SYNTHESIS, CHARACTERIZATION AND REACTIVITY STUDIES ON PHOSPHINE AND ARSINE COMPLEXES OF PALLADIUM (0) LIGATED BY
 THIOAMIDE LIGAND

R. N. PANDEY ${ }^{*}$, SHEO SHANKAR KUMAR and KALPANA SHAHI

P. G. Centre of Chemistry (M. U.), College of Commerce, PATNA - 800020 (Bihar) INDIA

Abstract

Palladium complexes with the formula $\left[\mathrm{Pd}\left(\mathrm{As} \phi_{3}\right)_{2}(\mathrm{QTH})_{2}\right]$ and $\left[\mathrm{Pd}\left(\mathrm{PR}_{3}\right)_{2}(\mathrm{QTH})_{2}\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right.$, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$; QTH = 2-mercapto quinazoline-4-one) were synthesized and characterized by elemental analysis, molar conductivity, magnetic susceptibility measurements and spectroscopic (IR, UV-vis, ${ }^{1} \mathrm{H}$ NMR) methods. All complexes were four-coordinated and tetrahedral oxidation state of Palladium was confirmed by iodometric and acidimetric titration.

Key words: Pd(0), Phosphine, Arsine, Thioamide.

INTRODUCTION

Palladium (0) complexes with phosphine ligands are reviewed ${ }^{1-5}$. These complexes are versatile catalyst for the Tsuji-Trost reactions ${ }^{6-8}$, Stille ${ }^{9}$ and Suzuki ${ }^{10}$ cross-coupling reactions and Heck reactions ${ }^{11}$. They have interesting insights into structure, bonding and reactivity of molecules and we have reported some Palladium (0) complexes ligated with amide and thioamide and other ligands in our earlier report ${ }^{12-16}$. The present communication reports complexes of Palladium (0) with ligand, which contains both thioamide and amide group together.

EXPERIMENTAL

All chemicals used were of AR grade or CP grade. Solvents were distilled and dried before use. The ligand, 2-mercapto-quinazoline-4-one (QTH) ${ }^{17}$ and Precursor complexes,

[^0]$\left[\mathrm{Pd}\left(\mathrm{PE}_{3}\right)_{4}\right]\left(\mathrm{E}=\mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}, \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}-\right)$ and $\left[\mathrm{Pd}\left(\mathrm{As} \phi_{3}\right)_{4}\right]$ were prepared following previous literature. ${ }^{18}$ Tribenzyl phosphine (PBz_{3}) was prepared using a modification of the reported method ${ }^{19}$ as ivory coloured crystals. Triphenyl phosphine $\left(\mathrm{P} \phi_{3}\right)\left(\mathrm{M} . \mathrm{Pt}=80^{\circ} \mathrm{C}\right)$, triphenyl arsine $(\mathrm{As} \phi)\left(\mathrm{M} . \mathrm{Pt}=61^{\circ} \mathrm{C}\right)$ and tributyl phosphine $\left(\mathrm{PBu}_{3}\right)$ were commercial products. Their purity was checked spectroscopically. The zero valent oxidation state of Palladium in complexes was determined by iodometric and acidimetric titration described in literature. ${ }^{20}$

Preparation of new $\operatorname{Pd}(0)$ complexes

All the complexes were prepared using a general method. Benzene solution of precursor complexes were mixed in appropriate molar ratio with ethanolic solution of ligand (QTH) as reported in our earlier method ${ }^{12}$.

Analysis

(i) $\left[\mathrm{Pd}\left(\mathrm{P} \phi_{3}\right)_{2}(\mathrm{QTH})\right]$ (yellow): Calculated (\%) for $\mathrm{C}_{52} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{Pd}$ (986.4) : C = 63.26, H = 4.25; N = 5.67; $\mathrm{Pd}=10.78$; Found (\%) : C = 63.21; H = 4.30; $\mathrm{N}=5.66 ; \mathrm{Pd}=10.88$
(ii) $\left[\mathrm{Pd}\left(\mathrm{As} \phi_{3}\right)_{2}(\mathrm{QTH})_{2}\right]$ (Faint yellow): Calculated (\%) for $\mathrm{C}_{52} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{As}_{2} \mathrm{Pd}$ (1072.4) : $\mathrm{C}=58.18 ; \mathrm{H}=3.91 ; \mathrm{N}=5.22 ; \mathrm{Pd}=9.92$; Found (\%) : $\mathrm{C}=58.02$; $\mathrm{H}=4.01 ; \mathrm{N}=5.20 ; \mathrm{Pd}-=10.10$
(iii) $\left.\left[\mathrm{Pd}\left(\mathrm{PBu}_{3}\right)_{2}\right)(\mathrm{QTH})_{2}\right]$ (yellow): Calculated (\%) for $\mathrm{C}_{40} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{P}_{2} \mathrm{~S}_{2} \mathrm{Pd}$ (864.4) : $\mathrm{C}=55.52 ; \mathrm{H}=7.63 ; \mathrm{N}=6.47 ; \mathrm{Pd}=12.30$; Found (\%) : $\mathrm{C}=55.62 ; \mathrm{H}=7.70$; $\mathrm{N}=6.34 ; \mathrm{Pd}=12.41$
(iv) $\left[\mathrm{Pd}\left(\mathrm{PBz}_{3}\right)_{2}(\mathrm{QTH})_{2}\right]$ (yellow): Calculated (\%) for $\mathrm{C}_{58} \mathrm{H}_{54} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{P}_{2} \mathrm{Pd}$ (1068.4) : $C=65.14 ; \mathrm{H}=5.50 ; \mathrm{N}=5.24 ; \mathrm{Pd}=9.95$; Found (\%) : $\mathrm{C}=65.23 ; \mathrm{H}=5.01$; $\mathrm{N}=5.34 ; \mathrm{Pd}=10.01$

Carbon, hydrogen and nitrogen analysis were performed by conventional methods and magnetic measurements were made on Gouy balance using $\mathrm{Hg}\left[\mathrm{CO}(\mathrm{SCN})_{4}\right]$ as calibrant. IR spectra of ligand and complexes were recorded with the help of Perkin Elmer Model 621 in the range of $4000-200 \mathrm{~cm}^{-1}$ using KBr pellets technique. The electronic spectra of the complexes were obtained in DMF solution ($10^{-3} \mathrm{M}$) using a Cary Model 14 recording spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a high resolution Varian HR-100 (cross coil type) NMR spectrometer in CDCl_{3} solution. Molar conductance was measured using $10^{-3} \mathrm{M}$ solution in DMF on a Wiss-Werkstatten-Weitheim obb type LBR conductivity meter.

RESULTS AND DISCUSSION

The coordinative reactivity of phosphine complexes of $\mathrm{Ni}(0), \operatorname{Pd}(0)$ and $\operatorname{Pt}(0)$ has been reviewed by Ugo ${ }^{21}$. $\left[\operatorname{Pd}\left(P \phi_{3}\right)_{4}\right]$ dissociate in benzene to give planar species $\operatorname{Pd}\left(\operatorname{Ps} \phi_{3}\right)_{3}$, which is co-ordinatively unsaturated. There is a close analogy between phosphine and arsine complexes of these zero valent complexes. All the freshly prepared zero valent complexes were soluble in benzene and chloroform but less soluble in these solvents after long standing in air. All were found to non-conducting in DMF and diamagnetic nature. The diamagnetic nature suggested d^{10}-configuration for $\operatorname{Pd}(0)$. However, determination of oxidation state of palladium was verified by iodometric and acidimetric titration ${ }^{20}$. When a suspension of these complexes in CCl_{4} were treated with iodine solution in CCl_{4}, the violet colour of iodine got discharged suggesting zero valent palladium ${ }^{22}$.

When aqueous solution of HBF_{4} is treated with $\left[\mathrm{Pd}\left(\mathrm{P}_{3}\right)_{2}(\mathrm{QTH})_{2}\right]$ then yellow solid products was isolated and was found to be uni-bivalent electrolyte. ${ }^{23}$

$$
\left[\mathrm{Pd}^{0}\left(\mathrm{P} \phi_{3}\right)_{2}(\mathrm{QTH})_{2}\right]+2 \mathrm{HBF}_{4}+\mathrm{H}_{2} \mathrm{O} \longrightarrow\left[\mathrm{Pd}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{P} \phi_{3}\right)(\mathrm{QTH})_{2}\right]+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{P} \phi_{3}
$$

One molecule of hydrogen per mole of Pd was evolved. Excess of triphenyl phosphine did not displace the coordinated water molecule even in refluxing in methanol. Thus, it was assumed that $\left[\mathrm{Pd}\left(\mathrm{P} \phi_{3}\right)_{2}(\mathrm{QTH})_{2}\right]$ is formed from $\left[\mathrm{Pd}\left(\mathrm{P} \phi_{3}\right)_{4}\right]$ without change in oxidation state of metal which further undergoes oxidative addition reaction with HBF_{4}. The molecular weight of $\left[\operatorname{Pd}\left(P \phi_{3}\right)_{2}(\mathrm{QTH})_{2}\right]$ in highly purified benzene consistent with formulation and suggested monomeric nature of the complex.

Electronic spectrum of $\left[\operatorname{Pd}\left(P \phi_{3}\right)_{2}(\mathrm{QTH})_{2}\right]$ exhibits a single very strong band around 395 nm of considerable high intensity. The other ligand field bands are obscured by charge transfer band and probably high degree of d-p mixing has occurred. The common tetrahedral structure of all complexes was assumed considering previous literature ${ }^{12}$.

IR Spectra

A comparison of infrared spectral bands of $\mathrm{P} \phi_{3}, \mathrm{As}_{3}, \mathrm{PBu}_{3}, \mathrm{PBz}_{3}, \mathrm{QTH}$ and complexes indicate the following facts :

No absorptions attributable to vPd -H occurred in the spectra of complexes, so it was assumed that $\operatorname{Pd}(0)$ compounds can not be hydrides. The metal sensitive new bands at 1435 , 1090, 500, 430, 395, 245 and $210 \mathrm{~cm}^{-1}\left(\mathrm{P}_{3}\right)^{24}$, at 1440, 1080, 665, 475, 315 and $240 \mathrm{~cm}^{-1}$ $\left(\mathrm{As}_{3}\right)^{25}$ and at 1115 and $2910 \mathrm{~cm}^{-1}\left(\mathrm{PBu}_{3}\right)^{26}$ in complexes indicated coordinated phosphine
ligands. The characteristic bands of QTH at $3445(\mathrm{mb}), 3350(\mathrm{~s})(\nu \mathrm{NH}), 1710 \mathrm{~cm}^{-1}(\mathrm{vCO})$ and $1530 \mathrm{~cm}^{-1}$ (thioamide band I) remained practically unaltered on complexation indicating non-coordination of $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ groups. Thus, absence of bonding through N and O atoms was assumed considering our previous observations ${ }^{27-28}$ and Signh et al. ${ }^{29}$

However, thioamide band II ($1295 \mathrm{~cm}^{-1}$), band III $\left(960 \mathrm{~cm}^{-1}\right)$ and band IV $\left(790 \mathrm{~cm}^{-1}\right)$ red shift to lower frequency (Table 1) on coordination indicating bonding through sulphur of thioamide group which increases CN bond order and decreases CS bond order ${ }^{30-32}$. Two bands at 350-355 and 340-330 (vPd-S) and two bands at $430-425 \mathrm{~cm}^{-1}$ and $420-416 \mathrm{~cm}^{-1}$ ($\mathrm{VPd}-\mathrm{P}$) suggest $\mathrm{C}_{2 \mathrm{v}}$ point group in tetrahedral structure of $\left[\mathrm{Pd}\left(\mathrm{PR}_{3}\right)(\mathrm{QTH})_{2}\right]\left(\mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}\right.$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{CH}_{2}$ - and $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}$-) agreement with previous literature ${ }^{16}$.

Table 1: Major IR spectral bands (cm-1) of ligand (QTH) and complexes

Compounds	vNH	Thioamide Bands ${ }^{\psi}$				vPd-S	vPd-P
		Band I	Band II	Band III	Band IV		
QTH (ligand)	3445 (sb)	1530 (s)	1295 (s)	960 (m)	790 (m)	-	-
	3350 (s)						
$\left[\mathrm{Ru}\left(\mathrm{P} \phi_{3}\right)_{2}(\mathrm{QTH})_{2}\right]$	3450 (sb)	1535 (sb)	1275 (m)	950 m	765 (m)	350 w	430 m
	3365 (sb)					340 w	420 m
$\left[\mathrm{Ru}\left(\mathrm{As} \phi_{3}\right)_{2}(\mathrm{QTH})_{2}\right]$	3440 (sb)	1530 (sb)	1270 (m)	945 m	760 m	355 w	435 m
	3355 (sb)					345 w	425 m
$\left[\mathrm{Ru}\left(\mathrm{PBu}_{3}\right)_{2}(\mathrm{QTH})_{2}\right]$	3445 (s)	1532 (s)	1265 (s)	940 m	765 m	365 w	440 m
	3360 (sb)					350 w	435 m
$\left[\mathrm{Ru}\left(\mathrm{PBz}_{3}\right)_{2}(\mathrm{QTH})_{2}\right]$	3450 (s)	1535 (sb)	1265 (m)	945 (m)	752 (m)	340 w	435 w
	3355 (sb)					340 w	430 w

[^1]
${ }^{1}$ H NMR Spectra

The ${ }^{1} \mathrm{H}$ NMR of ligand and $\mathrm{Pd}(0)$ complexes (Sl. No. 1, $2 \& 3$) were recorded in $\mathrm{CDCl}_{3} / \mathrm{TMS}$ to substantiate metal-ligand bonding. The broad multiplet around 88.5-7.0 PPM $\left(\mathrm{P}_{3}\right)^{33}$, $\delta 6.2-7.8 \mathrm{PPM}\left(\mathrm{As}_{3}\right)^{34}$ and $\delta 7.15-7.32 \mathrm{PPM}\left(\mathrm{PBz}_{3}\right)^{35}$ in phosphine ligands are assigned due to aromatic protons of phenyl ring. The strong signals at $\delta 2.78 \mathrm{PPM}^{\mathrm{PP}} \mathrm{PBz}_{3}$
are due to methylene $\left(\mathrm{CH}_{2}\right)$ protons of benzyl group. The aromatic protons signals of QTH are observed at $\delta 7.62-7.72 \mathrm{ppm}$. The aromatic at position -5 in QTH is deshielded by carbonyl oxygen and the extreme signal at $\delta 8.12 \mathrm{ppm}$ is considered due to this proton. The signal due to $\mathrm{N}-\mathrm{H}$ groups are observed around $\delta 3.2 \mathrm{ppm}$ in QTH. These protons are observed almost unchanged in position on complexation indicating non-participation of $\mathrm{N}-\mathrm{H}$ groups of QTH and no deprotonation during ligand substitution reactions in precursors. Hence, bonding of thioamide ligand occurs only through thiocarbonyl sulphur atom.

Thus, on the basis of aforesaid discussion, tetrahedral structure may be proposed to all $\operatorname{Pd}(0)$ complexes (Structure I).

Tetrahedral structure of $\left[\operatorname{Pd}\left(\mathrm{ER}_{3}\right)_{2}(\mathrm{QTH})_{2}\right]$
($\mathrm{E}=\mathrm{P} / \mathrm{As} ; \mathrm{R}=\mathrm{C}_{6} \mathrm{H}_{5}-, \mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}_{2}{ }^{-}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-$)
(Structure I)

REFERENCES

1. C. Amatore and A. Jutand, Coord. Chem. Rev., 178-180, 511 (1998).
2. G. Consiglio and R. Waymouth, Chem. Rev., 89, 257 (1989).
3. B. M. Trost and D. L. Van Vranken, Chem. Rev., 96, 395 (1996).
4. I. P. Beletskaya and A. V. Cheprakov, Chem. Rev., 100, 3009 (2000).
5. A. B. Dounay and L. E. Overman, Chem. Rev., 103, 2945 (2003).
6. J. Tsuji, Palladium Reagents and Catalysts, Wiley, Chichester (1995) p. 290.
7. A. Pfaltz, Acc. Chem. Res., 26, 339 (1993).
8. B. M. Trost, Acc. Chem. Res., 29, 355 (1996).
9. A. Scrivanti, U. Matteoli, V. Beghetto, S. Antonavoli and B. Crociani, Tetrahedron, 58, 688 (2002).
10. A. Scrivanti, V. Beghetto, U. Matteoli, S. Antonaroli, A. Marini, F. Mandoj, R. Paolesse and B. Crociani, Tetrahedron Lett., 45, 5861 (2004).
11. G. T. Crisp, Chem. Soc. Rev., 27, 427 (1998).
12. R. N. Pandey, Arun Kumar, R. S. P. Singh, A. N. Sahay and Shashi Kant Kumar, J. Indian Chem. Soc., 69, 804 (1992).
13. R. N. Pandey, Sunil Kumar, Shashi Kant Kumar, (Miss) Rita Roy Choudhary and A. N. Sahay, Indian J. Chem., 32A, 987 (1993).
14. R. N. Pandey, Gunjan Kumari, A. K. Nag and Renu Bala, Rasayan J. Chem., 2(4), 886 (2009).
15. R. N. Pandey, Sheo Shankar Kumar and A. K. Nag, Int. J. Chem. Sci., 11(1), 250 (2013).
16. R. N. Pandey and J. N. Das, J. Indian Chem. Soc., 71, 187 (1994).
17. G. R. Dave, J. Indian Chem. Soc., 37, 695 (1960).
18. D. R. Coulson, L. C. Sakek and S. O. Grim, Inorg. Synth., 13, 121 (1972).
19. C. Tolman, Chem. Rev., 77, 313 (1977).
20. B. Singh, R. Singh and U. Agarwala, Indian J. Chem., 9, 73 (1971).
21. R. Ugo, Coord. Chem. Rev., 3, 319 (1968).
22. L. Malatesta and M. Angoletta, J. Chem. Soc., 1186 (1957).
23. R. D. Feltham and R. G. Hayter, J. Chem. Soc., 4587 (1964).
24. D. H. Brown, A. Mohammed and D. W. A. Sharp, Spectrochim. Acta, 21, 663 (1965).
25. K. Shobatake, C. Postmus, J.R. Ferraro and K. Nakamoto, Appl. Spectrosc., 23, 12 (1969).
26. Taghreed H. Al-Noor, Khalid F. Ali, Amer J. Jarad and Aliea S. Kindeel, Chemistry and Materials Res., 3(3), 126 (2013).
27. R. N. Pandey and Renu Bala, J. Ultra Chem., 7(1), 1 (2011).
28. R. N. Pandey and K. V. Gautam, Int. J. Chem. Sci., 9(1), 387 (2011).
29. B. Singh, M. M. P. Rukhaiyar and R. J. Singha, J. Inorg. Nucl. Chem., 39, 25 (1977).
30. B. Singh, R. Singh, R. V. Choudhary and K. P. Thakur, Indian J. Chem., 11, 174 (1973).
31. C. N. R. Rao, R. Venkataraghavan and T. R. Kasturi, Can. J. Chem., 42, 36 (1964).
32. R. N. Pandey, Gunjan Kumari and Rajnish Kumar Singh, J. Ind. Council, Chem., 27(1), 72 (2010).
33. S. Kanchana Devi, K. P. Balasubramanian, V. Chinuswamy, R. Karvembu and K. Natarajan, Trans. Met. Chem., 30, 330 (2005).
34. K. P. Balasubramian, V. V. Raju and V. Chinnusamy, J. Indian Chem. Soc., 86, 570 (2009).
35. V. R. Landaeta, M. Peruzzini, V. Herrera, C. Bianchini, R. A. Sanchez-Delagado, A. E. Goeta and Zanobini, J. Organomet. Chem., 691, 1039 (2006).

Revised : 17.03.2014
Accepted : 19.03.2014

[^0]: *Author for correspondence; E-mail: rameshwarnath.pandey@yahoo.com, Sheoshankar2374@rediffmail.com

[^1]: ψ Mixed bands : Band $\mathrm{I}=\delta \mathrm{NH}+\delta \mathrm{CH}+v \mathrm{C}=\mathrm{N}$; Band $\mathrm{II}=v \mathrm{C}=\mathrm{N}+\delta \mathrm{NH}+\delta \mathrm{NH}+v \mathrm{C}=\mathrm{S}$,
 Band III $=v \mathrm{C}-\mathrm{S}+\nu \mathrm{C}-\mathrm{N}$; Band $\mathrm{IV}=v \mathrm{C}-\mathrm{S}$

