

### Journal of Current Chemical & Pharmaceutical Sciences

J. Curr. Chem. Pharm. Sc.: 2(3), 2012, 157-160 ISSN 2277-2871

## SYNTHESIS OF NEW 1-HEPTA-O-BENZOYL-β-D-LACTOSYL-3-ARYL THIOCARBAMIDES

### POONAM T. AGRAWAL\* and SHIRISH P. DESHMUKHa

Department of Chemistry, Shri. R.L.T. College of Science, AKOLA – 444001 (M.S.) INDIA <sup>a</sup>P.G. Department of Chemistry, Shri Shivaji College, AKOLA – 444001 (M.S.) INDIA

(Received: 17.04.2012; Accepted: 28.04.2012)

#### **ABSTRACT**

A series of new 1-hepta-O-benzoyl- $\beta$ -D-lactosyl-3-aryl thiocarbamides have been synthesized by the interaction of hepta-O-benzoyl- $\beta$ -D-lactosyl isothiocyanate with aryl amines. The identities of these new N-lactosides have been established on the basis of usual chemical transformations and IR, NMR and Mass spectral studies.

**Key words**: 1-hepta-O-benzoyl-β-D-lactosyl-3-aryl thiocarbamides, Aryl Amine, N-lactoside, IR, NMR, Mass.

#### INTRODUCTION

Thiocarbamides and their derivatives show strong antimicrobial activity and are also versatile reagent in organic synthesis<sup>1</sup>. Although they have been known from long ago to be biologically active<sup>2-4</sup>. Their varied biological features are still of great scientific interest. Some derivatives of these possess antituberculosis, anticancer, antitumor, antipyretic activities<sup>5,6</sup>.

In view of applications of thiocarbamides and its derivatives in medicinal chemistry and in many other ways, we herein report the synthesis of several 1-hepta-O-benzoyl- $\beta$ -D-lactosyl-3-aryl thiocarbamides (4a-g) by the condensation of hepta-O-benzoyl- $\beta$ -D-lactosyl isothiocyanate (2) with aryl amines (3a-g). The required lactosyl isothiocyanate was prepared by the reaction of hepta-O-benzoyl- $\alpha$ -D-lactosyl bromide (1) with lead thiocyanate<sup>7</sup> (Scheme 1).

$$OBz \qquad OBz \qquad OBz$$

Scheme 1

Available online at www.sadgurupublications.com

<sup>\*</sup>Author for correspondence; E-mail: poonamagrawal2575@rediffmail.com

Scheme 2

Where,

R = (a) phenyl (b) p-tolyl (c) m-tolyl (d) o-tolyl (e) p-Cl-phenyl (f) m-Cl-phenyl (g) o-Cl-phenyl.

#### **EXPERIMENTAL**

IR spectra were recorded on Perkin-Elmer spectrum RXI FTIR spectrophotometer (4000-450 cm<sup>-1</sup>)<sup>8</sup>. 

<sup>1</sup>H NMR was recorded in CDCl<sub>3</sub> on Bruker DRX-300 spectrometer operating at 300 MHz<sup>9</sup>. The mass spectra were recorded on Jeol-SX-102 (FAB) instrument<sup>10</sup>. Specific rotations were measured on Equip-Tronics Digital Polarimeter at 28°C in CHCl<sub>3</sub><sup>11</sup>.

# Synthesis of 1-hepta-O-benzoyl- $\beta$ -D-lactosyl-3-aryl thiocarbamides (4 a-g) (Scheme 2) (Table 1)

A mixture of hepta-O-benzoyl- $\beta$ -D-lactosyl isothiocyanate (2) (0.005, 5.5 g in 35 mL) and (0.005 M, 0.46 g) of aryl amines (3a-g) in 30 mL of benzene was refluxed for 3 h while monitoring by TLC. After completion of the reaction, the solvent was triturated with petroleum ether (60-80°C) to afford a white solid (4 a-g). The products were purified from acetone- petroleum ether.

**4a.** m.p. 128-132°C; yield 76%,  $[α]^{28}_D$  +190° (c, 1.1 in CHCl<sub>3</sub>); IR (KBr): 3458 cm<sup>-1</sup> (NH), 3066 cm<sup>-1</sup> (Ar-H), 1729 cm<sup>-1</sup> (C=O), 1271 cm<sup>-1</sup> (C-N),1176 cm<sup>-1</sup> (C-O), 1096 cm<sup>-1</sup> (C=S), 1068,909 cm<sup>-1</sup> (characteristic of lactose), 708 cm<sup>-1</sup> (monosubtituted benzene); <sup>1</sup>H NMR (ppm) : δ 8.05-7.18 (40H, m, aromatic protons), 5.91-3.79 (16 H, m, 14 lactosyl protons, 2-NH protons); Mass (m/z): 1204 (M<sup>+</sup>), 1145 (M-CH<sub>3</sub>COOH), 1100 (M-CH<sub>3</sub>COOH CH<sub>2</sub>CO), 1052 (HBL<sup>+</sup>), 579 (TBG<sup>+</sup>), 391 (TBG<sup>+</sup> -C<sub>12</sub>H<sub>12</sub>O<sub>2</sub>), 335 (TBG-C<sub>14</sub>H<sub>12</sub>O<sub>4</sub>), 105 (C<sub>6</sub>H<sub>5</sub>CO<sup>+</sup>); Anal. Calcd. for C<sub>68</sub>H<sub>56</sub>O<sub>17</sub>N<sub>2</sub>S: C, 67.77; H, 4.65; N, 2.32; S, 2.65%; Found: C, 67.70; H, 4.59; N, 2.30; S, 2.60%.

**4b.** m.p. 130-135°C; yield 79%,  $[α]^{28}_D + 250^0$  (c, 1.11 in CHCl<sub>3</sub>); IR (KBr): 3446 cm<sup>-1</sup> (NH), 3068 cm<sup>-1</sup> (Ar-H), 1728 cm<sup>-1</sup> (C=O), 1271v (C-N), 1176 cm<sup>-1</sup> (C-O), 1097 cm<sup>-1</sup> (C=S), 1026, 909 cm<sup>-1</sup> (characteristic of lactose), 710 cm<sup>-1</sup> (monosubtituted benzene); <sup>1</sup>H NMR (ppm) : δ 8.04-7.17 (39H, m, aromatic protons), 5.92-3.79 (16H, m, 14 lactosyl protons, 2 NH protons), 2.28 (3H, s, -CH<sub>3</sub>); Mass (m/z): 1218 (M<sup>+</sup> + 1), 1159 (M-CH<sub>3</sub>COOH), 1052 (HBL<sup>+</sup>), 579 (TBG<sup>+</sup>), 391 (TBG<sup>+</sup>-C<sub>12</sub>H<sub>12</sub>O<sub>2</sub>), 335 (TBG-C<sub>14</sub>H<sub>12</sub>O<sub>4</sub>), 105 (C<sub>6</sub>H<sub>5</sub>CO<sup>+</sup>); Anal.calcd for C<sub>69</sub>H<sub>58</sub>O<sub>17</sub>N<sub>2</sub>S: C, 67.98; H, 4.76; N, 2.29; S, 2.56%; Found: C, 67.88; H, 4.69; N, 2.28; S, 2.56%.

**4e.** m.p. 145-150°C; yield 88%,  $[α]^{28}_D$  +170° (c, 1.11 in CHCl<sub>3</sub>); IR (KBr): 3444 cm<sup>-1</sup> (NH), 2949 cm<sup>-1</sup> (Ar-H), 1728 cm<sup>-1</sup> (C=O), 1272 cm<sup>-1</sup> (C-N), 1176 cm<sup>-1</sup> (C-O), 1097 cm<sup>-1</sup> (C=S), 1026, 907 cm<sup>-1</sup> (characteristic of lactose), 710 cm<sup>-1</sup> (monosubtituted benzene); <sup>1</sup>H NMR (ppm) : δ 8.05-7.18 (39H, m, aromatic protons), 5.93-3.77 (16H, m, 14 lactosyl protons, 2 NH protons); Mass (m/z) : 1238 (M<sup>+</sup>), 1178 (M-CH<sub>3</sub>COOH), 1052 (HBL<sup>+</sup>), 579 (TBG<sup>+</sup>), 391 (TBG<sup>+</sup> -C<sub>12</sub>H<sub>12</sub>O<sub>2</sub>), 335 (TBG-C<sub>14</sub>H<sub>12</sub>O<sub>4</sub>), 105 (C<sub>6</sub>H<sub>5</sub>CO<sup>+</sup>); Anal. calcd for C<sub>68</sub>H<sub>55</sub>O<sub>17</sub>N<sub>2</sub>SCl: C, 65.85; H, 4.43; N, 2.25; S, 2.58%; Found: C, 65.80; H, 4.40; N, 2.23; S, 2.54%.

Table 1: 1-hepta-O-benzoyl-β-D-lactosyl -3-aryl thiocarbamides (4 a-g)

Reactant: (a)1-hepta-O-benzoyl-β-D-lactosyl-isothiocyanate (0.005 M, 5.5 g) (2) (b) Aryl amines (3a-g)

| Product   | Melting point °C | % Yield | Analysis found (requires) |             | $- [\alpha]^{28}_{D} (c, 0.15)$ |
|-----------|------------------|---------|---------------------------|-------------|---------------------------------|
|           |                  |         | N (%)                     | S (%)       | - [a] D (c,0.13)                |
| 4a        | 128-132          | 76      | 2.30 (2.32)               | 2.60 (2.65) | +190°                           |
| <b>4b</b> | 130-135          | 79      | 2.28 (2.29)               | 2.56 (2.56) | $+250^{0}$                      |
| <b>4c</b> | 155-160          | 80      | 2.30 (2.29)               | 2.51 (2.56) | $+140^{0}$                      |
| 4d        | 145              | 76      | 2.27 (2.29)               | 2.53 (2.56) | $+180^{0}$                      |
| <b>4e</b> | 145-150          | 88      | 2.23 (2.25)               | 2.54 (2.58) | $+170^{0}$                      |
| 4f        | 130              | 87      | 2.21 (2.25)               | 2.59 (2.58) | $+140^{0}$                      |
| 4g        | 148              | 76      | 2.24 (2.25)               | 2.56 (2.58) | $+170^{0}$                      |

#### RESULTS AND DISCUSSION

1-hepta-O-benzoyl- $\beta$ -D-lactosyl-3-aryl thiocarbamides (4 a-g) were prepared by the condensation of 1-hepta-O-benzoyl- $\beta$ -D-lactosyl isothiocyanate 2 with aryl amines (3a-g) in benzene medium for 3 h. Then, the solvent was distilled off and sticky residue obtained was triturated with petroleum ether (60-80°C) to afford a white solid (4a-g). The structure of the products were confirmed on the basis of IR $^8$ , NMR $^9$  and Mass $^{10}$  spectral analysis. The specific rotation of the products were also recorded $^{11}$ .

#### **ACKNOWLEDGEMENT**

Authors are thankful to RSIC, CDRI Lucknow for providing the spectra and also to Dr. S. G. Bhadange, Principal, Shri Shivaji College, Akola for providing necessary facilities.

#### REFERENCES

- 1. C. H. Cao, C. J. Zhou, H. Y. Gao and Y. T. Liu, J. Chin. Chem. Soc., 48, 207 (2001).
- 2. M. Lacova, J. Chovancova, O. Hyblova and S. Varkonda, Chem. Pap., 44, 131 (1990).
- 3. I. Chnlak, V. Sntorins and V. Sederka, Chem. Pap., 49, 133 (1990).
- 4. T. Papenfnws, Ger. Offen. De., **3**, 528 (1987).
- 5. M. S. Shingare and D. B. Ingale, J. Ind. Chem. Soc., **53**, 1036 (1976).
- 6. B. Dash and M. Patra, Indian J. Chem., **19B**, 894 (1980).

- 7. J. C. Bailer, H. J. Emeleus, R. Nyholm and A. F. Trotman, Coprehensive Inorganic Chemistry, **2**, Pergamon Press, New York (1973) p. 141.
- 8. R. M. Silverstein, G. C. Bassler and T. C. Morril, Spectrometric Identification of Organic Compounds, 5<sup>th</sup> Ed., John Wiley and Sons, INC, New York (2003) p. 108-123.
- 9. N. B. Colthup, L. H. Daly and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press, New York (2003) p. 279.
- 10. D. H. Williams and I. Flemming, Spectroscopic Methods in Organic Chemistry, 4<sup>th</sup> Ed., Tata McGraw-Hill Publication, New Delhi (2003) p. 40, 41, 47, 53.
- 11. Weissberger and Arnold, Physical Methods of Organic Chemistry, Part II, 2<sup>nd</sup> Ed., Interscience Publisher, INC, New York (1949).