Eigen Vector Based Study Of Molecular Structure Of Cyclopentadienyl Anion

P.P.Singh*1, R.N.Verma ${ }^{2}$, Gayasuddin Khan ${ }^{2}$
${ }^{1}$ Department of Chemistry, M.L.K.P.G.College, Balrampur, U.P. (INDIA)
${ }^{2}$ Department of Physics, K.S.Saket P.G.College,Ayodhaya, U.P. (INDIA)
E-mail: dr_ppsingh@sify.com
Received: $7^{\text {th }}$ March, 2007 ; Accepted: $12^{\text {th }}$ March, 2007

ABSTRACT

Abstract

The MO of $\mathrm{C}_{5} \mathrm{H}_{5}^{-}$are formed by linear combination of atomic orbitals of five carbon ($2 \mathrm{~s}, 2 \mathrm{px}, 2 \mathrm{py}, 2 \mathrm{pz}$) and five hydrogen atom(1s). The energy levels of molecular orbitals have been quantitatively evaluated and energy level diagram have been drawn. The most stable molecular orbital has eigen value $1.0886 \mathrm{e} . \mathrm{V}$ and highest occupied molecular orbital (HOMO) has eigen value of -0.4407 . The eigen vector analysis shows that HOMO has contribution of only 2 pz orbitals of carbon. The population analysis also indicates that only 2 pz orbitals are present in molecular orbitals 13 that is HOMO. The contribution of electrons in the formation of molecular orbitals is described on the basis of coefficient of eigen vector.

© 2007 Trade Science Inc. -INDIA

INTRODUCTION

In our recent communication ${ }^{[1-3]}$, we have made new studies on molecular structure of ferrocene and its derivatives. The study was based on calculation of energy levels, eigen vector values, and population analysis. Since the calculation of the relative energy levels and involvement of various atomic orbitals in the formation of molecular orbital in metallocenes and cyclopentadienyl anion is still a subject of uncertainty ${ }^{[4]}$, we present a study on cobaltocene ${ }^{[5]}$ which has a sandwich structure similar to ferrocene and also of $\mathrm{C}_{5} \mathrm{H}_{5}^{-}$. The application of molecular mechanics to organometallic and transition metal chemistry is growing ${ }^{[6]}$. With the help of this technique we present a study on the molecular
structure of cobaltocene, and the cyclopentadienyl anion $\left(\mathrm{C}_{5} \mathrm{H}_{5}^{-}\right)$. In this paper we present a study on molecular structure of $\mathrm{C}_{5} \mathrm{H}_{5}^{-}$only.

MATERIAL AND METHOD

The study material of this paper is cyclopenta dienyl anion $\left(\mathrm{C}_{5} \mathrm{H}_{5}^{-}\right)$. The 3 D modeling and geometry optimization of $\left(\mathrm{C}_{5} \mathrm{H}_{5}^{-}\right)$have been done by CAChe software using molecular mechanics method with EHT option ${ }^{[5]}$. Eigen values and eigen vectors values have been obtained with the same software, using the same option. With the help of these values, eigen vector analysis and magnitude of contribution of atomic orbital in MO formation have been studied.

Theory

The theory has been described in our earlier work ${ }^{[1]}$, and is also presented here. The MOs are formed by the linear combination of basis functions. Most molecular quantum mechanical methods (such as-SCF, CI etc.) begin the calculation with the choice of a basis functions χ_{r}, which are used to express the MOs ϕ_{i} as $\phi_{i}=\sum_{i} c_{r i} \chi_{r}$. The use of an adequate basis set is an essential requirement for the calculation. The basis functions are usually taken as AOs. Each AO can be represented as a linear combination of one or more slater-type orbitals (STOs) $)^{[7-9]}$. An STO centered on atom a has the form $\left(\mathrm{Nr}_{a}{ }^{\mathrm{n}-1} \mathrm{e}^{\zeta r a} \mathrm{Y}_{1}^{\mathrm{m}}\left(\theta_{a^{2}}\right.\right.$, $\left.\phi_{\lambda}\right)$. Each $\mathrm{MO} \phi_{\mathrm{i}}$ is expressed as $\phi_{\mathrm{i}}=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{ri}} \chi_{\mathrm{r}}$, where, the χ_{r} 's are the STO basis functions. Here we use the STO-6G basis set(which is contracted Gaussian) ${ }^{10-}$ ${ }^{13]}$ for the SCF calculation.

The coefficients in linear combination for each MO being found by solution of the Roothaan equation ${ }^{[14]}$. The most efficient way to solve the Roothaan equation is to use matrix-algebra methods. In matrixalgebra methods, the matrix elements are computed ${ }^{[15]}$, and the secular equation is solved to give the set of orbital energies(i.e. eigenvalues). These orbital energies ${ }^{[16]}$ are used to solve Roothaan equations for the set of coefficients(i.e. eigenvectors) giving a set of MOs. The calculations are done using a computer.

By the above calculation, the values of orbital energies(eigen values) and eigenvectors (coefficients) have been calculated.

A widely used method to analyze SCF wave function is population analysis, introduced by Mulliken ${ }^{[17-}$ ${ }^{18]}$. He proposed a method that apportions the electrons of an n-electron molecule into net population's n_{r} in the basis functions χ_{r} and overlap populations $\mathrm{n}_{\mathrm{r}-\mathrm{s}}$ for all possible pairs of basis functions.

For the set of basis functions $\chi_{1},{ }_{2}, \chi_{b}$, each MO ϕ_{i} has the form $\phi_{\mathrm{i}}=\sum_{\mathrm{s}} \mathrm{c}_{\mathrm{si}} \chi_{\mathrm{s}}=\mathrm{c}_{1 \mathrm{i}} \chi_{1}+\mathrm{c}_{2 \mathrm{i}} \chi_{2}+\ldots+\mathrm{c}_{\mathrm{bi}} \chi_{\mathrm{b}}$. For simplicity, we shall assume that the $\mathrm{c}_{\mathrm{si}} \mathrm{s}$ and $\chi_{\mathrm{s}} \mathrm{s}$ are real. The probability density associated with one electron in ϕ_{i} is,
$\mid \phi_{i}{ }^{2}=c_{1 i}^{2} \chi_{1}^{2}+c_{2 i}{ }^{2} \chi_{2}^{2+\ldots}+2 c_{1 i} c_{2 i} \chi_{1} \chi_{2}+2 c_{1 i} c_{3 i} \chi_{1} \chi_{3}+2 c_{2 i} c_{3 i} \chi_{2}$ $\chi_{3}+\ldots$

Integrating this equation over three-dimensional space and using the fact that ϕ_{i} and the χ_{s} 's are normalized, we get
$1=\mathrm{c}_{1 i}{ }^{2}+\mathrm{c}_{2 \mathrm{i}}{ }^{2}+\ldots+2 \mathrm{c}_{1 \mathrm{i}} \mathrm{c}_{2 \mathrm{i}} \mathrm{s}_{12}+2 \mathrm{c}_{1 i} \mathrm{c}_{3 \mathrm{ii}} \mathrm{s}_{13}+2 \mathrm{c}_{2 \mathrm{i}} \mathrm{c}_{3 \mathrm{ii}} \mathrm{s}_{23}+\ldots$
where the S 's are overlap integrals: $S_{12}=\int \chi_{1} \chi_{2} \mathrm{~d} v_{1} \mathrm{~d} v_{2}$, etc. Mulliken proposed that the terms in (A) be apportioned as follows. One electron in the MO ϕ_{i} contributes $\mathrm{c}_{1 \mathrm{i}}{ }^{2}$ to the net population in $\chi_{1}, \mathrm{c}_{2 \mathrm{i}}{ }^{2}$ to the net population in χ_{2}, etc., and contributes $2 \mathrm{c}_{1 i} \mathrm{c}_{2 \mathrm{i}} \mathrm{S}_{12}$ to the overlap population between χ_{1} and $\chi_{2}, 2 \mathrm{c}_{11} \mathrm{c}_{31} \mathrm{~S}_{13}$ to the overlap population between χ_{1} and χ_{3}, etc.

Let there be n_{i} electrons in the $\operatorname{MO} \phi_{i}\left(n_{i}=0,1,2\right)$ and let $n_{r, i}$ and $n_{r-s, i}$ symbolize the contributions of electrons in the MO ϕ_{i} to the net population in χ_{r} and to the overlap population between χ_{r} and χ_{s}, respectively. We have $n_{r, i}=n_{i} c_{r i p}^{2}, n_{r-s, i}=n_{i}\left(2 c_{r i} c_{\mathrm{si}} \mathrm{S}_{\mathrm{rr}}\right)$

Based on the above principle, the contribution of electrons in each occupied MO has been calculated with the help of eigenvector values.

RESULT AND DISCUSSION

The molecular orbitals of $\mathrm{C}_{5} \mathrm{H}_{5}^{-}$are formed by linear combination of five carbon atoms and five hydrogen atoms. Each carbon provides four atomic orbitals $\left(2 s, 2 p_{x}, 2 p_{y}\right.$ and $\left.2 p_{z}\right)$ and each hydrogen atom provides only one atomic orbital(1s). As such 25 atomic orbitals of carbon and hydrogen are involved in the formation of molecular orbitals of $\mathrm{C}_{5} \mathrm{H}_{5}^{-}$. The LCAO approximations of these orbitals will form 25 molecular orbitals, the eigen values of these orbitals are shown in TABLE 1.

The involvement of various atomic orbitals in the formation of MOs is indicated by coefficients of eigen vector.

The basis functions commonly known as atomic orbitals are represented by χ and molecular orbitals by Φ. The details of χ representing various atomic orbital are as below :

TABLE 1: Eigen values

M.Os. $\boldsymbol{-} \boldsymbol{\Phi}$	Eigen values(eV)	M.Os. $\boldsymbol{-} \boldsymbol{\Phi}$	Eigen values (eV)
1	-1.0886	13	-0.4407
2	-0.8865	14	-0.236
3	-0.8865	15	-0.236
4	-0.6808	16	0.1629
5	-0.6808	17	0.1629
6	-0.6051	18	0.289
7	-0.5352	19	0.4018
8	-0.5224	20	0.4359
9	-0.5224	21	0.4359
10	-0.5077	22	0.9223
11	-0.5077	23	0.9223
12	-0.4407	24	2.1715

Full Paper

Atomic orbital

The contribution of , in the formation of molecular orbitals is indicated by coefficient of eigen vector. A higher value of coefficient indicates major combination of atomic orbital, the lower value shows weak contribution. The weak contributions have been omitted, and major contributions are illustrated below:-

LCAO-presentation

Equation -1

Molecular orbitals	Coefficients eigen vector of χ (Major contribution)	Atomic orbitals
Φ_{1}	$\begin{aligned} & \chi_{1}(-0.3110), \chi_{5}(-0.3110), \chi_{9}(-0.3110), \\ & \chi_{13}(-0.3110), \chi_{17}(-0.3110) \end{aligned}$	$2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s},$
Φ_{2}	$\begin{aligned} & \chi_{1}(-0.2634), \chi_{5}(-0.4362), \chi_{10}(0.0880), \\ & \chi_{13}(0.4324), \chi_{17}(0.2734) \end{aligned}$	$\begin{gathered} \mathrm{s}, 2 \mathrm{~s}, 2 \mathrm{px}, 2 \mathrm{~s}, \\ 2 \mathrm{~s} \end{gathered}$
Φ_{3}	$\begin{aligned} & \chi_{1}(-0.3731), \chi_{5}(0.1352), \chi_{9}(0.4567), \\ & \chi_{13}(0.1470), \chi_{17}(-0.3658) \end{aligned}$	
Φ_{4}	$\begin{aligned} & \chi_{1}(0.1932), \chi_{5}(-0.2867), \chi_{9}(0.2706), \\ & \chi_{15}(-0.1655), \chi_{18}(-0.1622) \end{aligned}$	$\underset{2 \mathrm{px}}{2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{py},}$
Φ_{5}	$\begin{aligned} & \chi_{1}(0.2218), \chi_{7}(0.1257), \chi_{11}(0.1520), \\ & \chi_{13}(0.2523), \chi_{17}(-0.2930) \end{aligned}$	$\begin{gathered} 2 \mathrm{~s}, 2 \mathrm{py}, 2 \mathrm{py} \\ 2 \mathrm{~s}, 2 \mathrm{~s} \end{gathered}$
Φ_{6}	$\begin{aligned} & \chi_{2}(-0.2270), \chi_{7}(-0.1953), \chi_{11}(-0.1873), \\ & \chi_{14}(0.2228), \chi_{19}(0.2365) \end{aligned}$	$\begin{aligned} & \text { 2px, 2py, 2py, } \\ & \text { 2py, 2px, } \end{aligned}$
Φ_{7}	$\begin{aligned} & \chi_{4}(0.3549), \chi_{8}(0.3549), \chi_{12}(0.3549), \\ & \chi_{16}(0.3549), \chi_{20}(0.3549) \end{aligned}$	$\begin{gathered} 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}, \\ 2 \mathrm{pz}, 2 \mathrm{pz} \end{gathered}$
Φ_{8}	$\begin{aligned} & \chi_{3}(0.2395), \chi_{7}(-0.3391), \chi_{10}(0.1789), \\ & \chi_{14}(-0.3653), \chi_{19}(-0.2170) \end{aligned}$	$\begin{aligned} & \text { 2py, 2py, 2px, } \\ & 2 \mathrm{px}, 2 \mathrm{py} \end{aligned}$
Φ_{9}	$\begin{aligned} & \chi_{2}(0.3327), \chi_{6}(-0.2459), \chi_{11}(-0.3011), \\ & \chi_{15}(0.2431), \chi_{19}(-0.3133) \end{aligned}$	
Φ_{10}	$\begin{aligned} & \chi_{3}(-0.3398), \chi_{6}(-0.4017), \chi_{10}(0.3844), \\ & \chi_{15}(-0.2719), \chi_{19}(0.1715) \end{aligned}$	$\begin{aligned} & \text { 2py, 2px, 2px, } \\ & 2 \mathrm{py}, 2 \mathrm{py} \end{aligned}$
$\Phi_{11}=$	$\begin{aligned} & \chi_{3}(-0.3043), \chi_{7}(0.1933), \chi_{11}(-0.2415), \\ & \chi_{15}(0.3572), \chi_{18}(0.4704) \end{aligned}$	$\begin{aligned} & \text { 2py, 2py, 2py, } \\ & 2 \mathrm{py}, 2 \mathrm{px} \end{aligned}$
Φ_{12}	$\begin{aligned} & \chi_{4}(-0.3452), \chi_{8}(-0.5832), \chi_{12}(-0.0165), \\ & \chi_{16}(0.5750), \chi_{20}(0.3718) \end{aligned}$	$\begin{gathered} 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}, \\ 2 \mathrm{pz}, 2 \mathrm{pz} \end{gathered}$
Φ_{13}	$\begin{aligned} & \chi_{4}(-0.5031), \chi_{8}(0.1728), \chi_{12}(0.6100), \\ & \chi_{16}(0.2041), \chi_{20}(-0.4838) \end{aligned}$	$\begin{gathered} 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}, \\ 2 \mathrm{pz}, 2 \mathrm{pz} \end{gathered}$
Φ_{14}	$\begin{aligned} & \chi_{4}(0.5143), \chi_{8}(-0.7728), \chi_{12}(0.7362), \\ & \chi_{16}(0.4183), \chi_{20}(-0.0593) \end{aligned}$	$\begin{gathered} 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}, \\ 2 \mathrm{pz}, 2 \mathrm{pz} \end{gathered}$
Φ_{15}	$\begin{aligned} & \chi_{4}(-0.6069), \chi_{8}(0.1887), \chi_{12}(0.3016), \\ & \chi_{16}(-0.6767), \chi_{20}(0.7933) \\ & \hline \end{aligned}$	$\begin{gathered} 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}, \\ 2 \mathrm{pz}, 2 \mathrm{pz} \\ \hline \end{gathered}$

Molecular orbitals	Coefficients eigen vector of χ (Major contribution)	Atomic orbitals
Φ_{16}	$\begin{aligned} & \chi_{2}(-0.4634), \chi_{7}(-0.5169), \chi_{11}(-0.3187), \\ & \chi_{14}(-0.5630), \chi_{19}(-0.4763) \end{aligned}$	$\begin{aligned} & \text { 2px, 2py, 2py, } \\ & 2 \mathrm{px}, 2 \mathrm{py} \end{aligned}$
Φ_{17}	$\begin{aligned} & \chi_{2}(0.5214), \chi_{7}(-0.3805), \chi_{11}(-0.5417), \\ & \chi_{14}(0.3989), \chi_{19}(-0.5331) \end{aligned}$	$\begin{gathered} 2 \mathrm{px}, 2 \mathrm{py}, 2 \mathrm{py} \\ 2 \mathrm{px}, 2 \mathrm{py} \end{gathered}$
Φ_{18}	$\begin{aligned} & \chi_{2}(-0.3498), \chi_{5}(0.3274), \chi_{9}(0.3274), \\ & \chi_{14}(0.3435), \chi_{19}(0.3645) \end{aligned}$	$\begin{gathered} 2 \mathrm{px}, 2 \mathrm{~s}, 2 \mathrm{~s}, \\ 2 \mathrm{px}, 2 \mathrm{py} \end{gathered}$
Φ_{19}	$\begin{aligned} & \chi_{3}(0.8155), \chi_{6}(-0.7016), \chi_{10}(-0.6731), \\ & \chi_{15}(-0.8005), \chi_{18}(0.8496) \end{aligned}$	$\begin{aligned} & \text { 2py, 2px, 2px, } \\ & 2 \mathrm{py}, 2 \mathrm{px} \end{aligned}$
Φ_{20}	$\begin{aligned} & \chi_{2}(0.6486), \chi_{7}(-0.1888), \chi_{11}(-0.2186), \\ & \chi_{14}(-0.6645), \chi_{19}(0.8579) \end{aligned}$	$\begin{gathered} 2 \mathrm{px}, 2 \mathrm{py}, 2 \mathrm{py} \\ 2 \mathrm{px}, 2 \mathrm{py} \end{gathered}$
Φ_{21}	$\begin{aligned} & \chi_{2}(-0.5079), \chi_{7}(0.6831), \chi_{11}(-0.6440), \\ & \chi_{14}(-0.6408), \chi_{19}(-0.0249) \end{aligned}$	$\begin{gathered} 2 \mathrm{px}, 2 \mathrm{py}, 2 \mathrm{py}, \\ 2 \mathrm{px}, 2 \mathrm{py} \end{gathered}$
Φ_{22}	$\begin{aligned} & \chi_{3}(-0.6865), \chi_{5}(-0.8430), \chi_{10}(-0.6482), \\ & \chi_{13}(0.7942), \chi_{18}(-0.6143) \end{aligned}$	$\begin{gathered} 2 \mathrm{py}, 2 \mathrm{~s}, 2 \mathrm{px} \\ 2 \mathrm{~s}, 2 \mathrm{px} \end{gathered}$
Φ_{23}	$\begin{aligned} & \chi_{1}(-0.7428), \chi_{6}(-0.6686), \chi_{9}(0.8608), \\ & \chi_{15}(0.7187), \chi_{17}(-0.6499) \end{aligned}$	$\begin{gathered} 2 \mathrm{~s}, 2 \mathrm{px}, 2 \mathrm{~s}, \\ 2 \mathrm{py}, 2 \mathrm{~s} \end{gathered}$
Φ_{24}	$\begin{aligned} & \chi_{1}(0.8999), \chi_{5}(-1.3489), \chi_{9}(1.2827), \chi_{13}(- \\ & 0.7265), \chi_{18}(0.3259) \end{aligned}$	$\begin{gathered} 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, \\ 2 \mathrm{px} \end{gathered}$
Φ_{25}	$\begin{aligned} & \chi_{1}(-1.0563), \chi_{5}(0.3256), \chi_{9}(0.5295), \\ & \chi_{13}(-1.1823), \chi_{17}(1.3835) \end{aligned}$	$\begin{gathered} 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, \\ 2 \mathrm{~s} \end{gathered}$

Figure 1: Energy level diagram of $\mathrm{C}_{5} \mathrm{H}_{5}$

$\begin{gathered} \text { M.Os.- } \\ \Phi \\ \hline \end{gathered}$	$\begin{gathered} \text { Eigen } \\ \text { value(e.V) } \end{gathered}$	Energy levels	Atomic orbitals
24	2.1715	-	$\begin{gathered} 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{px} \\ 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s} \end{gathered}$
22	0.9223	-	$\begin{gathered} 2 \mathrm{py}, 2 \mathrm{~s}, 2 \mathrm{px}, 2 \mathrm{~s}, 2 \mathrm{px} \\ 2 \mathrm{~s}, 2 \mathrm{px}, 2 \mathrm{~s}, 2 \mathrm{py}, 2 \mathrm{~s} \end{gathered}$
19	0.4359	-	$2 \mathrm{py}, 2 \mathrm{px}, 2 \mathrm{px}, 2 \mathrm{py}, 2 \mathrm{px}$ 2px, 2py, 2py, 2px, 2py 2px, 2py, 2py, 2px, 2py
18	0.289	-	$2 \mathrm{px}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{px}, 2 \mathrm{py}$
16	0.1629	-	$\begin{aligned} & \text { 2px, 2py, 2py, 2px, 2py } \\ & 2 \mathrm{px}, 2 \mathrm{py}, 2 \mathrm{py}, 2 \mathrm{px}, 2 \mathrm{py} \end{aligned}$
14	-0.236	-	$\begin{aligned} & 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz} \\ & 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz} \end{aligned}$
13	-0.4407	-	2pz, 2pz, 2pz, 2pz, 2pz, $2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}$ 2py, 2py, 2py, 2py, 2px 2py, 2px, 2px, 2py, 2py 2px, 2px, 2py, 2py, 2py 2py, 2py, 2px, 2px, 2py $2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}, 2 \mathrm{pz}$ 2px, 2py, 2py, 2py, 2px
4	-0.6806		$\begin{aligned} & 2 \mathrm{~s}, 2 \mathrm{py}, 2 \mathrm{py}, 2 \mathrm{~s}, 2 \mathrm{~s} \\ & 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{py}, 2 \mathrm{px} \end{aligned}$
2	-0.8865	-	$\begin{gathered} 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{ps}, 2 \mathrm{~s}, 2 \mathrm{~s} \\ 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s} \\ 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{px} \\ 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s} \end{gathered}$
1	-1.0886	-	$2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{~s}$

Linear combination of atomic orbitals as presented in equation- 1 shows that 2 s orbitals are involved in sigma bonding between carbon and carbon, and between carbon and hydrogen. The p orbitals are involved mostly in pi bonding and are also further avail-

TABLE: 2

MO(Ф)	Atomic orbital	$\begin{gathered} \text { Eigen } \\ \text { vector }\left(\mathrm{c}_{\mathrm{r}}\right) \end{gathered}$	No.of electrons $\left(\mathrm{n}_{\mathrm{i}}\right)$	$\mathrm{n}_{\mathrm{ri}}=\mathrm{n}_{\mathrm{i}} \mathbf{c}^{2}{ }_{\mathrm{ri}}$
1	1C-2s	-0.311	2	0.193442
	2C-2s	-0.311	2	0.193442
	3C-2s	-0.311	2	0.193442
	$4 \mathrm{C}-2 \mathrm{~s}$	-0.311	2	0.193442
	$5 \mathrm{C}-2 \mathrm{~s}$	-0.311	2	0.193442
	$6 \mathrm{H}-1 \mathrm{~s}$	-0.0118	2	0.000278
	$7 \mathrm{H}-1 \mathrm{~s}$	-0.0118	2	0.000278
	8H-1s	-0.0118	2	0.000278
	$9 \mathrm{H}-1 \mathrm{~s}$	-0.0118	2	0.000278
	10H-1s	-0.0118	2	0.000278
2	1C-2s	-0.2634	2	0.13875912
	2C-2s	-0.4362	2	0.38054088
	4C-2s	0.4324	2	0.37393952
	$5 \mathrm{C}-2 \mathrm{~s}$	0.2734	2	0.14949512
3	1-2s	-0.3731	2	0.27840722
	3C-2s	0.4567	2	0.41714978
	5C-2s	-0.3658	2	0.26761928
	1-2s	0.1932	2	0.074652
4	2C-2s	-0.2867	2	0.16439378
	3C-2s	0.2706	2	0.14644872
	$7 \mathrm{H}-1 \mathrm{~s}$	-0.3073	2	0.18886658
	8H-1s	0.2901	2	0.16831602
5	1C-2s	0.2218	2	0.09839
	4C-2s	0.2523	2	0.12731058
	$5 \mathrm{C}-2 \mathrm{~s}$	-0.293	2	0.171698
	$6 \mathrm{H}-1 \mathrm{~s}$	0.2377	2	0.11300258
	$9 \mathrm{H}-1 \mathrm{~s}$	0.2704	2	0.14623232
	10H-1s	-0.3141	2	0.19731762

TABLE : 3

$\mathbf{M O}(\Phi)$	Atomic orbital	$\begin{gathered} \text { Eigen } \\ \text { vector }\left(\mathrm{c}_{\mathrm{r}}\right) \end{gathered}$	No. of electrons $\left(n_{i}\right)$	$\mathbf{n}_{\mathrm{ri}}=\mathrm{n}_{\mathrm{i}} \mathbf{c}^{2}{ }_{\text {ri }}$
6	1C-2px	-0.227	2	0.103058
	2C-2py	-0.1953	2	0.076284
	3C-2py	-0.1873	2	0.070162
	4C-2px	0.2228	2	0.09928
	5C-2py	0.2365	2	0.1118645
	6H-1s	0.2219	2	0.09848
	$7 \mathrm{H}-1 \mathrm{~s}$	0.2219	2	0.09848
	8H-1s	0.2219	2	0.09848
	$9 \mathrm{H}-1 \mathrm{~s}$	0.2219	2	0.09848
7	10H-1s	0.2219	2	0.09848
	1C-2pz	0.3549	2	0.25190802
	2C-2pz	0.3549	2	0.25190802
	3C-2pz	0.3549	2	0.25190802
	$4 \mathrm{C}-2 \mathrm{pz}$	0.3549	2	0.25190802
8	5C-2pz	0.3549	2	0.25190802
	1C-2py	0.2395	2	0.1147205
	2C-2py	-0.3391	2	0.22997762
	4C-2px	-0.3653	2	0.26688818
	5C-2py	-0.217	2	0.094178
	6H-1s	0.1927	2	0.074266
	$7 \mathrm{H}-1 \mathrm{~s}$	0.3089	2	0.19083842
	$9 \mathrm{H}-1 \mathrm{~s}$	-0.31	2	0.1922
	10H-1s	-0.1898	2	0.072048

TABLE: 4

MO(¢ $^{\text {) }}$	Atomic orbital	$\begin{gathered} \text { Eigen } \\ \text { vector }\left(\mathrm{c}_{\mathrm{r}}\right) \end{gathered}$	$\begin{gathered} \text { No. of } \\ \text { electrons }\left(n_{i}\right) \end{gathered}$	$\mathrm{n}_{\mathrm{ri}}=\mathrm{n}_{\mathrm{i}} \mathbf{c}^{2}{ }_{\text {ri }}$
9	1C-2px	0.3327	2	0.22137858
	2C-2px	-0.2459	2	0.12093362
	3C-2px	0.2337	2	0.221378
	3C-2py	-0.3011	2	0.18132242
	4C-2py	0.2431	2	0.11819522
	5C-2py	-0.3133	2	0.19631378
	$6 \mathrm{H}-1 \mathrm{~s}$	-0.2622	2	0.13749768
	8H-1s	0.3253	2	0.21164018
10	10H-1s	-0.2643	2	0.13970898
	1C-2py	-0.3398	2	0.23092808
	2C-2px	-0.4017	2	0.32272578
	2C-2py	0.2319	2	0.107556
	3C-2px	0.3844	2	0.29552672
	3C-2py	0.2082	2	0.086694
	4C-2py	-0.2719	2	0.14785922
	1C-2px	-0.2089	2	0.087278
11	1C-2py	-0.3043	2	0.18519698
	2C-2py	0.1933	2	0.07473
	3C-2py	-0.2415	2	0.1166445
	4C-2px	-0.2181	2	0.095136
	4C-2py	0.3572	2	0.25518368
	5C-2px	0.4704	2	0.44255232
	$7 \mathrm{H}-1 \mathrm{~s}$	-0.2155	2	0.09288
	8H-1s	0.2012	2	0.080962
12	1C-2pz	-0.3452	2	0.23832608
	$2 \mathrm{C}-2 \mathrm{pz}$	-0.5832	2	0.68024448
	$4 \mathrm{C}-2 \mathrm{pz}$	0.575	2	0.66125
	$5 \mathrm{C}-2 \mathrm{pz}$	0.3718	2	0.27647048
13	$1 \mathrm{C}-2 \mathrm{pz}$	-0.5031	2	0.506219
	$3 \mathrm{C}-2 \mathrm{pz}$	0.61	2	0.7442
	5C-2pz	-0.4838	2	0.468125

able for pi bonding with iron in ferrocene, and with cobalt in cobaltocene. In order to examin the availability of p orbitals for such a bonding we have drawn the energy level diagram of $\mathrm{C}_{5} \mathrm{H}_{5}^{-}$shown in figure 1. The most stable energy level has eigen value of 1.088 eV , this level has sigma bonds composed of 2 s orbitals of carbon, followed by four more energy levels which are also formed by 2 s orbitals. The involvement of p orbitals starts from molecular energy level six, and continues up to energy level 13 , which is the highest occupied molecular orbital(HOMO). The eigen value of this level is -0.4407 e .V. The energy level prior to this level also has eigen value of 0.4407 e .V. The orbitals available for further bonding with ferrocene or cobaltocene are from these energy

Fula Papro

levels which are composed of 2 pz orbitals of carbon.

Population analysis

The population analysis method, introduced by Mulliken, is used to calculate the contribution of electrons in each occupied MO. The method apportions the electrons of n electron molecule into net population n_{r} in the basic function χ_{r}.

Let there be n_{i} electrons in the $\operatorname{MO} \phi_{i}\left(n_{i}=0,1,2\right)$ and let $n_{\mathrm{r}, \mathrm{i}}$ symbolize the contribution of electrons in the $\mathrm{MO} \phi_{\mathrm{i}}$ to the net population χ_{r} we have
$n_{r, i}=n_{i} C_{r i}^{2}$
where $\mathrm{C}_{\mathrm{r}}=$ Coefficients of atomic orbital for the $\mathrm{i}^{\text {ih }} \mathrm{MO}(\mathrm{r}=1-13)$
The above equation has been solved for 26 electrons of 13 molecular orbitals each having two electrons. The twelve molecular orbitals having no electrons are left over. The coefficient of atomic orbitals that is C_{ri} values are eigen vector values. Zero or nearly zero values have not been considered. The results are included in TABLES 2, 3, 4.

The population analysis also clearly indicates that in molecular orbital 12 and 13, the major contribution is from 2 pz orbitals. Since MO 13 is the HOMO and comprises of 2 pz orbital it is clear that 2 pz orbital of $\mathrm{C}_{5} \mathrm{H}_{5}^{-}$will form pi bonding in ferrocene and cobaltocene.

REFERENCES

[1] P.P.Singh, Deepa Singh, V.B.L.Srivastava; Inorg.Chem. I.J., 1(1-2), 1 (2006).
[2] P.P.Singh, Deepa Singh, V.B.L.Srivastava; Inorg.Chem. I.J., 1(1-2), 32 (2006).
[3] P.P.Singh, Deepa Singh, N.B.Singh, Jai Prakash; Inorg. Chem.I.J., 1(1-3), 12 (2006).
[4] R.C.Mehrotra, A.Singh; Organometallic chemistry, Wiley Eastern Ltd., 247 (1992).
[5] F.A.Cotton, G.Wilkinson, P.L.Gaus; Basic Inorganic Chemistry, $3^{\text {rd }}$ ed., 667 (2001).
[6] I.N.Levine; Quantum Chemistry, 5th ed.Prentice Hall, New Jersey, 664 (2000).
[7] E.Clementi, C.Roetti; At.Data Nucl.Data Tables, 14, 177 (1974).
[8] C.F.Bunge et al.; At.Data Nucl.Data Tables, 53, 113 (1993).
[9] C.F.Bunge et al.; Phys.Rev., A46, 3691, (1992).
[10] S.Wilson; Adv.Chem.Phys., 67, 439 (1987).
[11] E.R.Davidson, D.Feller; Chem.Rev., 86, 681 (1986).
[12] D.Feller, E.R.Davidson; Reviews in Computational Chemistry; K.B.Lipkowitz, D.B.Boyd; Eds, Wiley VCH, 1, 1-43 (1990).
[13] T.Helgaker, P.R.Taylor; Eds., Yarkony Pt II' VCH, 2, 725-856, (1990).
[14] I.N.Levine; Quantum Chemistry, 5th ed.Prentice Hall, New Jersey, 426-436 (2000).
[15] J.H.Lenthe, P.J.Pulay; Comp.Chem., 11, 1164, (1990).
[16] L.G.Vanquickenborne, K.Pierloot, D.Devoghel; Inorg.Chem., 28, 1805 (1989).
[17] S.M Bachrach, K.Lipkowitz, D.B.Boyd; Reviews in Computational Chemistry, Wiley VCH, 5, 3 (1994).
[18] A.E.Reed, R.B.Weinstock, F.Weinhold; J.Chem.Phys., 83, (1985).

