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ABSTRACT 
 
The stability analysis for a class of discrete-time linear systems with state saturation 
nonlinearity is studied in this paper. By introducing a free matrix whose infinity norm is 
less than or equal to 1 and a diagonal matrix with non-positive diagonal elements, the 
discrete-time state under saturation constraint is confined in a convex hull. In this way, a 
stability criterion for discrete-time linear systems with state saturation to be 
asymptotically stable is obtained in terms of bilinear matrix inequalities that can be 
resolved using the presented iterative linear matrix inequality algorithm. The state 
feedback control law synthesis problem is also resolved and the corresponding iterative 
linear matrix inequality synthesis algorithm is given. Two numerical examples show that 
the presented method is applicable and effective. 
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INTRODUCTION 
 

State saturation nonlinearity is commonly encountered in control engineering, such as computer storage facilities 
with finite precision, mechanical systems with position and speed restrict and artificial neutral networks[1]. Such systems are 
defined in a hypercube since all the states are confined in the unit hypercube. The state saturation is commonly ignored in 
analysis and design procedure for simplicity. However, it has been verified that the closed-loop asymptotical stability cannot 
be guaranteed if this saturation constraint is neglected. For this reason, the stability analysis for such systems is a topic of 
recurring interest in recent years. 

The asymptotical stability of linear systems with state saturation is first investigated in[1], and be generalized to filter 
design problem[2],[3]. Regarding the second-order system as a special case, the corresponding stability criterion was presented 
in[4], which was further extended to the nth order systems[5]. Based on these results, the asymptotic stability problem for linear 
systems with partial state saturation nonlinearity was straightforwardly given[6]. The obtained results can be classified into 

two categories. The first category is to study the norm characteristics of the system matrix, such as 2 1A   and 1A  [7],[8], 

and the second category is to restrict the Lyapunov matrix P  to be special forms[9]. Recently, Fang et. al. introduced a 
diagonal dominant matrix with negative diagonal elements to bound the state under saturation constraint within a convex hull 
and used the robust control theory to obtain a sufficient stability criterion for continuous-time linear systems with state 
saturation nonlinearity[10]. This result is further generalized to discrete-time systems and an asymptotical stability criterion 
was given[11]. 

This paper attempts to give some stability criteria for discrete-time linear systems with state saturation nonlinearity. 
Borrowing the idea of [10], [11], we introduce a free matrix whose infinity form is less than or equal to 1 and a diagonal matrix 
with non-positive diagonal elements to bound the discrete-time state with saturation constraint within a convex hull. Then, 
the robust stability theory on ploytopic-type uncertain systems is applied to obtain a sufficient criterion for such systems to be 
asymptotically stable. Based on this criterion, the state feedback control law synthesis method can be easily given. The 
obtained results are formulated in terms of bilinear matrix inequalities that can be resolved numerically using the presented 
iterative linear matrix inequality algorithm. Two numerical simulations show that the presented method is applicable and 
effective. 

The notations used in this paper are fairly standard. The superscript T  stands for matrix transposition, while 

superscript �-1� presents the inverse of a matrix. 
n  denotes the n  dimensional Euclidean space and n m

  is the set of all n  

by m  matrices. nI  is an n n  identity matrix. 

 denotes the infinity norm of a matrix, that is, 1

1

 max
n

i m ij
j

G g 


  for 

matrix [ ] m n
ijG g 

  . For symmetric matrices X and Y , the notation X Y (respectively, X Y ) means that X Y is 

positive definite (respectively, positive-semidefinite). 
 

PROBLEM FORMULATION 
 

Considers the following discrete-time linear system with state saturation nonlinearity, 
 

( 1) ( ( ))x k h Ax k    (1) 
 

where 1 2( ) : { ( ) [ ( ) ( ) ( )] : 1 ( ) 1, [1, ]}n T n
n ix k x k x k x k x k x k i n       D is the state vector A   [ ] n n

ija 


is a constant matrix, ( )h  is the standard saturation function described by 

 

1 1
1

2 2
1

1

( )

( )
( ( ))

( )

n

j j
j

n

j j
j

n

n nj j
j

h a x k

h a x k
h Ax k

h a x k







  
  

  
 

  
 

   
 
 
 

  
  
  









  (2) 

 
with, for each [1, ]i n , 
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1, if 1

( ) , if 1 1

1, if 1
ih



  






   
  

  (3) 

 
Before proceeding further, we first give some lemmas which will be used in the proof of our main results. 

Lemma 1 (Hu et. al.[12]): Let 11 2, , , , nu u u u 
I , 21 2, , , , nv v v v 

J . co{ , [1, ]}iu u i  I , co{ , [1, ]}jv v j  J , then 

 

co : [1, ], [1, ]
i

j

u u
i j

v v

     
     

     

I J   (4) 

 
where co{} denotes the convex hull. 

 
Let nD  be the set of n n  diagonal matrices whose diagonal elements are either 1 or 0. There are 2n  elements in 

nD  and we denote its element as iD , [1, 2 ]ni . Denote i n iD I D   . It is easy to see n
iD D , if n

iD D . For example, if 

2n  , then 
 

2 0 0 1 0 0 0 1 0
, , , .

0 0 0 0 0 1 0 1

         
         
         

D  

 
Lemma 2: Let [ ] n n

ijG g 
   with 1G


  and 1 2diag{ , , , }n     with 0i  , [1, ]i n , then 

 

 ( ( )) co ( ) ( ) ( ), [1, 2 ]n
i ih Ax k D Ax k D G A x k i

      (5) 

 

Proof: Noting 1G

 and ( ) 1ix k  , [1, ]i n , we have

1 1

( ) ( 1 )
n n

i ij j ij
j j

G x k g x k g G


 

      and

1 ( ) 1iG x k   . Noting also 0i  , [1, ]i n , we have ( ) 0i iA x k   when ( ) 1iA x k   and ( ) 0i iA x k  when ( ) 1iA x k  

. Then, we have ( ) ( ) 1i i iG A x k  when ( ) 1iA x k   and ( ) ( ) 1i i iG A x k    when ( ) 1iA x k   . In the absence of state 

saturation, ( ( )) ( )i i ih A x k A x k , it is obvious ( ( )) co{ ( ), ( ) ( )}i i i i i ih A x k A x k G A x k  , i.e., 

( ( )) ( ( )) (1 )( ) ( )i i i i i ih A x k A x k G A x k       with 0   satisfying 0 1  . In the event of state saturation, 

( ( )) 1i ih A x k   when ( ) 1iA x k  , or ( ( )) 1i ih A x k   when ( ) 1iA x k   . When ( ) 1iA x k  , we can obtain 

( ( )) 1 co{ ( ),i i ih A x k A x k   ( ) ( )}i i iG A x k since 1i i iG A  . When ( ) 1iA x k   , we can also obtain 

( ( )) 1i ih A x k    co{ ( ), ( ) ( )}i i i iA x k G A x k   since ( ) ( ) 1i i iG A x k   . The desired result follows immediately by using 

Lemma 1. 
Remark 1: System (1) is a nonlinear system whose analysis and synthesis problems are difficult to perform. We here 

introduce a matrix G satisfying 1G

 and a diagonal matrix 1 2diag{ , , , }n      with 0i   to bound the discrete state 

( )x k  under saturation constraint in a convex hull co{ ( )iD Ax k  ( ) ( )}iD G A x k  . This makes the original nonlinear system 

(1) bounded by a discrete-time linear system with ploytopic-type uncertain parameters whose analysis and synthesis problem 
are fairly easy using the robust control theory on polytopic-type uncertain systems. 
 

STABILITY ANALYSIS 
 

The following theorem gives a sufficient condition for system (1) to be asymptotically stable. 
Theorem 1: The discrete-time linear system (1) with state saturation is asymptotically stable, if there exists a symmetric 
positive-definite matrix P and matrices G and X , 1 2diag{ , , , }n      with 0i  , [1, ]i n  such that 

 
1G


   (6a) 

 

(( ) )
0, [1, 2 ]

T T
ni i i

i T

P D D A D G X
i

X X P

     
    

    
  (6b) 
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Proof: It follows from Lemma 2 that 
 

( ( )) co{ ( ) ( ) ( )}, [1,2 ]n
i ih Ax k D Ax k D G A x k i      (7) 

 
that is, system (1) can be written as 

 
2

1

( 1) (( ) ) ( )
n

i i i i
i

x k D D A D G x k   



      (8) 

 

where 0i  , [1, 2 ]ni ,
2

1

1
n

i
i




 . 

 
For polytopic-type uncertain system (8), we design a Lyapunov functional as 
 

( ( )) ( ) ( ), 0TV x k x k Px k P    (9) 
 

and the forward difference of this functional can be given as 
 

2 2

1 1

( ( )) ( ( 1)) ( ( ))

(( ) ) ( ) (( ) ) ( ) ( ) ( )

( ) ( )

n nT

T
i i i i i i i i

i i

T

V x k V x k V x k

D D A D G x k P D D A D G x k x k Px k

x k x k

      

 

   

   
        
   

 

    (10) 

 
where 

 
2 2

1 1

(( ) ) (( ) )
n nT

i i i i i i i i
i i

D D A D G P D D A D G P      

 

   
         

   
    (11) 

 
Noting the fact that 
 

1( ) ( ) 0TX P P X P     (12) 
 

holds for any matrix X and symmetric positive-definite matrix P , we have 
 

1 T TXP X X X P      (13) 
 

Noting this fact and inequality (6), we have 
 

2

1
1

(( ) )
0

n T T
i i i

i T
i

P D D A D G X

XP X




 




   
 

  
  

 
and then 

 
2

1

1

(( ) )
0

n

T T
i i i i

i

T

P D D A D G X

XP X

   





 
   


 
   

   (14) 

 

By using Schur complement lemma[13], this inequality further implies 0  and then ( ( ))V x k   
2

( )x kò with 

max ( ) 0   ò , and then system (1) is asymptotically stable. This completes the proof. 

In Theorem 1, the diagonal elements of matrix   should satisfy 0i  . As a special case, we can set 0   and obtain the 

following corollary. 
Corollary 1: The discrete-time linear system (1) with state saturation is asymptotically stable, if there exist a 
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symmetric positive-definite matrix P and matrices G , X  satisfying (6a) and 

( )
0, [1, 2 ]

T T
ni i

T

P D A D G X
i

X X P

  
  

    
  (15) 

 
Furthermore, if we choose X P  as a special case, we can obtain the following corollary. 

Corollary 2: The discrete-time linear system (1) with state saturation is asymptotically stable, if there exist a symmetric 
positive-definite matrix P and a matrix G  satisfying (6a) and 
 

( )
0, [1, 2 ]

T
ni iP D A D G P

i
P

  
  

  
  (16) 

 
Remark 2: In Theorem 1, the Lyapunov functional (9) is with a constant Lyapunov matrix P . Motivated by the facts 

that nonlinear system (1) is transformed into polytopic-type uncertain system (8) and that the parameter-dependent Lyapunov 
functional is very popular for polytopic-type systems, we can design a Lyapunov functional dependent on i  for system (8). 

Noting also that i  denotes the saturation factor for system (1), we refer to this parameter-dependent Lyapunov functional as 

saturation-dependent Lyapunov, that is, 
 

2

1

( ( )) ( ) ( )
n

T
i

i i

V x k x k P x k


 
  

 
  

 
where iP , [1, 2 ]ni  are symmetric positive-definite matrices to be determined. Following the same philosophy as 

in the proof of Theorem 1, we can straightforwardly obtain the corresponding stability criterion. We can refer to references 

[11], [14] for detail. 
Noting that stability criterion (6) is a bilinear matrix inequality condition and thus it is difficult to resolve 

numerically using the matured numerical algorithm. To transform it to a numerically tractable one, we follow the philosophy 

in[11] and transform [ ] n n
ijG g 

   with 1G

  as 

 
1, [1, ], [1,2 ]n

i jh Gy i n j    

 
where H  is the set of n  dimensional row vectors which has only one nonzero element which is 1 , ih H  is an 

element whose ith element is 1, Y  is the set of n  dimensional column vectors whose elements are 1 or -1. There are 2n  

elements in Y  and we denote its jth element as jy . Then, the following iterative linear matrix inequality algorithm can be 

given. 
Algorithm 1: Asymptotical stability for the discrete-time linear system (1) with state saturation. 
Step 1) Select a matrix G satisfying 1G


  and 0  . Set 0k  , 0k   be a sufficiently big scalar. 

Step 2) Solve the following linear matrix inequality optimization problem for X , P  and  , 

 

,min X P   

 
s. t. , [1 2 ] , n

i i     

 
If 0   or k  , go to Step 4). Otherwise, set 1k k  , k  , go to the next step. 

Step 3) Using X  and P obtained previously, solve the following linear matrix inequality optimization problem for 
 , G  and  , 

 

,min G   

 

, [1, 2 ]

s. t. 1, [1, ], [1, 2 ]

0

n
i

n
i j

i

h Gy i n j





   


  
 
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If 0   or k  , go to Step 4). Otherwise set 1k k  , k  , go to Step 2). 

Step 4) If 0  , system (1) is asymptotically stable. Otherwise, no conclusion can be drawn. Different  and G  

should be chosen and algorithm can be repeated from Step 1). 
We are now in the position to consider the synthesis problem for system (1). Consider system (1) with control input ( )u k , 

that is 
 

( 1) ( ( ) ( ))x k h Ax k Bu k     (17) 
 
where ( ) mu k  is the control input vector, and [ ] n m

ijB b 
   is a constant matrix. Our objective is to design a state 

feedback control law ( ) ( )u k Fx k  for the resultant closed-loop system to be asymptotically stable. The result of Theorem 1 

can be straightforwardly applied to resolve this problem by replacing A  by A BF  in (6), which gives the following 
sufficient conclusion. 

Theorem 2: Consider the discrete-time linear system (17) with state saturation. This system is asymptotically 
stabilizable, if there exists a symmetric positive-definite matrix P , matrices G , X , F , 1 2diag{ , , , }n      with 0i  , 

[1, ]i n  satisfying (6a) and 

 

(( )( ) )
0, [1, 2 ]

T T
ni i i

i T

P D D A BF D G X
i

X X P

      
     

    
  (18) 

 
Moreover, a suitable state feedback control law is given as 
 

( ) ( )u k Fx k  

 
The result can be straightforwardly obtained by replacing A  by A BF  and using the result of Theorem 1. This 

concludes the proof. 
This condition also involves bilinear matrix inequalities and thus it is difficult to check numerically. The following 

algorithm gives an iterative linear matrix inequality approach to obtain a suitable state feedback gain F , which is somewhat 
similar to Algorithm 1. 

Algorithm 2: State-feedback control law design algorithm for system (17). 
Step 1) Select a matrix 0Q   and solve P  from the following Lyapunov function, 

 
( ) ( )TA BF P P A BF Q      

 
where F  is chosen such that A BF  is Hurwitz stable. Set X P , 0k  and 0k   be a sufficiently big scalar. 

Step 2) Using X and P obtained previously, solve the following linear matrix inequality optimization problem for  , G ,  , 

 

,min G   

 

, [1, 2 ]

s. t. 1, [1, ], [1, 2 ]

0

n
i

n
i j

i

h Gy i n j





   


  
 

 

 
If 0   or k  , go to Step 5). Otherwise, set +1k k , k  , go to the next step. 

Step 3) Using  , G  and F  obtained previously, solve the following linear matrix inequality optimization problem for X , 
P ,  , 

 

,min X P   

 
s. t. , [1, 2 ]n

i i     

 
If 0   or k  , go to Step 5). Otherwise, set 1k k  , k  , go to Step 2). 

Step 4) Using  , P  and X  obtained previously, solve the following linear matrix inequality optimization problem 
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for G , F ,  , 

 

,minG F   

 

, [1, 2 ]
s. t. 

1, [1, ], [1,2 ]

n
i

n
i j

i

h Gy i n j

   


  
 

 
If 0  or k  , go to Step 5). Otherwise, set 1k k  , k  , go to Step 2). 

Step 5) If 0  , system (17) is asymptotically stabilizable, and a suitable state feedback control is given as 

( ) ( )u k Fx k . Otherwise, no conclusion can be drawn. Different F  and Q  can be chosen and algorithm can be repeated 

from Step 1). 
 

NUMERICAL EXAMPLES 
 

In this section, two numerical examples are given to show the applicability of the presented method. 
We first consider system (1) with 
 

0.5 0.7

0.9 0.3
A

 
  

 
 

 
Applying Algorithm 1, we can show that this system is asymptotically stable. A solution to matrix inequality (6) is 

given as 
 

3.4302 0.1563 3.3205 0.0352 0.4123 0.5089 1.1423 0
, , ,

0.1563 2.6827 0.1446 2.8039 0.5172 0.3743 0 0.5658
P X G 

       
          

        
 

 
With the initial state (0) [1 2]Tx   , the state trajectory of this system is shown in Figure 1. 

 

  
(a) State trajectory of 1( )x k  (b) State trajectory of 2 ( )x k  

 
Figure 1 : State trajectory of discrete linear system with state saturation 

 
 

The next example deals with system (17) with the following parameters, 
 

1.5 0.7 1
,

0.9 1.3 2
A B

   
    
   

 

 
The eigenvalues of matrix A is 2.2 and 0.6, and then the open-loop system is instable even if state saturation does 

not occur. With the initial state (0) [1 2]Tx   , the open-loop state trajectory of this system is shown in Figure2. It can be 

shown the system state converges to equivalent point [ 1 1]T  . 
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(a)Open-loop trajectory of state 1( )x k

 
(b) Open-loop trajectory of state 2 ( )x k

 
 

Figure 2 : State trajectory of discrete linear system with state saturation 
 

 
Applying Algorithm 2 gives the following solution to inequality (18) as 

 
7.2894 0.3426 6.1896 0.1423 0.4135 0.1275 0.2433 0

, , ,
0.3426 0.7204 0.5517 0.8086 0.1569 0.7814 0 0.4145

P X G 
         

          
          

and a suitable sate 

feedback control law is given as 
 

 ( ) 1.8172 0.6743 ( )u k x k    

 
With this state feedback control law, the closed-loop state trajectory of this system is shown in Figure3, which 

implies the asymptotical stability of the closed-loop system. 
 

  

(a) Closed-loop trajectory of state 1( )x k
 

(b) Closed-loop trajectory of state 2 ( )x k
 

 
Figure 3 : State trajectory of closed-loop discrete linear system with state saturation 

 
 

CONCLUSION 
 

The stability analysis problem for a class of discrete-time linear systems with state saturation nonlinearity is 
considered in this paper. With the introduction of a free matrix whose infinity norm is less than or equal to 1  and a diagonal 
matrix with non-positive diagonal elements, the discrete state under saturation nonlinearity is confined in a convex hull, and 
then a stability criterion is given for such system to be asymptotically stable. This criterion is also applied to resolve the state 
feedback control law synthesis problem. These results are presented in terms of bilinear matrix inequalities and the 
corresponding iterative linear matrix inequality algorithm is given. 
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