September 2007

Volume 2 Issue 3

Inorganic CHEMISTRY

Trade Science Inc.

An Indian Journal

> Full Paper

ICAIJ, 2(3), 2007 [168-172]

Eigen Vector Based Study Of Molecular Structure Of Cyclopentadienyl Anion

P.P.Singh*¹, R.N.Verma², Gayasuddin Khan² ¹Department of Chemistry, M.L.K.P.G.College, Balrampur, U.P. (INDIA) ²Department of Physics, K.S.Saket P.G.College, Ayodhaya, U.P. (INDIA)

E-mail: dr_ppsingh@sify.com Received: 7th March, 2007; Accepted: 12th March, 2007

ABSTRACT

The MO of $C_5H_5^-$ are formed by linear combination of atomic orbitals of five carbon (2s, 2px, 2py, 2pz) and five hydrogen atom(1s). The energy levels of molecular orbitals have been quantitatively evaluated and energy level diagram have been drawn. The most stable molecular orbital has eigen value - 1.0886 e.V and highest occupied molecular orbital (HOMO) has eigen value of -0.4407. The eigen vector analysis shows that HOMO has contribution of only 2pz orbitals of carbon. The population analysis also indicates that only 2pz orbitals are present in molecular orbitals 13 that is HOMO. The contribution of electrons in the formation of molecular orbitals is described on the basis of coefficient of eigen vector. © 2007 Trade Science Inc. -INDIA

INTRODUCTION

In our recent communication^[1-3], we have made new studies on molecular structure of ferrocene and its derivatives. The study was based on calculation of energy levels, eigen vector values, and population analysis. Since the calculation of the relative energy levels and involvement of various atomic orbitals in the formation of molecular orbital in metallocenes and cyclopentadienyl anion is still a subject of uncertainty^[4], we present a study on cobaltocene^[5] which has a sandwich structure similar to ferrocene and also of $C_5H_5^-$. The application of molecular mechanics to organometallic and transition metal chemistry is growing^[6]. With the help of this technique we present a study on the molecular KEYWORDS

 $C_5H_5^-$; Energy level; Eigen vector; Population analysis.

structure of cobaltocene, and the cyclopentadienyl anion (C_5H_5). In this paper we present a study on molecular structure of C_5H_5 only.

MATERIAL AND METHOD

The study material of this paper is cyclopenta dienyl anion (C_5H_5). The 3D modeling and geometry optimization of(C_5H_5) have been done by CAChe software using molecular mechanics method with EHT option^[5]. Eigen values and eigen vectors values have been obtained with the same software, using the same option. With the help of these values, eigen vector analysis and magnitude of contribution of atomic orbital in MO formation have been studied.

🗅 Full Paper

Theory

The theory has been described in our earlier work^[1], and is also presented here. The MOs are formed by the linear combination of basis functions. Most molecular quantum mechanical methods (such as-SCF, CI etc.) begin the calculation with the choice of a basis functions χ , which are used to express the MOs ϕ_i as $\phi_i = \sum_i c_i \chi_i$. The use of an adequate basis set is an essential requirement for the calculation. The basis functions are usually taken as AOs. Each AO can be represented as a linear combination of one or more slater-type orbitals (STOs)^[7-9]. An STO centered on atom a has the form $(Nr_a^{n-1} e^{\zeta r_a} Y_1^m (\theta_a))$ ϕ_i). Each MO ϕ_i is expressed as $\phi_i = \sum_i c_{ri} \chi_r$, where, the χ_r 's are the STO basis functions. Here we use the STO-6G basis set(which is contracted Gaussian)^{[10-} ^{13]} for the SCF calculation.

The coefficients in linear combination for each MO being found by solution of the Roothaan equation^[14]. The most efficient way to solve the Roothaan equation is to use matrix-algebra methods. In matrix–algebra methods, the matrix elements are computed^[15], and the secular equation is solved to give the set of orbital energies(i.e. eigenvalues). These orbital energies^[16] are used to solve Roothaan equations for the set of coefficients(i.e. eigenvectors) giving a set of MOs. The calculations are done using a computer.

By the above calculation, the values of orbital energies(eigen values) and eigenvectors (coefficients) have been calculated.

A widely used method to analyze SCF wave function is population analysis, introduced by Mulliken^[17-18]. He proposed a method that apportions the electrons of an n-electron molecule into net population's n_r in the basis functions χ_r and overlap populations n_{r-s} for all possible pairs of basis functions.

For the set of basis functions χ_1, χ_b , each MO ϕ_i has the form $\phi_i = \sum_s c_{si} \chi_s = c_{1i} \chi_1 + c_{2i} \chi_2 + ... + c_{bi} \chi_b$. For simplicity, we shall assume that the c_{si} 's and χ_s 's are real. The probability density associated with one electron in ϕ_i is,

 $|\phi_{i}|^{2} = c_{1i}^{2} \chi_{1}^{2} + c_{2i}^{2} \chi_{2}^{2} + \dots + 2c_{1i} c_{2i} \chi_{1} \chi_{2} + 2c_{1i} c_{3i} \chi_{1} \chi_{3} + 2c_{2i} c_{3i} \chi_{2} \chi_{3} + \dots$

Integrating this equation over three-dimensional space and using the fact that ϕ_i and the χ_s 's are normalized, we get

 $1=c_{1i}^{2}+c_{2i}^{2}+...+2c_{1i}c_{2i}S_{12}+2c_{1i}c_{3i}S_{13}+2c_{2i}c_{3i}S_{23}+...$ (A) where the S's are overlap integrals: $S_{12}=\int \chi_1 \chi_2 dv_1 dv_2$, etc. Mulliken proposed that the terms in (A) be apportioned as follows. One electron in the MO ϕ_i contributes c_{1i}^{2} to the net population in χ_1 , c_{2i}^{2} to the net population in χ_2 , etc., and contributes $2c_{1i}c_{2i}S_{12}$ to the overlap population between χ_1 and χ_2 , $2c_{1i}c_{3i}S_{13}$ to the overlap population between χ_1 and χ_3 etc.

Let there be n_i electrons in the MO $\phi_i(n_i=0, 1, 2)$ and let $n_{r,i}$ and $n_{r-s,i}$ symbolize the contributions of electrons in the MO ϕ_i to the net population in χ_r and to the overlap population between χ_r and χ_s , respectively. We have $n_{r,i=} n_i c_{ri}^2$, $n_{r-s,i} = n_i (2c_{ri} c_{si} S_{rs})$

Based on the above principle, the contribution of electrons in each occupied MO has been calculated with the help of eigenvector values.

RESULT AND DISCUSSION

The molecular orbitals of $C_5H_5^-$ are formed by linear combination of five carbon atoms and five hydrogen atoms. Each carbon provides four atomic orbitals(2s, $2p_x$, $2p_y$ and $2p_z$) and each hydrogen atom provides only one atomic orbital(1s). As such 25 atomic orbitals of carbon and hydrogen are involved in the formation of molecular orbitals of $C_5H_5^-$. The LCAO approximations of these orbitals will form 25 molecular orbitals, the eigen values of these orbitals are shown in TABLE 1.

The involvement of various atomic orbitals in the formation of MOs is indicated by coefficients of eigen vector.

The basis functions commonly known as atomic orbitals are represented by χ and molecular orbitals by Φ . The details of χ representing various atomic orbital are as below :

TABLE 1: Eigen values

М.OsФ	Eigen values(eV)	M.OsΦ	Eigen values (eV)
1	-1.0886	13	-0.4407
2	-0.8865	14	-0.236
3	-0.8865	15	-0.236
4	-0.6808	16	0.1629
5	-0.6808	17	0.1629
6	-0.6051	18	0.289
7	-0.5352	19	0.4018
8	-0.5224	20	0.4359
9	-0.5224	21	0.4359
10	-0.5077	22	0.9223
11	-0.5077	23	0.9223
12	-0.4407	24	2.1715

Inorganic CHEMISTRY

4n Indian Journal

Atomic orbital

C_1	=>	2s	=	χ_1	2py	=	χ_{11}		
2px	=	χ_2			2pz	=	χ 12		
2py	=	χ3			C4	=>	2s	=	X 13
2pz	=	χ_4			2px	=	χ_{14}		
C ₂	=>	2s	=	χ5	2py	=	χ 15		
2px	=	χ_6			2pz	=	X 16		
2py	=	χ_7			C_5	=>	2s	=	χ 17
2pz	=	χ_8			2px	=	χ 18		
C ₃	=>	2s	=	χ9	2py	=	X 19		
2px	=	χ_{10}			2pz	=	χ_{20}		

The contribution of , in the formation of molecular orbitals is indicated by coefficient of eigen vector. A higher value of coefficient indicates major combination of atomic orbital, the lower value shows weak contribution. The weak contributions have been omitted, and major contributions are illustrated below:-

LCAO-presentation

Equation -1

Molecular		Coefficients eigen vector	Atomic	
orbit	als	of χ (Major contribution)	orbitals	
Φ ₁ =		$\chi_1(-0.3110), \chi_5(-0.3110), \chi_9(-0.3110),$	2s, 2s, 2s, 2s, 2s,	
æ1		$\chi_{13}(-0.3110), \chi_{17}(-0.3110)$	2s	
Ф.	=	$\chi_1(-0.2634), \chi_5(-0.4362), \chi_{10}(0.0880),$	2s, 2s, 2px, 2s,	
• 2		$\chi_{13}(0.4324), \chi_{17}(0.2734)$	2s	
Φa	=	$\chi_1(-0.3731), \chi_5(0.1352), \chi_9(0.4567),$	2s, 2s, 2s, 2s,	
- 5		$\chi_{13}(0.1470), \chi_{17}(-0.3658)$	2s	
Φı	=	$\chi_1(0.1932), \chi_5(-0.2867), \chi_9(0.2706),$	2s, 2s, 2s, 2py,	
- 4		$\chi_{15}(-0.1655), \chi_{18}(-0.1622)$	2px	
Φa	=	$\chi_1(0.2218), \chi_7(0.1257), \chi_{11}(0.1520),$	2s, 2py, 2py,	
T)		$\chi_{13}(0.2523), \chi_{17}(-0.2930)$	2s, 2s	
Φ,	=	$\chi_2(-0.2270), \chi_7(-0.1953), \chi_{11}(-0.1873),$	2рх, 2ру, 2ру,	
- 0		$\chi_{14}(0.2228), \chi_{19}(0.2365)$	2ру, 2рх,	
Φ-	=	$\chi_4(0.3549), \chi_8(0.3549), \chi_{12}(0.3549),$	2pz, 2pz, 2pz,	
* /		$\chi_{16}(0.3549), \chi_{20}(0.3549)$	2pz, 2pz	
Φ°	=	$\chi_3(0.2395), \chi_7(-0.3391), \chi_{10}(0.1789),$	2ру, 2ру, 2рх,	
T 0		$\chi_{14}(-0.3653), \chi_{19}(-0.2170)$	2рх, 2ру	
Φ_0	=	$\chi_2(0.3327), \chi_6(-0.2459), \chi_{11}(-0.3011),$	2рх, 2рх, 2ру,	
T 9		$\chi_{15}(0.2431), \chi_{19}(-0.3133)$	2ру, 2ру	
Φ_{10}	=	$\chi_3(-0.3398), \chi_6(-0.4017), \chi_{10}(0.3844),$	2py, 2px, 2px,	
* 10		$\chi_{15}(-0.2719), \chi_{19}(0.1715)$	2ру, 2ру	
Φ11	=	$\chi_3(-0.3043), \chi_7(0.1933), \chi_{11}(-0.2415),$	2ру, 2ру, 2ру,	
T 11		$\chi_{15}(0.3572), \chi_{18}(0.4704)$	2ру, 2рх	
Φ12	=	$\chi_4(-0.3452), \chi_8(-0.5832), \chi_{12}(-0.0165),$	2pz, 2pz, 2pz,	
T 12		$\chi_{16}(0.5750), \chi_{20}(0.3718)$	2pz, 2pz	
Ф.,	=	$\chi_4(-0.5031), \chi_8(0.1728), \chi_{12}(0.6100),$	2pz, 2pz, 2pz,	
= 15		$\chi_{16}(0.2041), \chi_{20}(-0.4838)$	2pz, 2pz	
Φ14	=	$\chi_4(0.5143), \chi_8(-0.7728), \chi_{12}(0.7362),$	2pz, 2pz, 2pz,	
≇ 14		$\chi_{16}(0.4183), \chi_{20}(-0.0593)$	2pz, 2pz	
Φır	=	$\chi_4(-0.6069), \chi_8(0.1887), \chi_{12}(0.3016),$	2pz, 2pz, 2pz,	
₩15		$\chi_{16}(-0.6767), \chi_{20}(0.7933)$	2pz, 2pz	

Inorganic CHEMISTRY

An Indian Journal

Molecular		Coefficients eigen vector	Atomic		
orbit	als	of $\chi(Major \ contribution)$	orbitals		
Φ_{16}	=	$\chi_2(-0.4634), \chi_7(-0.5169), \chi_{11}(-0.3187),$	2рх, 2ру, 2ру,		
		$\chi_{14}(-0.5630), \chi_{19}(-0.4763)$	2px, 2py		
ወ	=	$\chi_2(0.5214), \chi_7(-0.3805), \chi_{11}(-0.5417),$	2рх, 2ру, 2ру,		
¥1/		$\chi_{14}(0.3989), \chi_{19}(-0.5331)$	2px, 2py		
Φ_{18}	=	$\chi_2(-0.3498), \chi_5(0.3274), \chi_9(0.3274),$	2px, 2s, 2s,		
		$\chi_{14}(0.3435), \chi_{19}(0.3645)$	2px, 2py		
Φ_{19}	=	$\chi_3(0.8155), \chi_6(-0.7016), \chi_{10}(-0.6731),$	2ру, 2рх, 2рх,		
		$\chi_{15}(-0.8005), \chi_{18}(0.8496)$	2py, 2px		
	=	$\chi_2(0.6486), \chi_7(-0.1888), \chi_{11}(-0.2186),$	2рх, 2ру, 2ру,		
Ψ_{20}		$\chi_{14}(-0.6645), \chi_{19}(0.8579)$	2px, 2py		
ው	=	χ_2 (-0.5079), χ_7 (0.6831), χ_{11} (-0.6440),	2рх, 2ру, 2ру,		
₩21		$\chi_{14}(-0.6408), \chi_{19}(-0.0249)$	2px, 2py		
	=	$\chi_3(-0.6865), \chi_5(-0.8430), \chi_{10}(-0.6482),$	2py, 2s, 2px,		
¥22		$\chi_{13}(0.7942), \chi_{18}(-0.6143)$	2s, 2px		
Φ.,	=	$\chi_1(-0.7428), \chi_6(-0.6686), \chi_9(0.8608),$	2s, 2px, 2s,		
Ψ_{23}		$\chi_{15}(0.7187), \chi_{17}(-0.6499)$	2py, 2s		
Φ24	=	$\chi_1(0.8999), \chi_5(-1.3489), \chi_9(1.2827), \chi_{13}(-$	2s, 2s, 2s, 2s,		
₩ 24		$0.7265), \chi_{18}(0.3259)$	2px		
ሙ	=	$\chi_1(-1.0563), \chi_5(0.3256), \chi_9(0.5295),$	2s, 2s, 2s, 2s,		
Ψ_{25}	_	$\chi_{13}(-1.1823), \chi_{17}(1.3835)$	2s		

Figure 1: Energy level diagram of $C_5 H_5^{-1}$

M.Os	Eigen	Energy	Atomic orbitals
Φ	value(e.V)	levels	
24	2.1715	-	2s, 2s, 2s, 2s, 2s, 2px 2s, 2s, 2s, 2s, 2s
22	0.9223	-	2py, 2s, 2px, 2s, 2px 2s, 2px, 2s, 2py, 2s
19	0.4359	-	2py, 2px, 2px, 2py, 2px 2px, 2py, 2py, 2px, 2py 2px, 2py, 2py, 2px, 2py
18	0.289	-	2px, 2py, 2py, 2px, 2py 2px, 2s, 2s, 2px, 2py
16	0.1629	-	2px, 2py, 2py, 2px, 2py 2px, 2py, 2py, 2px, 2py
14	-0.236	-	2pz, 2pz, 2pz, 2pz, 2pz 2pz, 2pz, 2pz, 2pz, 2pz
13	-0.4407	-	2pz, 2pz, 2pz, 2pz, 2pz, 2pz, 2pz, 2pz,
4	-0.6806	-	2s, 2py, 2py, 2s, 2s 2s, 2s, 2s, 2py, 2px
2	-0.8865	-	2s, 2s, 2px, 2s, 2s 2s, 2s, 2s, 2s, 2s 2s, 2s, 2s, 2s, 2px 2s, 2s, 2s, 2s, 2s, 2s
1	-1.0886	-	2s, 2s, 2s, 2s, 2s

Linear combination of atomic orbitals as presented in equation-1 shows that 2s orbitals are involved in sigma bonding between carbon and carbon, and between carbon and hydrogen. The p orbitals are involved mostly in pi bonding and are also further avail-

170

TABLE:2				TABLE : 4						
МО(Ф)	Atomic orbital	Eigen vector(c _{ri})	No.of electrons(n _i)	$n_{ri} = n_i c^2_{ri}$	MO(Φ)	Atomic orbital	Eigen vector(c _{ri})	No. of electrons(n _i)	$n_{ri}=n_ic^2r_i$	
	1C-2s	-0.311	2	0.193442		1C-2px	0.3327	2	0.22137858	
	2C-2s	-0.311	2	0.193442		2C-2px	-0.2459	2	0.12093362	
	3C-2s	-0.311	2	0.193442		3C-2px	0.2337	2	0.221378	
	4C-2s	-0.311	2	0.193442		3C-2py	-0.3011	2	0.18132242	
	5C-2s	-0.311	2	0.193442	9	4C-2py	0.2431	2	0.11819522	
1	6H-1s	-0.0118	2	0.000278		5С-2ру	-0.3133	2	0.19631378	
	7H-1s	-0.0118	2	0.000278		6H-1s	-0.2622	2	0.13749768	
	8H-1s	-0.0118	2	0.000278		8H-1s	0.3253	2	0.21164018	
	9H-1s	-0.0118	2	0.000278		10H-1s	-0.2643	2	0.13970898	
	10H-1s	-0.0118	2	0.000278		1C-2py	-0.3398	2	0.23092808	
	1C-2s	-0.2634	2	0.138/5912		2C-2px	-0.401 /	2	0.322/25/8	
2	2C-2s	-0.4362	2	0.38054088	10	2C-2py	0.2319	2	0.10/556	
	4C-28	0.4324	2	0.57595952		3C - 2px	0.3644	2	0.29552072	
	$1C_{20}$	0.2734	2	0.14949312		4C 2py	0.2082	2	0.080094	
3	3C-2s	-0.3751	2	0.41714978		1C 2py	0.2080	2	0.097279	
5	5C-2s	-0.3658	2	0.26761928		IC-2px	-0.2089	2	0.06/2/6	
	1C-2s	0 1932	2	0.074652		1C-2py	-0.3043	2	0.18519698	
	2C-2s	-0.2867	2	0.16439378		2C-2py	0.1933	2	0.07473	
4	3C-2s	0.2706	2	0.14644872		3C-2py	-0.2415	2	0.1166445	
	7H-1s	-0.3073	2	0.18886658	11	$4C_{-2nx}$	-0 2181	2	0.095136	
	8H-1s	0.2901	2	0.16831602	11	10 2px	0.2572	2	0.055190	
	1C-2s	0.2218	2	0.09839		4C-2py	0.3572	2	0.25518508	
	4C-2s	0.2523	2	0.12731058		5C-2px	0.4704	2	0.44255232	
5	5C-2s	-0.293	2	0.171698		7H-1s	-0.2155	2	0.09288	
5	6H-1s	0.2377	2	0.11300258		8H-1s	0.2012	2	0.080962	
	9H-1s	0.2704	2	0.14623232		1C-2nz	-0 3452	2	0 23832608	
<u> </u>	10H-1s	-0.3141	2	0.19731762		10 2pz	0.5152	2	0.69024449	
		TABLI	E:3		12	2C-2pz	-0.5652	2	0.06024446	
	Atomic	Eigen	No. of			4C-2pz	0.575	2	0.66125	
MO(Ψ)	orbital	vector(c _{ri})	electrons(n _i)	$n_{ri} - n_i c^2 r_i$		5C-2pz	0.3718	2	0.27647048	
	1C-2px	-0.227	2	0.103058		1C-2pz	-0.5031	2	0.506219	
	2C-2py	-0.1953	2	0.076284	13	3C-2pz	0.61	2	0.7442	
	3С-2ру	-0.1873	2	0.070162		$5C_{-2n7}$	-0.4838	2	0 468125	
	4C-2px	0.2228	2	0.09928		3C-2pz	-0.4050		0.400125	
6	5C-2py	0.2365	2	0.1118645	able for	pi bond	ing with irc	on in ferrocen	e, and with	
	6H-1s	0.2219	2	0.09848	cobalt it	n cobalte	ocene In or	der to exami	n the avail-	
	/H-18	0.2219	2	0.09848		Cobait in coballocene. In order to examine the avail-				
	оп-15 011 1a	0.2219	2	0.09646		ability of p orbitals for such a bonding we have drawn				
	9H-18 10H-16	0.2219	2	0.09646	the energy	gy level (diagram of	C_5H_5 shown	in figure 1.	
	1011-15 $1C_{-}2nz$	0.3549	2	0.09848	The mo	st stable	e energy lev	vel has eigen	value of -	
	$2C_2pz$	0.3549	2	0.25190802	1.088eV	this leve	el has sigma	a bonds com	posed of 2s	
7	2C-2pz 3C-2pz	0.3549	2	0.25190802	orbitals	of carbo	n followed	by four more	enerov lev	
,	4C-2pz	0.3549	2	0.25190802	1 1 1	orbitals of carbon, followed by four more energy lev-				
	5C-2pz	0.3549	2	0.25190802	els which	n are also	o formed by	28 orbitals.	he involve-	
	1C-2pv	0.2395	2	0.1147205	ment of	p orbita	ls starts fro	m molecular	energy level	
	2C-2py	-0.3391	2	0.22997762	six, and	continue	es up to ene	rgy level 13, y	which is the	
	4C-2px	-0.3653	2	0.26688818	highest	highest occupied molecular orbital/HOMO). The				
0	5C-2py	-0.217	2	0.094178	inginest	hin of 4	the lovel in	$0.4407 \circ V$	The energy	
0	6H-1s	0.1927	2	0.074266	eigen va			-0.440/6.V.	The energy	
	7H-1s	0.3089	2	0.19083842	level pr	or to th	nis level al	so has eigen	value of -	
	9H-1s	-0.31	2	0.1922	0.4407e.	V. The c	orbitals avail	lable for furth	ner bonding	
	10H-1s	-0.1898	2	0.072048	with ferm	rocene o	r cobaltoce:	ne are from t	hese energy	

Inorganic CHEMISTRY An Indian Journal

Full Paper <

levels which are composed of 2pz orbitals of carbon.

Population analysis

The population analysis method, introduced by Mulliken, is used to calculate the contribution of electrons in each occupied MO. The method apportions the electrons of n electron molecule into net population n_r in the basic function χ_r .

Let there be n electrons in the MO $\phi_i(n=0, 1, 2)$ and let $n_{r,i}$ symbolize the contribution of electrons in the MO ϕ_i to the net population χ_r we have

$$n_{r,i} = n_i C_{ri}^2$$

where C_{ri} =Coefficients of atomic orbital for the ith MO(r=1-13)

The above equation has been solved for 26 electrons of 13 molecular orbitals each having two electrons. The twelve molecular orbitals having no electrons are left over. The coefficient of atomic orbitals that is C_{ri} values are eigen vector values. Zero or nearly zero values have not been considered. The results are included in TABLES 2, 3, 4.

The population analysis also clearly indicates that in molecular orbital 12 and 13, the major contribution is from 2pz orbitals. Since MO 13 is the HOMO and comprises of 2pz orbital it is clear that 2pz orbital of $C_5H_5^-$ will form pi bonding in ferrocene and cobaltocene.

REFERENCES

- P.P.Singh, Deepa Singh, V.B.L.Srivastava; Inorg.Chem. I.J., 1(1-2), 1 (2006).
- [2] P.P.Singh, Deepa Singh, V.B.L.Srivastava; Inorg.Chem. I.J., 1(1-2), 32 (2006).
- [3] P.P.Singh, Deepa Singh, N.B.Singh, Jai Prakash; Inorg. Chem.I.J., 1(1-3), 12 (2006).
- [4] R.C.Mehrotra, A.Singh; Organometallic chemistry, Wiley Eastern Ltd., 247 (1992).
- [5] F.A.Cotton, G.Wilkinson, P.L.Gaus; Basic Inorganic Chemistry, 3rd ed., 667 (2001).
- [6] I.N.Levine; Quantum Chemistry, 5th ed.Prentice Hall, New Jersey, 664 (2000).
- [7] E.Clementi, C.Roetti; At.Data Nucl.Data Tables, 14, 177 (1974).
- [8] C.F.Bunge et al.; At.Data Nucl.Data Tables, 53, 113 (1993).
- [9] C.F.Bunge et al.; Phys.Rev., A46, 3691, (1992).
- [10] S.Wilson; Adv.Chem.Phys., 67, 439 (1987).
- [11] E.R.Davidson, D.Feller; Chem.Rev., 86, 681 (1986).
- [12] D.Feller, E.R.Davidson; Reviews in Computational Chemistry; K.B.Lipkowitz, D.B.Boyd; Eds, Wiley VCH, 1, 1-43 (1990).
- [13] T.Helgaker, P.R.Taylor; Eds., Yarkony Pt II' VCH, 2, 725-856, (1990).
- [14] I.N.Levine; Quantum Chemistry, 5th ed.Prentice Hall, New Jersey, 426-436 (2000).
- [15] J.H.Lenthe, P.J.Pulay; Comp.Chem., 11, 1164, (1990).
- [16] L.G.Vanquickenborne, K.Pierloot, D.Devoghel; Inorg.Chem., 28, 1805 (1989).
- [17] S.M Bachrach, K.Lipkowitz, D.B.Boyd; Reviews in Computational Chemistry, Wiley VCH, 5, 3 (1994).
- [18] A.E.Reed, R.B.Weinstock, F.Weinhold; J.Chem.Phys., 83, (1985).

Inorganic CHEMISTRY An Indian Journal