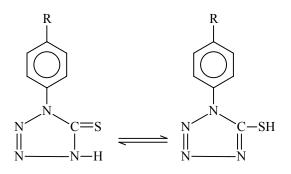


SPECTRAL CHARACTERIZATION AND ANTIBACTERIAL STUDIES OF ARENE-RUTHENIUM (II) COMPLEXES LIGATED WITH PHOSPHINE, ARSINE AND HETEROCYCLIC THIOAMIDES R. N. PANDEY^{*} and K. V. GAUTAM

P. G. Centre of Chemistry (M.U.), College of Commerce, PATNA - 800020 (Bihar) INDIA

ABSTRACT


New cationic half-sandwich organometallic complexes of ruthenium (II) composition $[(\eta^6-p-cymene) \operatorname{RuE}\phi_3 L]^+ \operatorname{BPh}_4^- (L = Bidentate monoanionic thioamide, E = P/As;) have been synthesized and characterized as their tetraphenylborate salts. All the synthesized ruthenium (II) arene complexes are stable solids and are fully identified by elemental analysis, spectral (IR, UV-vis, ¹H NMR) and conductance data. An octahedral structure of complexes are deduced and thioamide ligand acts as N, S-chelating bidentate. The$ *in vitro*antibacterial screening of thioamide ligands and their respective complexes were tested against*S. aureus*,*B. Subtilis*and*E. coli*. The coordination of thioamide ligands to ruthenium (II) exhibited enhance activity.

Key words: Arene ruthenium (II), Half-sandwich, Thioamides, Structure.

INTRODUCTION

The study of arene-ruthenium complexes has been subject of recent interest¹⁻³ and receiving a lot of attention due to catalytic⁴⁻⁶ and applications as anticancer drugs⁷⁻⁹. Mohr and Co-workers¹⁰⁻¹² have examined reactions, structures, and anti-tumor activity of various gold (I), platinum (II) and palladium (II) complexes with thioamide ligands. As a part of our going efforts to synthesize novel ruthenium complexes¹³⁻¹⁵ and to study their physico-chemical and structural properties, we present here the synthesis, spectroscopic properties and bioactivity of some cationic arene ruthenium (II) complexes containing N, S-chelating heterocyclic thioamide ligands (I) incorporating As ϕ_3 or P ϕ_3 .

^{*}Author for correspondence; E-mail: rameshwarnath.pandey@yahoo.com, kirtivardhangautam@gmail.com

Structure 1: (R = H, CH₃, CH₃O)

EXPERIMENTAL

All chemical used were either CP grade or AR grade. Solvents were distilled and dried before use. All the chemicals were used as purchased without further purification. The ligand, 1-substituted-tetrazoline-5-thione¹⁶ and precursor complex, $[Ru(\eta^6-p-cymene)Cl_2]_2^{17}$ were prepared by reported literature methods. All complexes were prepared using a general method.

Preparation of complexes

To a solution of precursor complex (1 mmol) in dry benzene (30 mL) was added to 1 mmol of ligand in the same solvent containing $P\phi_3$ or $As\phi_3$ (1 mmol) MeOH (15 mL) and Et₃N (1 mL) was stirred on magnetic stirrer for 20 min. and further refluxed on water bath for two hrs. To the hot solution was added solid NaBPh₄ (1 mmol) and the yellow to light brown products were isolated by filtration, washed with H₂O, a little cold MeOH, Et₂O and were subsequently dried in vacuum (yield = 65-67%).

Analysis

S. No. 1: $[Ru(\eta^6-p-cym)(P\phi_3)L]BPh_4$ (yellow): Calculated (%) for $RuC_{59}H_{54}N_4PSB$ (992.81) : C = 71.31; H = 5.43; N = 5.61; Ru = 10.17; Found (%) : C = 71.36; H = 5.50; N = 5.70; Ru = 10.30;

S. No. 2: $[Ru(\eta^6-p-cym)(As\phi_3)(L)]BPh_4$ (yellow): Calculated (%) for $RuC_{59}H_{54}N_4$ AsSB (1036.81): C = 68.28; N = 5.20; N = 5.40; Ru = 9.74; Found (%): C = 68.20; H = 5.32; N = 5.55; Ru = 9.80;

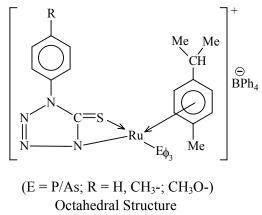
S. No. 3: $[Ru(\eta^6-p-cym)(P\phi_3)(P-CH_3-L)]BPh_4$ (yellow): Calculated (%) for $RuC_{60}H_{56}N_4SPB$ (1007.81) : C = 71.44; H = 5.55; N = 5.55; Ru = 10.02; Found (%) : C = 71.50; H = 5.60; N = 5.60; Ru = 10.11;

S. No. 4: $[Ru(\eta^6-p-cym)(As\phi_3)(P-CH_3-L)]BPh_4$ (yellow): Calculated (%) for $RuC_{60}H_{56}N_4SAsB$ (1051.81): C = 68.45; H = 5.32; N = 5.32; Ru = 9.61; Found (%): C = 68.50; H = 5.35; N = 5.35; Ru = 9.86;

S. No. 5: $[Ru(\eta^6-p-cym)(P\phi_3)(P-CH_3O-L)]BPh_4$ (yellow-brown): Calculated (%) for $RuC_{60}H_{56}N_4OSPB$ (1022.81): C = 70.39; H = 5.47; N = 5.47; Ru = 9.87; Found (%): C = 70.40; H = 5.50; N = 5.56; Ru = 10.00;

S. No. 6: $[Ru(\eta^6-p-cym)(As\phi_3)(P-CH_3O-L)]BPh_4$ (yellow-brown): Calculated (%) for $RuC_{60}H_{56}N_4OSAsb$ (1066.81): C = 67.49; H = 5.24; N = 5.24; Ru = 9.46; Found (%): C = 67.54; H = 5.34; N = 5.10; Ru = 9.60.

Elemental analysis, Magnetic measurements, molar conductance, IR, UV-vis, ¹H NMR spectral data were obtained, as we have reported earlier¹³.


RESULTS AND DISCUSSION

All the newly synthesized η^6 -p-cymene ruthenium (II) thioamide containing triphenylphosphine (P ϕ_3) or triphenylarsine (As ϕ_3) complexes are stable solid, non-hygroscopic, soluble in DMF, DMSO and CH₃CN. The molar conductance value of all the complexes is in the range of 89.80-102.6 \wedge^{-1} cm²mol⁻¹ in acetonitrile solution at room temperature indicates 1:1 electrolyte nature¹⁸⁻²⁰. The analytical data are in good agreement with the compositions proposed for all the complexes. All complexes display three intense absorptions in the range 500-200 nm. The absorption spectra of the arene ruthenium (II) thioamide containing phosphine or arsine complexes exhibited intense very broad bands around 303-305 nm and 268-270 nm are assigned to ligand-centered (LC) π - π^* and $n \rightarrow \pi^*$ transitions of coordinated arene, thioamide, P ϕ_3 or As ϕ_3 ligands. The lowest energy absorption bands in complexes at 405-410 nm are ascribed to metal ligand charge transfer (MLCT) Ru(T_{2g}) $\rightarrow \pi^*$ transition are consistent with octahedral structure reported for other ruthenium (II) complexes having similar composition in literature.²¹⁻²²

IR Spectra

IR bands of free ligands and complexes are elaborated and elucidated for comparison which indicates formation of simultaneous Ru-N and Ru-S bond in all complexes with thioamide ligands (Str. II). The v SH (2550 cm⁻¹) and v NH (3145 cm⁻¹) bands of ligands disappeared from the spectra of complexes indicating deprotonation of imino proton of thiioamide group and formation of Metal-N bond during complexation. New bands in far IR of complexes at 465-445 cm⁻¹ assigned due to Ru-N stretching mode confirmed these

observations.²² The normal coordinate analysis (NCA) of thioamide group is performed by Agarwala and Rao²³ and Suzuki²⁴ suggested that all four thioamide bands are mixed bands having contributions from v C = S, v C = N, δ C-H and δ N-H modes. The blue shift of thioamide band II to higher frequency about 25-30 cm⁻¹ and red shift of band IV (35-40 cm⁻¹), band III (15-20 cm⁻¹) and band II (25-30 cm⁻¹) to lower frequency suggest simultaneous Ru-N and Ru-S bond considering our previous observations²⁵⁻²⁷ and other workers.²⁸⁻³⁰ New bands of weak intensity at 430-420 cm⁻¹ also supports the formation of metal-S bond and assigned to v Ru-S mode.²² New bands around 532, 690, 740 and 1550 cm⁻¹ (As ϕ_3) and at 542, 695, 745 and 1445 cm⁻¹ (P ϕ_3) in complexes may be due to coordinated As ϕ_3 /P ϕ_3 ligands³¹⁻³³.

(Structure II)

¹H NMR Spectra

Supplementary data have been obtained by ¹H NMR spectroscopy recorded for the ligands and metal complexes to substantiate further metal-ligand bonding and proton chemical shift are given in Table 2.

The deprotonation of thioamide ligand is confirmed by the absence of an N-H signal in the ¹H NMR spectra of the complexes. The broad multiplet in the region $\delta = 7.42$ -7.74 ppm due to phenyl protons of thioamide ligand in complexes. The broad nature of peak may be due to large quadrupole resonance broadening effect of tetrazoline nitrogen atoms.³⁴ The methoxy protons observed as a sharp singlet at $\delta = 3.74$ ppm in complexes concides with that of methoxy group protons in literature.³⁵ The signal at $\delta = 2.60$ ppm assigned to methyl protons of coordinated ligand. The two isopropyl methyl protons of the p-cymene appeared as doublet in the region $\delta = 0.70$ -0.90 ppm and the methine proton in the range of $\delta = 0.9$ -2.1 ppm as septet and the methyl group of the p-cymene comes as singlet around the region of $\delta = 1.48$ -1.76 ppm. The arene protons exhibited a down field as compared with that in the precursor complex³⁶. All the complexes show multiplets $\delta = 6.18-8.42$ ppm for the presence of thioamide ligand, $E\phi_3$ (E = P/As) and the tetraphenylborate aromatic protons.

Antibacterial property

The *in vitro* antibacterial screening of ligands and their complexes have been tested against *S. Aureus*, *B. Subtilis* and *E. Coli* using a nutrient agar medium by Disc diffusion method using streptomycin as standard³⁷. The results (Table 3) showed that the complexes exhibited moderate activity and the toxicity of ruthenium complexes increases on increasing the concentration³⁸. Metal complexes are more active than thioamide ligans but lesser than standard drug streptomycin. The coordination of 1-substituted tetrazoline-5-thione to ruthenium (II) results enhanced activity³⁹⁻⁴¹ may be explained on the basis of Tweeds Chelation Theory.⁴²

Compounds		Thioamic	Stretching modes				
Compounds	Band I	Band II	Band III	Band IV	Ru-N	Ru-S	Ru-P
LH (ligand)	1512 s	1280 s	1058 s	785 ms	-	-	-
S. No. 1 (Complex) (RuC ₅₉ H ₅₄ N ₄ PSB)	1495 (m)	1315 (s)	1025 (m)	777 (m)	465 (m)	430 (w)	503 (m)
S. No. 2 (Complex) ($RuC_{59}H_{54}N_4AsSB$)	1490 (s)	1316 (s)	1020 (m)	765 (m)	445 (m)	420 (w)	495 (m)
$P-CH_3-L$ (ligand)	(s) 1500 (m)	1280	(m) 1044 (m)	810	-	(w) -	-
S. No. 3 (Complex) (RuC ₆₀ H ₅₆ N ₄ SPB)	(m) 1480 (m)	(s) 1310 (m)	(m) 1025 (m)	(m) 785 (m)	460 (m)	422 (w)	490 (m)
S. No. 4 (Complex) ($RuC_{60}H_{56}N_4SAsB$)	1480 (m)	1315 (m)	1030 (m)	780 (m)	462 (m)	430 (w)	495 (m)
P-CH ₃ -O (ligand)	1505 (s)	1290 (s)	1050 (m)	800 (m)	-	-	-
S. No. 5 (Complex) (RuC ₆₀ H ₅₆ N ₄ OSPB)	1485 (m)	1322 (s)	1035 (m)	782 (m)	465 (m)	425 (w)	505 (m)
S. No. 6 (Complex) (RuC ₆₀ H ₅₆ N ₄ OSAsB)	1480 (m)	1310 (m)	1305 (m)	780 (m)	465 (m)	420 (w)	500 (m)

Table 1: Characterization IR bands (cm⁻¹) of ligands and complexes

Ψ: Mixed Bands: Band I- δ NH + δ CH + ν C=N; Band II = ν C—N + δ NH + δ CH + ν CS, Band III = ν C-N + ν C-S; Band IV = ν C=S

	_				_					
	P-C	ymene ((δ PPM	[)	Thioamide ligand					
Compds.	Ar-H	-CH (CH ₃) ₂	-CH ₃	-СН	Phenyl proton	-CH ₃ proton	CH ₃ O- proton	N-H Proton		
LH (ligand)	-	-	-	-	7.52-7.74	-	-	1.25	-	
S. No. 1	5.0-5.70	0.90	1.48	1.9	7.42-7.35	-	-	-	8.22	
S. No. 2	4.98-5.8	0.75	1.38	1.9	7.40-7.30	-	-	-	6.82	
P-CH ₃ -L (ligand)	-	-	-	-	7.58-7.78	2.66	-	1.28	-	
S. No. 3	5.00-5.90	0.70	1.70	1.9	7.38-7.46	2.63	-	-	8.18	
S. No. 4	5.10-5.82	0.80	1.50	1.9	7.48-7.58	2.60	-	-	6.92	
P-CH ₃ O-L (ligand)	-	-	-	-	7.67-7.70	-	3.60	-	-	
S. No. 5	5.2-5.9	0.90	1.76	1.9	7.66-7.70	-	3.59	-	8.52	
S. No. 6	5.1-5.6	0.82	1.73	2.10	7.65-7.78	-	3.61	-	6.98	
ψ : E = P/As; LH = C ₇ H ₆ N ₄ S; P-CH ₃ -L = C ₈ H ₇ N ₄ S; P-CH ₃ O-L = C ₈ H ₇ ON ₄ S										

Table 2: ¹H NMR Spectra of ligands and complexes^{ψ}

 Table 3: Antibacterial activity of ligands and ruthenium (II) complexes at different concentration (ppm)

	Diameter of inhibition (mm)								
Compounds	S. Aureus			B . Subtilis			E. Coli		
	25	50	100	25	50	100	25	50	100
LH (ligand)	-	+	+	-	-	+	-	-	+
S. No. 1	+	++	++	+	+	++	+	+	++
S. No. 2	+	++	++	NT	NT	NT	NT	NT	NT
P-CH ₃ -L (ligand)	+	++	++	-	+	+	-	-	+
S. No. 3	++	++	+++	+	++	++	+	+	++
S. No. 4	++	++	+++	+	++	+++	+	++	++
P-CH ₃ O-L (ligand)	+	+	++	+	++	++	-	+	+

Cont...

	Diameter of inhibition (mm)								
Compounds	S. Aureus			B. Subtilis			E. Coli		
	25	50	100	25	50	100	25	50	100
S. No. 5	++	++	+++	NT	NT	NT	NT	NT	NT
S. No. 6	++	+++	++++	+	++	+++	+	++	+++
Streptomycin (stand.)	++	+++	+++	++	+++	++++	++	+++	++++

Inhibition diameter in mm : (+) 15-20 mm; (++) 20-25 mm; (+++) 25-30 mm; (++++) 30-35 mm; (-) inactive zone < 10 mm; NT = not tested

ACKNOWLEDGMENT

One of the authors (KVG) thanks U. G. C., New Delhi, India, to award Junior Research Fellowship (JRF, NET) and Principal Dr. P. K. Verma for providing facilities.

REFERECNES

- 1. C. Alagoz, David J. Brauer and F. Mohr, J. Organomet. Chem., 694, 1283 (2009).
- 2. M. Ulaganatha Raja and R. Ramesh, J. Organomet. Chem., 699, 5 (2012).
- 3. M. U. Raja, E. Elangovan Sindhuja and R. Ramesh, Inorg. Chem. Commun., **13**, 1321 (2010).
- 4. M. T. Reetz and X. Li, J. Am. Chem. Soc., **128**, 1044 (2006).
- 5. M. Aydemir, A. Baysal, N. Meric and B. Cumgum, J. Organomet. Chem., **694**, 2488 (2009).
- M. Aitali, M. Y. Ait Itto, A. Hasnaoui, A. Karim and J. C. Davan, J. Organomet. Chem., 619, 265 (2001).
- 7. F. Schmitt, P. Govindaswamy, G. Sliss-Fink, W. H. Ang, P. J. Dyson, L. J. Jeanncret and B. Therrien, J. Med. Chem., 1811 (2008).
- 8. A. Kisova, L. Zerzankova, A. Habtemarian, P. J. Sadler, V. Brabec and J. Kasparkova, Mol. Pharmaceutic, **8**, 949 (2011).
- 9. G. Suss-Fink, Dalton Trans, **39**, 1673 (2010).
- 10. A. Fleischer, A. Roller, V. B. Arion, B. K. Kepler and F. Mohr, Can. J. Chem., **87**, 146 (2009).

- 11. S. Miranda, E. Vergara, F. Mohr, D. De. Vos, E. Cerrada, A. Mendia and M. Laguna, Inorg. Chem., **47**, 5641 (2008).
- 12. D. Dolfen, K. Schottler, V. Seied-Mojtaba, M. A. Jakupec, B. K. Keppler, ERT. Tiekink and F. Mohr, J. Inorg. Biochem., **102**, 2067 (2008).
- 13. R. N. Pandey and K. V. Gautam, Asian J. Chem., Vol. 23(6), 2785 (2011).
- 14. R. N. Pandey and Pramila Sharma, Int. J. Chem. Envion. Pharm. Res., 4(1), 8 (2013).
- 15. R. N. Pandey, Renubala and Anil Kumar Sinha, Oriental J. Chem., 27(1), 293 (2011).
- 16. E. Lieber and J. Ram, Chandran, Can. J. Chem., 37, 101 (1959).
- 17. M. A. Benett and A. K. Smith, J. Chem. Soc. Dalton Trans., 233 (1974).
- 18. W. J. Geary, Coord. Chem. Rev., 7, 81 (1971).
- 19. R. G. Hayter and F. S. Humiec, Inorg. Chem., 2, 306 (1963).
- 20. G. Borah and D. Boruah, Indian J. Chem., **51A**, 444 (2012).
- 21. D. Pandiarajan and R. Ramesh, J. Organomet. Chem., 723, 26 (2013).
- 22. S. C. V. Sastri and B. G. Maiya, Proc. Indian Acad. Sci. (Chem. Sci.), **114(4)**, 403 (2002).
- 23. U. Agarwala and P. B. Rao, Indian J. Pure Appl. Phys., 7, 229 (1969).
- 24. I. Suzuki, Bull. Chem. Soc. Japan, 35, 1419 (1962).
- 25. R. N. Pandey, A. K. Nag and D. K. Sharma, Oriental J. Chem., 28(4), 1809 (2012).
- 26. R. N. Pandey, Abhijeet Anand, R. K. Singh and Amaresh Kumar, Asian J. Chem., **22(7)**, 5601 (2010).
- 27. R. N. Pandey and R. N. Sharma, J. Ultra Chem., 7(3), 391 (2011).
- 28. B. Singh, R. Singh, R. V. Choudhary and K. P. Thakur, Indian J. Chem., **11**, 174 (1973).
- 29. U. Agarwala and B. Singh, Indian J. Chem., 7, 726 (1969).
- B. Singh, M. M. P. Rukhaiyar, R. K. Mehra and R. J. Singha, Indian J. Chem., 17A, 520 (1979).
- 31. V. Vancova, M. Melnik, G. Ondrejovic and J. Gazo, Anorg. Allg. Chem., 455, 93 (1979).
- 32. D. H. Brown, A. Mohammed and D. W. A. Sharp, Spectrochim. Acta, **21**, 663 (1965).

- 33. K. Shobalake, C. Postmus, J. R. Ferraro and K. Nakamoto, Appl. Spectrosc., 23, 12 (1969).
- 34. R. N. Pandey and Pramila Sarma, J. Ultra Chem., 9(2), 274 (2013).
- 35. I.C. Douek and G. Wilkinson, J. Chem. Soc., A, 2604 (1969).
- 36. S. K. Mandal and A. R. Chakravorty, J. Chem. Soc. Dalton Trans., 1627 (1992).
- 37. N. Dharmaraj, P. Vishwanathamurthi and K. Natarajan, Trans. Met. Chem., 26, 105 (2001).
- 38. R. Prabhakaran, A. Getha, M. Thilagavathi, R. Karvembu, V. Krishnan, H. Heretaganoli and K. Natarajan, J. Inorg. Biochem., **98**, 2131 (2004).
- B. S. Creaven, M. Devereux, A. Foltyn, S. Mc. Clean, G. Rosaiv, V. R. Thangella and M. Walsh, Polyhedraon, 29, 813 (2010).
- 40. R. N. Pandey, Sheo Shankar Kumar, Pramila Sharma and Renu Kumari, Int. J. Chem. Sci., **11(1)**, 665 (2013).
- 41. R. N. Pandey, Pramila Sharma and Renu Kumari, J. Ultra Chem., 9(1), 49 (2013).
- 42. T. Seeworth, H. L. K. Woh Bhowon and K. Babooram, Synth. React. Inorg. Met. Org. Chem., **30**, 1023 (2000).

Revised : 25.03.2014

Accepted : 27.03.2014