r,)? +§Ju§ —he, Jt/h+

Rz(t)+é2<t)}z;;(2-4&»a)*R°r(1— Ry +

1[ =R 5.k’ (81)
npy21-(1-Ro)2[ 4 L] TRg _ )
O(k,k"Nnr)"] ll 2|: 2 +(1 RO)( - )i| ‘|

R,
2

a

4
where 8(k,k") = 2J(kr,)? +§u§J -he, ,®, =

o 8k, k!
@, =[(1-R,)tan (%}] (82)

The decay rate of the new solitionwith two-quanta, in
such an approximation, can be represented, from
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Egs.(75) and (81)1121201, by

W2 (1) [(krof|gl(k)+2gz(k)|2sech?[(urofzup)(k—k')]

oo dt p, (N [uy + (k'ro)?1[exp(Bre, ) —1]
1.4 (1+RQ)/2
2 2 ’ 2 2
(Tl +?[§Hp3+2(k ro)°J—ha,] ) . 1| R,x
2| 2

hz'qz+[g|,t;‘;\]+2(k'r0)2\]—hcok]2

Infact, Cottingham et al(®>% found out the decay
rateof Davydov’s solition using the quantum perturba-
tion method, whichisrepresented as

1 %2 (2r)’ h
r =P121(N) Z[ZM ]
Hp Kk’ oy

D

D

(kro)?sin? (kr,) sech®[(mro/2u ) (k —k")] [wﬁ ]R"
[ng + (k'ro)*[exp(Broo, ) - 1] Mo ' (84)
n*ng
7S +[Ipd 13+ 3K 1y)* - hoo, |

where
no =7R°K ,T/h, Ry =%(%)“2, ®; =2u7[’(%)”2 (85)
Equation (84) can also befound out from EQ.(74) at
n=1.

Comparing Eq.(83) with Eq.(84) wefind that the
decay rate of the new solition with two-quantais con-
Sderably different from that in the Davydov modd not

only for the parameter’s values, but also the factors
contained in them. In EQ.(83) the factor,

{1-%[ R;“ +(1- RO)[(guﬁJ +2K'rg)%3 —hwk)/hn]] } s

added, whilein Eq.(84) thefactor, (;)—:)_Ro Mo replaces

1+Ro

theterm (2430,) - (n* +h—12[§u§J oK) I~ he, I2) 2 )
in EQ.(83) due to the two-quanta nature of the new
wavefunction andtheadditiond interactionterminthe
new Hamiltonian. In Eq. (83) the-, R jand T, are not
small, unlikeinthe Davydov modd. Using Eq.(50) and
TABLE 1 wefind out the values of n, R, and To at
T=300K inbothmodels, whicharelistedinTABLE 2.
From thistableweseethat then, R and T _inPang’s
model areabout 3timeslarger than the corresponding
vauesinthe Davydov modd dueto theincreasesof My
and of the nonlinear interaction coefficient Gp. Thusthe
approximations used in the Davydov model by

(2.43m, ) °

2

4 2 ’ 2
—nJ+2(K'r,)I-h
Sup ( 0) wk (83)

m

Cottingham, et.al'®>% can not be applied in our cal-
culation of lifetimeof thenew soliton, although weuti-
lized the same quantum-perturbation scheme. Hence
we can audacioudly suppose that thelifetimes of the
quasi-coherent solitonwill greatly change.

TABLE 2: Comparison of char acteristic parametersin the
Davydov modd and in our new model

R, To(K)  m(x10%/9)
New model 0.529 294 6.527
Davydov model 0.16 95 2.096

Theabove expression, Eq.(83), alowsusto com-
putenumericaly thedecay rate, I',, and thelifetimes of
the new soliton, T = 1T, for values of the physical
parameters appropriateto a-hdica protein molecules.
Usingtheparameter vauesgivenin Eq.(50), TABLES
1and 2, v=0.2v, and assuming thewavevectorsarein
the Brillouin zone we obtain values of I', between
1.54x10%°S1-1.89x10%°S?, This corresponds to the
soliton lifetimest, of between 0.53x10°S0.65x10%°S
at T=300K, or t/t,=510-630, where t=r /v, is the
timefor travelling onelattice spacing at the speed of
sound, equal to (M/w)¥?=0.96x10*%S. Inthisamount
of timethenew soliton, travelling at two tenths of the
speed of sound inthe chain, wouldtravel several hun-
dredsof | attice spacings, that issevera hundred times
more than the Davydov soliton for which t/t <10 at
300K 65681,

Cottingham et al.[65%1 obtained from Eq.(83) that
thelifetimeof Davydov solitonisonly 102 — 107" Sec.,
i.e, Davydov solitontraveling a ahdf of the sound speed
cancover lessthan 10| atticespacinginitslifetime. This
showsthat thelifetimeof Davydov solitonistoosmall
(about) to beuseful in biologica processes. Thisshows
clearly that the Davydov solutionisnot atruewavefunc-
tion of thesystems. However, thelifetimeissufficiently
long for thenew soliton excitationto beacarrier of en-
ergy. Therefore the quasi-coherent solitonisaviable
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mechanism for the energy transport at biological tem-
peratureintheaboverangeof parameters.

Wearevery interested intherel ation between the
lifetime of the quasi-coherent soliton and temperature.
Figure 5 showstherelativelifetimes t/t of the new
soliton versus temperature T for aset of widely ac-
cepted parameter values as shown in Eq.(50). Since
oneassumesthat v<v,, thesoliton will not travel the
length of thechainunlesst/t islargecompared with L/
r,» Where L=Nr, isthetypical length of the protein mo-
lecular chains. Hencefor L/r H~100, t/t,>500isarea-
sonablecriterionfor the solitonto beapossiblemecha
nism of the energy transport in protein molecules. The
lifetime of the quasi-coherent soliton shownin Figure5
decreasesrapidly astemperatureincreases, but below
T=310K itisstill largeenough to fulfill thecriterion.
Thusthe new soliton can play animportant rolesin bio-
logical processed#12,

1600 \

14001

o 1200
%
S
'™

1000~
8oo-

.
o \

400+

—]

2!:0 31;[) 31I0 32IO .'!éﬁ 340 350

T (K)
Figure5: Soliton lifetime T relatively tot asafunction of
thetemperatureT for parametersappropriatetothea-helical
moleculesin thenew model in Eq.(31)

' ' 1
250 260 270 280

For comparison weplotted simultaneoudly log (t
I 1,) versusthetemperaturerel ationsfor the Davydov
soliton and the new soliton with aquasi-coherent two-
gquantastatein Figure 6. Thetemperature-dependence
of log (t/ 1,) of the Davydov solitonisobtained from
Eq. (84). Wefind that thedifferencesof valuesof t/
1, between thetwo modelsare very large. Thevalue
of /=, of the Davydov solitonreally istoo small, and
it canonly travel fewer thanten lattice spacingsin half
the speed of sound intheprotein chain®l, Henceitis
truethat the Davydov solitonisineffectivefor biologi-
cal processes/65591,

Log(t/t,)
(&

260 270 280 290 300

T
Figure6: Log(t/t,) versusthetemperaturefor thesoliton.
Thesolid lineistheresult of thenew model, thedashed line
istheresult of the Davydov model.

310 320 330

We can al so study the dependency of the soliton
lifetime on the other parameters by using Eq.(83).
We chose parameter val ues near the above accepted
valuesshownin Eq. (50). In Pang’s model we know
from Eq.(83) that the lifetime of the soliton depends
mainly on thefollowing parameters: coupling con-
stants (x,+x,), M, w, J, phonon energy 7o,, aswell
ason the composite parameters u(u:up), R,and T/
T,- At agiven temperature, t/t,increases as p and
T, increase. The dependences of thelifetimet/t,at
300K on (y,*y,) and p are shownin Figures 7 and
8, respectively*'>120 Sjnce pis inversely propor-
tional to the size of the soliton, and determining the
binding energy in Pang’s model, therefore it is an
important quantity. Weregard it asan independent
variable. In such acasethe other parametersin Eq.
(83) adopt the valuesin Eq. (50). It is clear from
Figures 7 and 8 that the lifetime of the soliton, 1/t
increasesrapidly withincreasing pand (y,+y,). Fur-
thermore, when p > 5.8 and (y,+y,)>7.5<10™"'N,
which are values appropriate to Pang’s model, we
find t/1,>500. For comparison we show in Figure 8
the corresponding result obtained using Eq.(83).

For theorigina Davydov model asadashed line
inFigure 8. Herewe seethat theincreasein lifetime
of the Davydov soliton with increasing pisquiteslow
and the difference between the two model sincreases
rapidly with increasing p. The same holdsfor the
dependency onthe parameter (y,+y,) but the result
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for the Davydov soliton isnot drawn in Figure 7.
Theseresults show again that the new solitonin Pang’s
moded isalikely candidatefor themechanism of energy
trangport inthe protein molecules. Inadditionit shows
that abasic mechanismfor increasing thelifetimeof the
solitonin protein mol ecul esisto enhancethe strength
of theexciton-phonon interaction.

1000

|00

T.: Ty

|
7nni

/
200 //

A k (){_1“" %z
Figure7: v/t versus(y,+x,) relationin Eq.(83)
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Figure8: t/t,versusprelation. The solid and dashed lines
areresultsof Eq.(83) and Eq.(84), respectively

550

500+

= 450

4001

350,

L B I B A
N (% 10%%sec™ 1)
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In Figure 9 weplot t/t versusm. Sincen des-
ignates theinfluence of thetherma phononsonthe
soliton, itisalso animportant quantity. Thus, weregard
it hereas an independent variable. The other param-
etersin Eq.(83) takethevaluesin Eq.(50). Fromthis
figureweseethat v/t increaseswithincreasingm. There-
fore, toenhancen canalsoincreasethevaueof t/t,

CONCLUSION

Asitisknown, theenergy transport isabasi c prob-
leminlifescienceand related to many biological pro-
cesses. Thereforeit isvery necessary to establish the
mechani sm of energy transport and itstheory, where
theenergy isreleased by ATPhydrolysis. Scientistses-
tablished different theoriesof energy transport based
ondifferent propertiesof structure of a—helical protein
molecules, for example, Davydov’s, Takeno’s,
Yomosa’s, Brown et al’s, Schweitzer’s, Cruzeiro-
Hansson’s, Forner‘s and Pang’s models, and so on.
Wefirst review past researcheson different modelsor
theories. Subsequently we studied and reviewed sys-
tematicaly the properties, therma stability andlifetimes
at physiologica temperature 300K for thecarriers(soli-
tons) transporting the energy in Pang’s and Davydov’s
theories. From these investigationswe know that the
carrier (soliton) of energy transport in Pang’s model
hasahigher binding energy, higher thermd stability and
larger lifetimeat 300K relativeto those of Davydov’s
model, inwhichthelifetimeof the new soliton at 300K
isenough large and belongsto the order of 10-° sec-
ond ort/t,>700. Thus we can conclude that the new
solitonin Pang’s model is exactly the carrier of energy
trangport, Pang’s theory is appropriate to a—helical pro-
teilnmolecules.

Why then doesthe quasi-coherent soliton havesuch
highlifetime? From Egs. (47) and TABLES 1and 2we
seethat the binding energy and localization of the new
solitonincreasedueto theincrease of thenonlinesr in-
teractionsof exciton-phononinteraction, i.e., thenew
wavefunctionwith two-quantastateand the new Hamil-
tonianwith the added interaction produce considerable
changestothepropertiesof thesoliton. Infact, thenon-
linear interaction energy in Pang’s model is
G p=8(X1+X2)2 /(1-)w=3.8x102]J, and it islarger than
the linear dispersion energy, J=1.55x102], i.e., the
nonlinear interactionissolargethat it canredly cancel
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or suppressthelinear disperson effectsin thedynamic
equation inthismode . Thuswe can concludethat the
new soliton is stable and localized according to the
soliton theory!?149, However, thenonlinear interaction

energy in the Davydov model is G, = 4y 2/(1-

S)wx~1.18x1021Jandit is 3-4 timessmaller than Gp.
Thenthegtability of the Davydov solitonisweak com-
pared to that of the new soliton.Moreover, thebinding

energy of thenew solitonin Pang’s model is B, =4p2 J

3=7.8x10JinEQ.(47), which isabout 2 timeslarger
thanthethermal energy, K, T =4.14 x 10*J, at 300K,
and about 6 timeslarger than the Debye energy, K,©
= poy, = 1.2 x 10%] (here o, is Debye frequency),
anditisapproximately equal tog /4=8.2x10%],i.e,, it
hassameorder of magnitude of theenergy of theamide-
| vibrational quantum, .. Thisshowsthat thenew soliton
is robust due to the large energy gap between the
solitonic ground stateand thedel ocdlized Sate. In con-
trast the binding energy of the Davydov solitonisonly

4
0= 3oy =0.188 x 10 Jwhichisabout 41 times

smaller than that of the new soliton, about 23 times
smaller than K T and about 6 timessmaller than K O,
respectively. Therefore, it iseasily destroyed by ther-
mal and quantum effects. Hencethe Davydov soliton
hasvery smal lifetime (about 10-2~10%s), anditis
unstable at 300K %586, Thusthe new soliton can pro-
videarealistic mechanismfor theenergy transportin
protein molecules.

Thetwo-quantanaturefor the quas-coherent soliton
in Pang’s model plays a more important role in the in-
creaseof lifetimethanthat of the added interaction be-
causeof thefollowingfacts.

(1) Thechangesof the nonlinear interaction energy

E

GP=ZGDl1+ 2(%)*{%) } and p, produced by the

added interaction in the Hamiltonian in Pang’s model
are AG = G(3,#20)-G(x,=0) = 1.08 G, < G(x,=0)

> Review

1.08p <p(x,=0) = 2, respectively, where AG
=2G, and Au=2p_ are just the results caused by
thetwo-quantafeaturein Pang’s model. This means
that the effects of theadded interactionon G . and 0
are smaller those of the two-quanta nature. Since
the two parameters G, and ., are responsible for
thelifetime of the soliton, then we can concludethat
theeffect of theformer on thelifetimesissmaller than
thelatter.

(2) Thecontribution of theadded interactiontothe
binding energy of the new soliton is about

4
Ete = EBD[“(&H = 2.6E5, , which issmaller than

1

that of thetwo-quantanaturewhichisE;  =8E_ . Put-
tingthemtogether in Eq.(47) weseethat E_~41E_ .

(3) Fromthe (y,+y,,)-dependence of t/t in Fig-
ure 7 wefind that 1/t ~100 at 5, =0 whichis about
20 timeslarger than that of the Davydov soliton un-
der the same conditions. Thisshowsclearly that the
major effect intheincrease of thelifetimeisdueto
the modified wave function. Therefore, it isvery
reasonableto refer to the new soliton asthe quasi-
coherent soliton.

The above calculationis helpful to resolvethe
controversiesonthelifetime of the Davydov soliton,
which istoo small in the region of biological tem-
perature. In fact, modifying the wave function and
the Hamiltonian of the Davydov’s model, we find that
the stability and lifetime of the soliton at 300K in
Pang’s model increase considerably relative to those
in Davydov’s model, which are shown in TABLE 3.
TABLE 3 showsthat Pang’s model repulse and refuse
the shortcomings of the Davydov model, the new
soliton isthermal stable at 300K and has so enough
long lifetime, thusit can playsimportant rolein bio-
logical processes, it ispossibly an actually carrier of
energy transport in the protein molecules. Thusthe
guasi-coherent solitonisaviable mechanismfor the
energy transport, Pang’s model is appropriate to o—

= 2G, and Ap=p/(x,20)-u.(x,=0) = helica proteinmolecules.
TABLE 3: Comparison of featur esof the solitonsbetween our model and Davydov model
Nonlinear Width Binding Lifetimeat Critical Number of amino
M odel interaction Amplitude 1000y, energy 300K temperature  acid traveled by
G(1021) (10%) © (K) soliton in lifetime
Our mode 38 1.72 4.95 -7.8 10°-10™"° 320 Several handreds
Davydov model 1.18 0.974 1488 -0.188  10'%10% <200 Less than 10
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