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ABSTRACT

A quantitative structure-activity relationship (QSAR) analysis of seven-
teen structurally diverse derivatives of xanthone recently reported as anti-
malarial has been performed using Wiener index, MR, logP, suitableindica-
tor variables and various 2D descriptors. These revealed several important
physicochemical and structural requirements for anti-malarial activity.
Twenty QSAR models reported herein provide interesting insights in un-
derstanding the hydrophobic, steric, electronic, and structural requirements
of anti-malarial activity among these individual set of compounds. The
application of amultiple linear regression analysisindicated that a combi-
nation of topological indices with the ad hoc molecular descriptors and the
indicator parametersyielded astatistically significant model for the activity.
R? ooy REPred, R%dj, PSE are used to validate the models. We have found
that, among the various parameters, Wiener index has highest prediction
ability. These results may be used to further the design and devel opment of
new anti-malarial compounds with better activity.
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INTRODUCTION

According tothe WHO report 2008 Malaria, one
of thelifethreatening diseases, still remainsthe most
significant parasitic diseasein thetropicsand sub-trop-
ics, whereit causesat least 500 million clinica episodes
and claims 1.5 million lives each year, mostly young
children and pregnant women. Emerging widespread
resistance to the available best and less expensive
antimalaria slike Quinine, Chloroquine, Mefloquine
(Figure 1) and S/P(i.e., acombination of sulfadoxine

and pyrimethamine), combined with anincreasing tol-
eranceto insecticidesin themosguito vector, threaten a
global mdariatragedy unlessnew countermeasuresare
developedid. Multidrug-resistant maariaisaserious
problem in Southeast Asiaand travelersto thisregion
arerecommended to use mefloquine or hal ofantrine-
expensive drugswhich have serious side effects such
aspsychiatric or cardiotoxic complications, respectively.

Thexanthone nucleusor 9H-xanthen-9-one (Fig-
ure 2) comprisesimportant class of oxygenated het-
erocycleswith diverse pharmaceutical applicationsin-
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Figurel: Chemical structuresof commer cially availableantimalarial drugs

cluding anti-malaria activity®®. The discovery of
xanthonesasnove antiparasitic agentswith potent ac-
tivity against Plasmodium parasiteshasbeenwiddy re-
portedinliterature but search for axanthonederivative
with very high activity with minimum sideeffectsis4till
under devel opment.

Quantitative Structure-Activity Relationships
(QSARYS) areeffortsto associate mol ecular structure
with chemical propertiesor biochemicd activities. The
basi c concept of aQSAR model isthat the numerical
value of aspecified biological activity measuredfor a
set of mol eculesdepends on the Structure of thesemol-
ecules. QSAR has been applied successfully in many
disciplines, pertaining to drug design and environmenta
risk assessments?. To get aninsight into the structure-
activity rel ationship weneed mol ecul ar descriptorsthat
can efficiently characterize molecular size, molecular
branching or the variationsin molecular shapes, and
caninfluencethe structureanditsactivities. In present
study, anumber of successful multipleregresson QSAR
models are developed on well established physico-
chemica parameterslikeWeiner index, MR, logP, tota
valence connectivity (TVC), total connectivity (TC),
suitableindicator parametersand various 2D descrip-
tors. Thework describes QSAR studieson structuraly
diversexanthonederivativessynthes zed by Riscoeand
coworkers®. This study may help usto design new
anaogueswith better biologica profile.

Toobtainadatistically significant model, wehave
followed maximum R? method; wenotethat themaxi-
mum R? method actudly ind udesacombination of san-
dard error, adjusted R?value®, R, standard error of
estimation, F- ratio and Q-test. In order to avoid the
probability of “Over fitting”” the maximum number of
descriptorsineach multivariateequationisrestricted to
four by using variable sel ection method and to validate

themodels, wecalculated R? _,,inaddition, for better
validation; we have considered the PSE and R?
vauesaso.

EXPERIMENTAL

Database

Thedataset of IC_ related toanti-malarial activity
was collected from literature? and converted into —
logIC,, (pIC, ) for convenience. The compoundsin-
cludedructurdly diversexanthonederivativeswith sub-
stituentslike-Cl, -OH etc. (Figure 2). A completelist
of compounds names, corresponding-logIC,_ pIC, )
along with indicator parameter values are listed in
TABLE 1.

Molecular descriptorsand computer programs

Chem Sketch software (ACD labs 12. freeware)!”
was used to draw 2D and 3D structures of the mol-
eculesand the structureswere optimized to obtain de-
scriptorslike MR, logP, index of refraction (IR) Sur-
facetension (ST). Thetopol ogical indiceslike Wiener
Index (W), Total Connectivity Index (TC), Total Va-
lence Connectivity (TVC), energiesof HOMO, LUMO
and dipolewere cal culated by Chem Draw 3D version
11.08, Thevariousmolecular descriptorsarelistedin
TABLE2.

Hyperchem 8.0 wasused to obtainthe el ectrostatic
potential 2Dcontour diagramsof hematin, compound
(11) and compound (2)®. M S-Excdl and Minitab 14.0

wereusedto performvariousstatistica functions. Since
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8 1

1 2
6 3
5 o 4

Figure?2: Xanthonenucleuswith numbering
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TABLE 1: Name, pl C, and indicator parametersusedin the

present study

lﬁrol. Compound Name 1ICso pICso 12141517
1 3,6-bis-(diethylamino)xanthone 20 -1.3010 0 0 0 O
2 45-diamidinoxanthone 50 -16989 0 0 0 O
3 3,6-bis-(w-hydroxypentyloxy)xanthone 314 -1.49%9 0 0 0 O
4 3,6-bis-(w-diethylaminopentyl oxy)xanthone 012 09208 0 0 0 O
5 4,4 -bis-(w-diethylaminopentyl oxy) benzophenone 0.55 02596 0 0 0 O
6  3-o-diethylaminopentyl oxyxanthone 460 -06627 0 0 0 O
7 3,5-bis-(w-diethylaminopentyl oxy)xanthone 093 00315 0 0 0 O
8  4,5-bis-(w-diethylaminopentyl oxy)xanthone 072 01426 0 0 0 O
9  3,6-bis-(5-morphoalinopentyloxy)xanthone 096 00177 0 0 0 O
10 3EDisTS-(4-methyl- 021 06778 0 0 0 0

piperazinyl)pentyloxy] xanthone

11  3,6-bis-(5-piperidinylpentyloxy)xanthone 004 13979 0 0 0 O

12 3,6-bis-(5-pyrrolidinyl pentyl oxy)xanthone 004 13979 0 0 0 O

13  3,6-bis-w-diethylaminohexyl oxyxanthone 01 10000 0 0 0 O

4-chloro-3,6-bis-o-

diethyl aminohexyloxyxanthone
4 5-dichloro-3,6-bis-o-
diethylaminohexyloxyxanthone
2,4,5,7-tetrachl oro-3,6-bis-o-
diethyl aminohexyloxyxanthone

17 Mangostin

14 005 13010 0 1 0 O

15 015 08239 01 1 0

16 027 0568 1 1 1 1

51 -0.7076 0 0 0 O

12, 14,15, 17 = 1 if —Cl is as substitution on xanthone nucleus
at respective position, 0 otherwise

the cal culations of thesetopological indicesarewell
documented intheliterature, it isnot necessary to du-
plicatethesamehere.

Technique

Beforethe quantum chemica computationstheen-
ergy of conformation was minimized by usngMM2
forcefiddwithfollowing used parameters:

Minimum RM Sgradient: 0.100 stepinterva: 2.0fs

frameinterva: 10 fstermination after: 2000 Steps

Target temperature; 300K

Theenergy minimization wasfollowed by cacula-
tionsof energiesof HOMO, LUMO and dipolefor the
compoundsconsidered here by usng Chem Draw 11.0
3D version. Thedipolewas cal culated with following
parameters.

Method: AM 1 wavefunction, closeshdl (restricted)

Charges Mulliken.

The Electrostatic potential 2D contour diagrams
were obtained by using Semi-empirica ZINDO/S
method (with default settingsexcept Convergencelimit:
0.001 and Iteration limit: 50) followed by Single point
caculationsin HyperChem 8.0. Inmultipleregression
analysis, theindependent variables must be orthogo-

R2 adjustable
3
[us]

D 2 4 B 8
Mo, of Descriptors

Figure3: Corrdation of theadjusted R?valuewith number of

descriptors

na® and consequently the autocorrel ation among the
descriptorswaschecked andisgiveninthecorrelation
matrix inTABLE 3.

Descriptor selection

Oncethedescriptors had been generated, variable
selection was performed to reduce the number of de-
scriptors per compound. Objectivefeature sdectionwas
carried out to choose a subset of descriptorsthat are
best in encoding the activity of interest, snce many of
the cal culated descriptors carry redundant and highly
correlated information or very little useful information.
Objectivefeature selection usestheindependent vari-
ablesaonetofilter out non-useful descriptorswithout
using the dependent variables. This procedure®? in-
volves
1. All descriptorswith samevauesfor al molecules

wereomitted.

2. Theinput variablesin Multiple Linear Regression
(MLR) must not behighly corrdated. Therefore, one
of thetwo descriptorsthat hasthe pair wise corre-
lation coefficient above 0.9 (R>0.9) and hasalarge
correlation coefficient with the other descriptorsin
each classwasdiminated.

Interestingly, we obtained MR (aphysi co-chemi-
cal parameter) and W (atopol ogical index) with high
correlation coefficient (0.973) with each other (see
TABLE 3), so according to the procedure of objective
feature selection the best thing isto avoid any one of
them, instead of thiswe choseto check the prediction
ability of W aswell asMR.

Optimum number of descriptorstobeused

A mgjor decisonin developing successve QSAR
model iswhento stop adding descriptorstothemode.
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TABLE 2: Molecular descriptor sof thecompounds

Sr. no. plC50 W logP MR TC TVC HOMO LUMO IR ST  Dipole
1 -1.3010 1496 6.05 10269 0.0005 24112 -8.161 -4187 1611 483 4.864
2 -1.6989 80 -0.11 7392 0.0006 10046 -10.726 -5382 1761 719 3.473
3 -1.4969 2720 346  109.02 29531 50234 -11.392 -4615 1577 518 2937
4 09208 585 7.15 15045 2461 1.2558 -9.335 -4625 1539 417 1482
5 02596 5488 6.87 14633 7.383 5.0086 -9.382 -4812 1524 383 5123
6 -0.6627 2046 527 10299 8.3528 89862  -9.298 -4974 1563 438 2628
7 0.0315 5636 6.8 150.45 24609 12558  -9.352 -4800 1539 417 0.636
8 0.1426 5416 6.45 15045 2461 1.2558  -9.387 -4921 1539 417 2348
9 0.0177 6858 424 14921 3.0762 52328 -7.963 -4616 1557 456 1.079
10 0.6778 7996 3.68 16255 2.0508 6.2793 -9.133 -4577 1559 439 1849
11 13979 6858 7.75 154.78 3.0762 1.3082 -10.435 -4587 1543 41 1.969
12 13979 5846 6.62 14556 6.1524 26164 -10.242  -4584 1552 424 2123
13 1.0000 6998 821 159.72 1.2305 6.2793  -9.209 -4576 1534 413 2652
14 13010 7302 872 16461 1.0046 6.1662  -9.081 -4.484 1539 421 1741
15 0.8239 7612 9.23 16951 82032 6.0551 -9.079 -4.386 1543 429 2196
16 05686 8316 10.34 179.3 54688 5.8388 -9.09 -4.342 1552 445 1197
17 -0.7076 2106 544 11455 6.0623 4.7656 -10.883 -3.804 1624 539 2953

TABLE 3: Correlation matrix of molecular descriptors
plC50 wW logP MR TC TVvC HOMO LUMO IR ST Dipole

wW 0.864 1

logP 0.700 0.643 1

MR 0865 0.973 0.768 1

TC 0.165 0.097 0.318 0.164 1

TVC 0.059 0181 0.182 0.167 0.47 1

HOMO 0248 0397 0352 0406 -0.087 0.227 1

LUMO 0169 0156 0464 0276 0164 0.218 0.095 1

IR -0.705 -0.707 -0.734 -0.79 -0.327 -0.27 -0.383 -0.246 1

ST -0.729 -0.675 -0.748 -0.763 -0.319 -0.219 -0.461 -0.236  0.977 1

Dipole -0.484 -0589 -0.266 -0.554 0.0328 0.007 -0.126 -0.012 0345 0.263 1

A simpletechniqueto control themodel expansionis
the so-called “breaking point” in theimprovement of
thedatistica qudity of themodd, by analyzingtheplot
of the number of descriptorsinvolved inthemodels
obtained versusthe adjusted R?value. Consequently,
themodel corresponding to the breaking point iscon-
Sidered theoptimum mode.

The graph between the numbersof parametersused
inthe model sagainst the adjusted R?vaueisasshown
infigure 3. Thefigureindicatesthat the optimum num-
ber of descriptorsisto beusedisfour. Therefore QSAR
model swith descriptors morethan four arenot consid-
ered.

Definingmodel applicability domain

For aQSAR model to be moreuseful for screen-
ing new compounds, itsdomai n of gpplication*-*2 must
be defined and predictionswhich fall into thisdomain
may be considered reliablefor only those compounds.
Extent of extrapolation*¥ is one simple approach to
definetheapplicability of thedomain. Itisbased onthe
calculation of the leverage Hi* for each chemical,
wherethe QSAR model isused to predict itsactivity.
Leveragesareobtained from the hat matrix (H), which
isanx n projection matrix specified as:
H=X(X'X)1X’
where X isthe matrix of x-values.
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Figure4: Electrogtatic potential 2D contour diagramsand atomic char gescalculated by Hyper Chem 8.0 (ZINDO/S) of (a)
Hematin and (b) most activecompound (11). Thered color linesarefor negativewhilegreen linesindicatepositiveelectro-

gtatic potential.

Leveragesvauesfal betweenOand 1. A leverage
valuegreater than 3p/n where pisthe number of pre-
dictorsplusthe constant and nisthe number of obser-
vations, isconsidered aslarge. It meansthat the pre-
dicted responseistheresult of asubstantia extrapola
tion of themodel and may benot reliable.

MLR equations

Thefollowingsgnificant monototetravariatemodds
weredeveloped. Theseare asfollowsaong with the
interpretation of QSAR model intermsof the specific
contribution of substituentsand other molecular fea-
turesto themodel ed activity.
pl C50 = - 1.7154 + 0.0003562 W )
n=17,S=0.525, R=0.864, R>= 0.747, R*(adj) =
0.730, PRESS = 5.156, = 0.684, R?  , = 0.686
Thesmadll but positive coefficient of W indicatesthat
bulkinessplay smadl but crucid roleindeciding activity
and hence groups enhancing the bulkinessof molecules
should beretained.
pl C50 =- 4.0904 + 0.030262 M R @)

n=17,S=0.523397, R =0.865, R?>=0.749, R¥adj)=
0.732, PRESS=5.10681, *=0.687, R? ., =0.690
Thesmall but positive coefficient of MR indicatesthat
bulkier and highly polar groupsaremorefavorable.
plC50 = - 2.3288 + 0.15768 logP +

0.0003071 W - 0.9638 15 ©)
n=17,S=0.429034, R = 0.924, R>= 0.854, R*(ad})
=0.82, PRESS=4.39438, ’=0.731, R?  ,,, = 0.756
plC50= - 4.328+0.08787 logP +

0.02876 MR - 0.85115 4
n=17, S=0.49204, R = 0.899, R*=0.807, R*(adj) =
0.763, PRESS = 3.1474, Q?= 0.643, R, =0.680
The negative coefficient of I15indicatesthat Cl at this
position hasnegative effect on biologicd activity there-
forefor better activity it should beremoved.
plC50= - 2.2343 + 0.0003006 W +

0.14072logP - 1.152212 (5)

n=17,S=0.441184, R =0.916, R*= 0.84, R*(adj) =

0.80, PRESS = 2.53035, Q°=0.694, RZ(LOO) =0.730
plC50= - 4.234+0.02845 MR +
0.07384 logP - 1.1061 2 6)
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n=17,S=0.4954, R=0.897, R?=0.805, R*(adj) =
0.760, PRESS = 3.1899, *=0.636, R? = 0.681
The negative coefficient of 12 indicatesthat Cl at posi-
tion 2 should be avoided to enhancetheactivity.
pIC50= - 2.2343 + 0.0003006 W +

0.14072logP - 1152217 @
n=17, S=0.441184, R=0.919, R?= 0.845, R?(adj)
=0.809, PRESS=2.5303, *=0.694, R? ,,=0.730
pIC50= -4.234+0.02845MR +

0.07384 logP - 1.1061 17 )
n=17,S=0.4954, R = 0.897, R?= 0.805, R¥(adj) =
0.760, PRESS = 3.1899, Q?= 0.636, R? = 0.681
Thenegativecoefficient of 17 indicatesthat presence of
Clisunfavorableat thisposition.
pIC50=0.711 + 0.0755 |4 + 0.00027684 W -

0.03896 ST - 0.05829 TVC )

n=17,S=0.518294, R = 0.896, R*= 0.803, R? (adj)

=0.737, PRESS=6.8248, Q*=0.582, RZ(LOO) =0.654
plC50= -2.460-0.0854 14 +0.002694 MR -
0.0216 ST - 0.0392 TVC (10)

n=17,S=0.5583,R=0.878, R=0.771, R? (ad)) =
0.695, PRESS = 3.7402, Q*= 0.417, R? = 0.579
Thepositive coefficient of 14in eg. 9 and negativein
eg. 10indicatesthat groupslike Cl which haspositive
resonance but negative inductive effect should bere-
tained at position 4 for good activity.
pIC50=-21.89+0.0468 LUMO +0.0003172 W -

0.14943 ST +17.49 IR (11)
n=17,S=0.488, R =0.908, R = 0.825, R¥adj) =
0.767, PRESS=26.662, *=-0.632, R’  ,, =0.503
pIC50=-26.66-0.2207 LUMO +0.030193 MR -

0.13573ST +17.711R (12)
n=17,S=0.5144, R=0.898, R*= 0.806, R? (ad)) =
0.741, PRESS=32.227, = -0.972, R ., =0.477

The positive coefficient of LUMO ineq. 11 and
negativein egq. 12 indicatesthat theligand donate as
well asaccept el ectron density from receptor. Thisis
cong stent with finding of Riscoethat theligand prob-
ably involvesco-ordination between Fe of receptor with
keto oxygen of xanthone nucleusinligand andionic
interaction between protonatabl e nitrogen atomswith
heme propionate groups. Thisproposition could befur-
ther judtified by thequantum chemigry ca culaionsstud-
ieswhen Electrostatic potentia 2D contour diagrams
(Figure4) of hematin and most active compound (11)

—= Pyl Peper

are evaluated.The presence of noticeable amount of

negative charge on Fein hematin supportstheideaof

possi ble back bonding between Fe and xanthone de-

rivtive.

pIC50= - 2.2662 + 0.00030114 W + 0.15943 logP -
0.0172 Dipole- 0.9667 15 (13)

n=17,S=0.4461, R = 0.924, R?= 0.854, R? (ad}) =

0.805, PRESS = 4.84265, Q= 0.704, RZ(LOO) =0.729
pIC50= --4.050+0.02716 MR +
0.9717 logP -0.0451Dipole- 0.864 15 14

n=17,S=0.5097, R = 0.900, R*= 0.809, R? (adj) =
0.746, PRESS=3.1173, @*= 0.613, R, = 0.658

Thedipoleplaysanegativeroletowardsactivity.

pIC50= -2.233+0.0003093 W +
0.15771logP - 0.02714 TVC - 0.915715 (15)

n=17,S=0.4405, R=0.926, R?=0.857, R? (adj) =

0.810, PRESS = 4.9632, Q7 = 0.696, R? = 0.731
plC50= -4.267+0.08814 MR +
0.02883logP- 0.0183TVC-0.81815  (16)

n=17,S=0.5097, R = 0.900, R?= 0.809, R¥(adj) =

0.746, PRESS = 3.118, Q? = 0.576, R? , = 0.648
pIC50= - 2.478 +0.05147 TC + 0.0003204 W -
1.1316115 + 0.1433 logP 17)

n=17,S=0.4232, R=0.932, R>= 0.868, R? (adj) =

TABLE 4: Comparison between observed and calculated value
(by eg. 20) of pI C_ and lever ages

S Obs Calc.Value Calc. Value Calc. Value Lev_ergge
no. Value by MLR byMLR20 byM L R20 (limit
20 (LOO) (L50) 0.99)
1 -1301 -1.1208 -0.8716 -1.5917 0.580293
2 -1699 -1.7409 -1.9673 -2.5303 0.843588
3 -1497 -1.2559 -0.4334 -0.2334 0.773402
4 0921 0.4220 0.3801 0.3249 0.077430
5 0.260 0.6892 0.7792 0.8285 0.173143
6 -0.663 -0.7866 -0.8459 -0.9149 0.323866
7 0.032 0.3489 0.3769 0.4246 0.081214
8 0143 0.2825 0.2958 0.2632 0.086828
9 0018 -0.1519 -0.2979 -0.2228 0.462852
10 0.678 1.1653 1.2890 1.3670 0.202443

0.376053
0.228582
0.093067
0.109905
0.135513
0.221256
0.230564

[y
[

1.398
1.398
1.000
1.301
0.824
0.569
-0.708
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1.4822
0.9659
0.7401
0.7535
0.7882
0.9223
-0.8319

1.5329
0.8378
0.7134
0.6858
0.7826
1.0228
-0.8692

1.7272
0.9153
0.7762
0.6434
0.7758
1.0352
-0.8754
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Figure5: Comparison between observed and calculated value
(by eg. 20) of pIC50

0.825, PRESS = 5.3105, Q°= 0.621, RZ(LOO) =0.679
plC50= -4.501+0.02962 MR + 0.03969TC -
0.9765 15 + 0.07533 logP (18)

n=17, S=0.50006, R =0.903, R*= 0.816, R*(ad)) =
0.755, PRESS=7.5084, *=0.622, R? ,, = 0.635
The coefficient of logPissmall but positive suggesting
ether lack of hydrophobicinteraction betweentheligand
and receptor or very little hydrophobic interactions.
pIC50= -41.64+0.03314MR-0.3425HOMO +

27.87 IR - 0.21503 ST (19)
n=17,5=0.431872, R=0.929, R*>= 0.863, R*(ad))

=0.817,PRESS=6.1572, *= 0.623, RZ(LOO) =0.666
plC50= -39.1563 + 0.0003617 W + 28.4963 IR -
0.23824 ST -0.3791HOMO (20)

n=17,S=0.36864, R =0.948, R?= 0.900, R*(adj) =
0.867, PRESS=3.6259, *=0.778, R* ,, =0.782

Thelargepositive coefficient of IR indicatesthat
presence of diphatic carbon chain and cyclisation has
positiveimpact onactivity. ReplacngM R withW changed
the dtatistic significantly thisshowsthat W predictsthe
activity better than MR. The positive coefficient of IR
indicatesthat cyclisation play positiverolein determin-
ingactivity. Inal theequations ST, whichisconsidered
asinversegtericfactor hasnegativecoefficient thisindi-
catesthat it, play anegativerolein determining thebio-
logicd activity. Thenegative coefficient of HOMOindi-
catesthat the nucleophilicity of ligand has negative ef-
fect onbiological activity and hencegroupswhichin-
crease nucleophilicity should not beincorporated.

Indl theabovemodd s, nisnumber of compounds
in data set, R isthe correlation coefficient, R?isthe
coefficient of determination, R?_, isadjusted coefficient
of determination, SE isthe standard error of estimate,
Fisthevarianceratio, QisPogliani test, All thoseequa
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Figure 6 : Plot of residual (equation 20) vs experimental
values

tionsresultinginlow vaueof R (<0.50) werenot con-
Sidered being satigticdly sgnificant. Thehighvauesof
R, R?, F, Qandlow vaueof SE indicatesthat models
haveexcdlent statistical Sgnificance. Moreover theval-
uesof R?_; whichisconsidered asbetter parameter to
judgethe predictive power compared to R?, are close
tothevauesof R? thereby confirming high predictive
power of models. Thevaues of RZ(LOO) again support
our findings. Comparison of va ues predicted by equa
tion 20withexperimentd -loglC, andresidud arelisted
inTABLE 4. Inorder toinvestigatethe possibleexist-
enceof outliers, the extent of the extrapol ation method
was applied to the 17 compoundsthat constitute the
entiredataset. Theleveragesfor all the 17 compounds
were computed and no compound liesoutsidethe do-
main (TABLE4).

A graph between observed and cd culated (by equa
tion 20) valuesisasshownin figure5which clearly
indicateagood linear relationship. Figure6isaplot of
residua (equation 20) vsexperimentd values. Theex-
tensiveandysisclearly indicatesthat thequality of cor-
relation increases as we pass from univariate to
tetravariate correlations. Also, theresultsindicate that
multiple correlations give better estimates than the
univariate correlationsand that themultivariate corrd a
tionswherein W isinvolved are better than those cor-
relaionswhereMRisinvolved.

Validation

Deriving 4-parametric equationsfrom 17 molecules
may be done by chance. Therefore, in order to prove
that themodelsarenot chancy wehavecaculated R,
R and PSE also.

2
(LOO)?
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TABLE5: Satistical data of variousmodelsderived along
with predictivesquareerror (PSE)

M odel

o N R LR® PRESS PSE R’
1 17 0.864 0.253 515600 0.303 0.684
2 17 0.865 0.252 510681 0.300 0.687
3 17 0.924 0.146 439438 0.258 0.731
4 17 0.899 0.192 3.14740 0.185 0.643
5 17 0916 0.161 253035 0.149

6 17 0.897 0.195 3.1899 0.187

7 17 0919 0.155 253035 0.149

8 17 0.897 0.195 3.1899 0.187  --
9 17 0.896 0.197 6.82481 0.401 0.583
10 17 0.878 0229 3.7402 0220 0.417
11 17 0908 0.175 26.6620 1.568 0.000
12 17 0.898 0.194 322273 1.896 0.000
13 17 0924 0.146 4.84265 0.285 0.704
14 17 0900 0.190 3.1173 0.183 0.613
15 17 0926 0.142 496318 0.292 0.69
16 17 0900 0.190 3.1183 0.183 0576
17 17 0932 0.131 53105 0312 0675
18 17 0903 0.185 7.50842 0.441 0541
19 17 0929 0.137 615719 0362 0.623
20 17 0948 0101 3.62587 0.213 0.778

Predictivecorrelation coefficient (Rzpred)

The predictive capability of the2D-QSAR modes
wasdetermined by crossvaidation. Thepredictivecor-
relation (R, ), based onthetest set mol ecules, iscom-
puted using: R2pr « = (SD-PRESS)/SD Where SD is
the sum of squared deviationsbetween biological ac-
tivitiesof thetest set and mean activitiesof thetraining
set moleculesand thepredictiveresidua sum of squares
(PRESS) isthesum of squared deviationsbetween cal-
culated and experimenta activity valuesfor every mol-
ecule. TheR® _, PRESS, PSE and 1-R*valuesfor all
themodelsarelistedin TABLES.

To have better cross validation we further used
“Leave OneOut (LOO)” method and obtained R?
for all themodels. To be areasonable QSAR model,
the proposed equations must be useful to end-users.
For practica purposes of end-usersthe use of square
root of PRESS/ N, whichiscalled predictive square
error (PSE), ismoredirectly related to the uncertainty
of the predictiong™™. The PSE values al so support our
results(TABLEDS).
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For a more exhaustive testing of the predictive
power of themodel number 20, except for theclassica
LOO crossvalidation technique, thevalidation of the
model was carried out by aleavefive out cross-(L50)
validation procedure. TheresultsareR? ., =0.782
and R? ., = 0.753. It isimportant that the model is
quite stableto theinclusion—exclusion of compounds
as measured by values of LOO and L50 correlation
coeffidents. Theresultsof predictionsonthecross-vdi-
dationtestillustrated the qudity of the obtained model.
Considering the fact that the 2D-QSAR models
were ableto reproduce the experimental valuesand
that arevalidated by appropriate statistical procedures,
they could be useful in designing more potent anti-ma-
larid xanthonederivatives.

RESULTSAND DISCUSSIONS

Wehave used agood number of well established™®
18 QSAR descriptors. An important step for model
building wasto definethe number of independent vari-
ablesinthemain QSAR equation. On MLR method,
we built consecutively severd equationswith different
number of descriptors upto six variables and tested
objective sdl ection method aswell asweplot thegraph
between R? adj. and number of descriptorsto get opti-
mum number of parametersessentia for best fit model.
Sincethevalueof theadjusted R?vauewill decreaseif
the added variable does not reduce the unexplained
variation enough to affect theloss of degrees of free-
dom, thismeansif avariableis added that does not
contributeitsfair share, then the adjusted R2vauewill
actudly declineand hencethe procedurefor selection

ey, Onganic CHEMISTRY
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of optimum number of descriptorsisbased onthebresk
point rule (thechangein the s ope) showingthecritica
improvement of the adjusted R?value over the number
of the descriptorsin each model. Thisstep ensuresthe
over parameterization of themode and preventsto some
extent the chance correl ations between the descriptors.

From various QSAR modelsdeveloped hereitis
clear that eventhough W and MR have strong correla
tion with each other and with pIC,, but W has better
predictiveability than MR Thus Objectivefeature se-
lection doneisnot sufficient to select the best descrip-
torsfor model generation.

ReplacinglogPwithHOM O increased the predic-
tiveability; thissuggeststhat |ogP haslittleinfluenceon
activity. A combination of aset of parametersservesas
abetter QSAR modd predictor thanany single param-
eter. Moreover, theequation 20 indicatesthat acombi-
nation of topologica and physico-chemica parameters
isbest suitablefor QSAR modd creation.

It should be noted that we have utilized only the
MLR method for constructing the QSAR models. For
such ardatively low number of molecules, the use of
nonlinear models such as artificial neural network
(ANN) may produce better predictability for the sug-
gested QSAR. The chemical interpretation of ANN
modelsisdifficult comparedto MLR andlysisand re-
quireshighleve computer skills. Work isunder progress
to obtain QSAR modelsby ANN aso. Meanwhile, the
predictivity of the proposed QSAR modelsby MLR
andysiswasnot low. MLR equationswith R?adj greater
than 0.75 can be considered asgood predictive mod-
els. Therefore, in thiswork we did not try to obtain
extrapredictive mode sby nonlinear methods such as
ANN. To add further, together with the LOO valida-
tion, R2 » and Rzpr - hasunambiguously demonstrated
therobustness of the QSAR model sand their power of
predicting externa datawith accuracy.

Insummary, an extensve QSAR analysishasbeen
performed on awidevariety of astructurally diverse
set of xanthone derivativesand present investigations
reved ed several important phys cochemical and struc-
turd requirementsfor anti-maarid activity. Theresults
derived for these completely new set of ligands could
bebeneficid inthehandsof medicind chemiststo fur-
ther the design and development of more and better
anti-mdarid agentsinthefuture.

ACKNOWLEDGMENT

We arethankful to Mr. MeghShyam Petil, II1CT,
Hyderabad, India, Mr. Mangesh Tihile, National
Chemical laboratory, Pune, Indiaand Naseer Baig,
Indian Institute of Science, Banglore, Indiafor pro-
viding data, substantia computational work and help-
ful discussons.

REFERENCES

[1]
[2]

(3]
[4]

World Maaria Report 2008, WHO, 141 (2008).
M.Riscoe, J.X.Kelly, R.Winter; Curr.Med.Chem.,
12, 2539 (2005).

M.M.M.Pinto, M.E.Sousa, M.S.J.Nascimento;

Curr.Med.Chem., 12, 2517 (2005).

A.Thakur, S.Baghel, K.Tiwari, M.Thakur,

K.S.Chanddl, GL.Badole, A.Thakkar; Res.J.Chem.

Environ., 12(3),68 (2008).

M.Riscoe, J.X .Kelly, R.Winter; Curr.Med.Chem.,

12, 2539 (2005).

V.K.Agrawal, V.K.Dubey, B.Shaik, J.Singh,

K.Singh, PV.Khadikar; J.Indian Chem.Soc., 86, 337

(2009).

Advanced Chemistry Devel opment, Inc., 110 Yonge

Street 14th Floor, Toronto, Ontario, M5C 1T4,

Canada (www.acdl abs.com).

(a) Cambridge Soft Corporation, 100 Cambridge

Park Drive, Cambridge, MA, 02140 USA; (b)

Hypercube Inc. www.Hyper.com.

[9] AK.Srivastava A.Srivastava, A.Jaiswal, M.Jaiswal;
J.Indian Chem.Soc., 85, 721 (2008).

[10] K.Kraim, D.Khatmi, Y.Saihi, F.Ferkous, M .Brahimi;
Chemometrics Intelli.Lab.Syst., 97, 118 (2009).

[11] A.Tropsha, P.Gramatica, V.K.Gombar; QSAR
Comb.Sci., 22, 1 (2003).

[12] A.Golbraikh, A.Tropsha; J.Mol.Graph.Modd ., 20,
269 (2002).

[13] M.Shen, C.Beguin, A.Golbraikh, J.Stables, H.Kohn,
A.Tropsha; J.Med.Chem., 47, 2356 (2004).

[14] A.C.Atkinson; ‘Plots; Transformations and Regres-
sion’, Clarendon Press, Oxford (UK), (1985).

[15] A K.Srivastava, A.Srivastava, A .Jaiswal, M .Jaiswal;
J.Indian Chem.Soc., 85, 721 (2008).

[16] Qian-Nan Hu, Yi-Zeng Liang, Kai-Tai Fang; J.Data
Sci., 1, 361 (2003).

[17] J.Devillers, A.T.Balaban; ‘Topological indicesand
related descriptos in QSAR and QSPR’, Gordon
and Breach Science Publishers, The Netherlands,
(1999).

[18] O.lvanciuc, J.Gasteiger; Ed., ‘Handbook of

Chemoinformatics’, Wiley—V CH, (2003).

[5]
[6]

[7]

8]

Onganic CHEMISTRY o
Au Tudian Yournal


http://www.Hyper.com.

