

Volume 10 Issue 21

FULL PAPER BTAIJ, 10(21), 2014 [12893-12901]

Scientific decision aid system of the restoration and reconstruction based on GIS technology

Wang Yanru^{1,2}, Fu Bin³, Li Bo¹, Zhang Maoyu¹ ¹Wenzhou University, Zhejiang Province, Wenzhou, 325035, (CHINA) ²Tongji University, Shanghai, Shanghai, 200092, (CHINA) ³Wenzhou Design Group Co., Ltd., Zhejiang Province, Wenzhou, 325001, (CHINA)

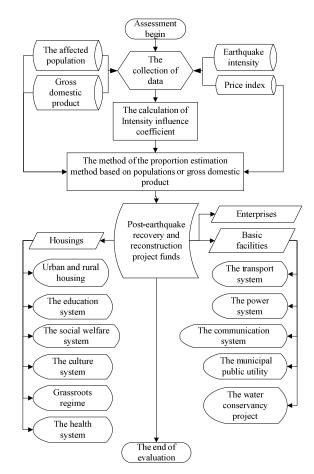
ABSTRACT

Considering the needs of earthquake rapid recovery and reconstruction after the quake, it is proposed in this paper that scientific decision aid system of the restoration and reconstruction based on GIS technology. The system could be used to evaluate the postearthquake restoration and reconstruction project funds forengineering structure of all kinds of housing (includingresidential housing, education system, health system, culture system, welfare system etc) and infrastructure (includingtransportation system, electric power system, communication system, electric power system, communication system, public civil facilities and hydraulic engineering etc). On the basis of detailed degree for the data achieved, it can be realized that the dynamic visual management of earthquake recovery and reconstruction fund evaluation system. The system has certain help to the reconstruction for engineering structure in earthquake disaster area.

KEYWORDS

GIS; Decisions-making; Disasters.

© Trade Science Inc.


INTRODUCTION

Destructive earthquakes not only caused heavy casualties, but also lead to varying degrees of damage to engineering structure and equipment facilities. It is war that to restore the normal order of production and living as soon as possible by the earthquake emergency rescue or reconstruction after an earthquake. The important precondition for winning the war is that the governments at all levels should make scientific and correct decision and do the work of restoration and reconstruction in time. In front of the complicated disaster caused by destructive earthquakes, the governments at all levels make decisions acorrding to the information from all sides and comprehensive analysis or processing of that information. It is difficult to provide one or a few good solutions for decision makers to choose from by one or a few experts with unilateral knowledge. However, it will abandon the secondary factors by giving a computer preset model and the calculation analysis function; and the computer could give objective answer soon even in real time according to the needs of humans. For post-earthquake recovery and reconstruction of government scientific policy-making, it is urgently needed a similar software that scientific decision aid system for the restoration and reconstruction aid decision systems, it is the fledgling stage^{[11/2][3]} or blank in China; and there are also some countries to study this subject in the world^{[41[5][6][7]}. Therefore, it is very necessary to a work on the scientific decision aid system for reconstruction after earthquake disaster.

SYSTEM REQUIREMENTS ANALYSIS

Scientific decision aid system for the restoration and reconstruction based on GIS technology is on the basis of the seismic damage assessment and the corresponding database for the engineering structure damaged in a investigated area. It can realize the visualization dynamic management for the funds evaluation in the different areas including the post-earthquake restoration and reconstruction cost from all kinds of housing construction, infrastructure, industrial and mining enterprises of engineering structure damages. The system can provide the allocation of funds for restoration and reconstruction of engineering and it is suitable for local actual condition of the earthquake disaster area. What's more, it can provide a basic service platform for decision-making of governments and reconstruction planning for the earthquake disaster area. The main function of the system are as follows:

- 1) it can implemente visual simulation assessment for the funds of the post-earthquake restoration and reconstruction according to administrative area classification and according to industry classification;
- 2) the suggestion that fund allocation of recovery and reconstruction could be provided;
- 3) the flexible way of the output.

Figure 1 : Rapid assessment schematics

SYSTEM DESIGN

The principle of system evaluation

Scientific decision aid system of the restoration and reconstruction based on GIS technology is divided into rapid assessment and early evaluation of two phases. When the earthquake occurred early, at the beginning of assessment and the less data collected, the rapid assessment module is used^[8]; the module takes use of the proportion estimation methodbased onpopulations which is the per capita indicators evaluation method. According to the local populations, post-earthquake restoration and reconstruction project funds of all kinds of housing (including housing, urban and rural, education system, health system, cultural system, social welfare system and grass-roots regime) and infrastructure (including transport system, power system, communication system, municipal public facilities, water conservancy project) could be calculated by the per capita indicators evaluation method to calculate post-earthquake restoration and reconstruction project funds of enterprise is the proportion estimation method based on the proportion of GDP. The principle of rapid assessment is shown in Figure 1.

When the earthquake disasterloss assessment is finished and the information is more, the early evaluation module is used^[8]. The module takes use of the method based on earthquake disaster loss assessmentreport to calculate the post-earthquake restoration and reconstruction project funds for all kinds of housing; andthe method based on the proportion of direct economic loss assessment is used for the post-earthquake restoration and reconstruction project funding of infrastructures and enterprises. The principle of early evaluation is shown in Figure 2.

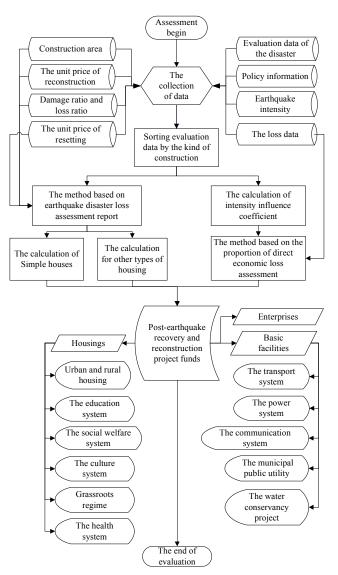


Figure 2 : The early evaluation principle diagram

Theimplementation process of the system

The implementation process of the system, scientific decision aid system for the restoration and reconstruction based on GIS technology, is divided into three steps. The first step is the collection of data. The data includes the information of background layer and model parameter. The database for background layer information contains the population, GDP, the information of constructions, infrastructures or enterprises. And the data of the unit price of reconstruction, the unit price of resetting, damage ratio and loss ratio are input the scientific decision aid system. The second step is the calculation of evaluation model. The assessment result can be divided into rapid assessment results and the early evaluation results acording to the precision of the assessment result. The last step is the results outputs. The scientific decision aid system could provide post-earthquake recovery and reconstruction project funds in accordance with the tpye of constructions. The output mode can be used in a text or graphics output. The implementation process of scientific decision aid system is shown in Figure 3.

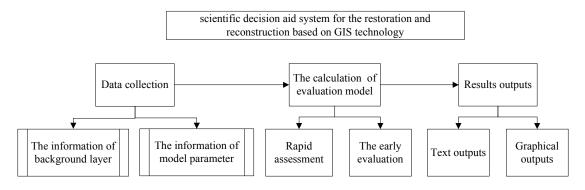
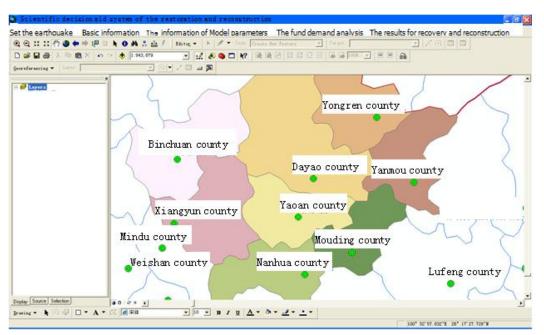



Figure 3 : The business flow diagram of the system

The system function is introduced in detail

The functions of scientific decision aid system for the restoration and reconstruction based on GIS technology contain the basic information, model parameters, the analysis of recovery and reconstruction funds requirements, and the output of the results. The main interface is as shown in Figure 4; and the main functions of the system mend are shown in TABLE 1.

Figure 4 : Main interface of the system

Set the	Basic	The information of Model	The fund	The results for recovery
earthquake	information	parameters	demand analysis	and reconstruction
	Administrative	The loss ratio of simple houses		
	area	The loss ratio of non-simple houses	The intensity	Graphics display of
The	Intensity	The unit price of reconstruction	influence coefficient	Evaluation results
parameters	influence area	The unit price of resetting	Rapid assessment	The analysis results of rapid
input	Evaluation area	Direct economic loss of all kinds of	Early evaluation	assessment and early
	Building	infrastructures Direct economic loss	results	evaluation
	information	of enterprise		
(1) Set the ear	thquake			

When the earthquake occurred early, no damage intensity information, the earthquake intensity influence field can be determined by setting the earthquake. The post-earthquake restoration and reconstruction project funds are estimated by the method of the rapid assessment. In this system, the dialog box for setting earthquakes can appear by just click the set button. The dialog box is shown in Figure 5. The intensity influence field is calculated by the parameters input. It is as shown in Figure 6.

The magnitude	6	
The direction	120	

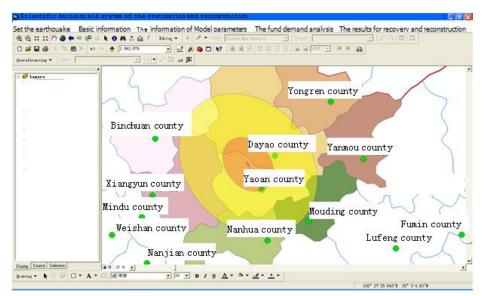


Figure 5 : The dialog box for setting the earthquake

Figure 6 : Influence field of intensity

(2) Basic information

Basic information refers to the background layer information, including administrative area, intensity influence area, evaluation area, building information and so on. This information can provide support for the calculation and analysis of models. It is as shown in Figure 7 and 8.

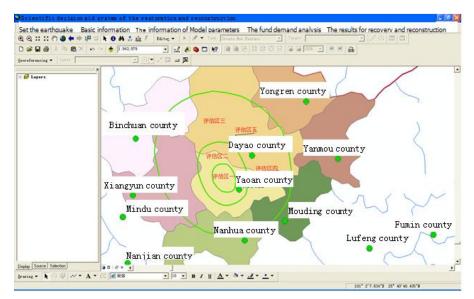
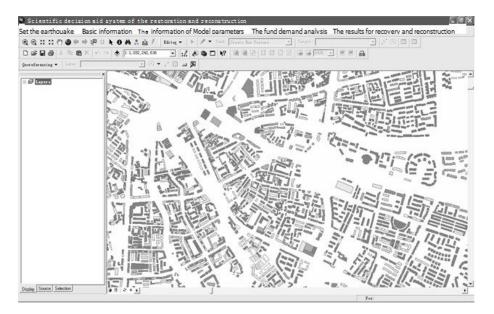



Figure 7 : Information of evaluation areas

Figure 8 : Housing Building Information

(3)The information of model parameters

Model parameter information refers to the input data according to the actual circumstance of earthquake. It contains the loss ratio of simple houses, the unit price of reconstruction, the unit price of resetting, direct economic loss of all kinds of infrastructures or enterprise and so on. The input of data can use the way by interface input and invoke the text, as shown in Figure 9,10,11,12.

nucture type Co	ollapse Serio	us destruction Se	condary destruction	Slight destruction	The basically well
The RC frame structure	85	55	25	7.5	2.5
Masonry	85	55	25	7.5	2.5
structure		Modify		Cancel	

Figure 9 : The loss rate for the non-simple houses

Structure type RC	frame Mason	ary structure	Brick-wood structure	Soil-wood structure
The unit price of reconstruction	1400	900	900	900
	Modify		Cancel	

Region	Power Tra	nsportation C	onmunication	Municipal facilit	ies Hydraulic
Yongren county	0	0	0	0	0
Dayao county	2390	5110	970	5280	7100
Yaoan county	1100	3590	750	2450	4480
Nanhua county	470	850	240	1220	2100
Mouding county	0	1240	90	630	2500
Xiangyun county	180	320	0	390	470
Binchuan county	0	0	0	0	0
The total	4140	11110	2050	9970	16650
	Modify			Cancel	

Figure 11 : Direct economic losses of the infrastructure

Region lo	sses of th	ie enterprise
Yongren County	40	
Dayao County	1650	Modify
Yaoan County	1190	
Nanhua County	500	
Mouding County	60	
Xiangyun County	110	
Binchuan County	30	Cancel
The total	3580	

Figure 12 : Direct economic losses of enterprises

(4)The fund demand analysis and the results forrecovery and reconstruction By clicking the corresponding button in the main menu for the requirement analysis of recovery and reconstruction fund, the intensity influence coefficient, rapid assessment and early evaluation results can be calculated. The analysis results of rapid assessment and early evaluationcan be shown two ways such asthe display interface and text. It is shown in Figure 12 Figure 15 and Figure 16 13, Figure 14, Figure 15, and Figure 16.

Yor	ngren	Dayao	Yaoan	Nanhua	Mouding	Xiangyun B	inchuan Reg	ion affecte
Housing	4075	232947	340660	91352	6477	1 10869	3 65790	908288
Urban and Rural housing	2889	165114	241462	64751	4591	0 7704	3 46633	643802
Education	347	19834	29005	7778	551	5 925	5 5602	77335
Health system	312	17851	26105	7000	496	3 832	9 504 1	69602
Cultural system	302	17256	25234	6767	479	8 805	4873	67282
Social welfare system	87	4958	7251	1945	137	9 231	4 1400	19334
Grass-roots level power system	139	7934	11602	3111	220	6 370	2 2241	30934
Infrastructure	21	26986	50034	4314	493	5 2260	0 4385	113274
Transportation	2	2987	5538	478	54	6 250	485	12538
and the second	5	6571	12183	1051	120	2 550	3 1068	27583
Electrical power	1	1299	2408	208	23	7 108	8 211	5451
Municipal service facilities	5	7169		1146	131	1 600		30090
Communication	7	8961	16614	1433				37613
Hydraulic engineering	7	1727	5739	52			0.000000	8629
Enterprise								orar

Figure 13 : Theresults output of rapid assessment

Ye	ongren	Dayao	Yaoan Nanhua	Mouding	Xiangy	un Binchua	n Reg	ion affecte
Housing	4007	229066	334984	89830	63692	106882	64694	893155
Urban and Rural housing (simple)	2363	135601	199506	53071	38087	64176	38374	531177
Urban and Rural housing (non-simple)	585	32883	46884	13002	8760	14439	9210	125764
Education (simple)	284	16273	23941	6368	4570	7701	4605	63741
Education (non-simple)	70	3946	5 5626	1560	1051	1733	1105	15092
Health system (simple)	218	12530	18434	4904	3519	5930	3546	49081
Health system (non-simple)	54	3038	4332	1201	809	1334	851	11621
Cultural system (simple)	188	10775	5 15854	4217	3027	5100	3049	42209
Cultural system (non-simple)	46	2613	3726	1033	696	1147	732	9994
Social welfare system (simple)	75	4310	6341	1687	1211	2040	1220	16884
Social welfare system (non-simple)	19	1045	5 1490	413	278	459	293	3997
Grass-roots level power system (simple)	85	4870	7166	1906	1368	2305	1378	19079
Grass-roots level power system (non-simple	21	1181	1684	467	315	519	331	4517
Infrastructure	0	65396	34169	17054	15424	4528	Ô	136571
Transportation	0	7496	5 3038	1642	0	599	0	12777
Electrical power	0	16028	9916	2970	4288	1065	0	34268
Municipal service facilities	0	3042	2072	839	311	0	0	6264
Communication	0	16561	6767	4263	2179	1299	0	31069
	0	22269	12375	7339	8646	1565	0	52193
Hydraulic engineering	1	5489	3401	1890	224	393	14	11412

ction window for graphics	display of Evaluation results	(single selection)	Confirm	Cancel
C The intensity influence co	efficient			
e result output of early e	valuation	T	he result output of ra	apid assessment
Housing		Infrastructure	Housing	Infrastructure
Urban and Rural housing (simple)	Urban and Rural housing (non-simple)	Transportation	C Urban and Rural housing	CTransportation
Education (simple)	Education (non-simple)	C Electrical power	C Education	C Electrical power
Health system (simple)	Health system (non-simple)	Municipal service facilities	C Health system	Municipal service facilit
Cultural system (simple)	Cultural system (non-simple)	Communication	C Cultural system	Communication
CSocial welfare system (simple)	Social welfare system (non-simple)	C Hydraulic engineering	C Social welfare system	C Hydraulic engineering
Grass-roots level power (simple)	Grass-roots level power (non-simple)	C Enterprise	C Grass-roots level power	○ Enterprise

Figure 15 : Selection window for graphics display of Evaluation results

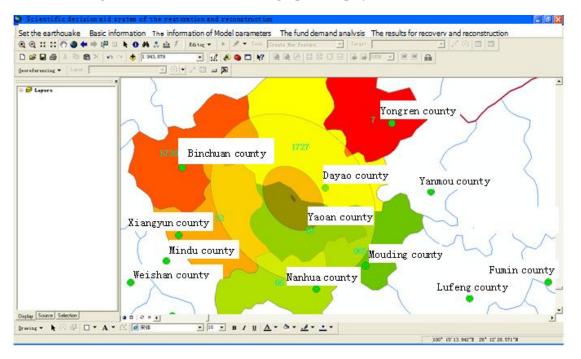


Figure 16 : The evaluation results of enterprises

CONCLUSIONS

It is analyzed that the needs of scientific decision aid system of the restoration and reconstruction based on GIS technology in this paper. And it is introduced that the operation principle and the system function. The system could be used to evaluate the post-earthquake restoration and reconstruction project funds for engineering structure of all kinds of housing and infrastructure. The system can be realized that the dynamic visual management of earthquake recovery and reconstruction fund evaluation system. What's more, it can provide a basic service platform for decision-making of governments and reconstruction planning for the earthquake disaster area.

ACKNOWLEDGEMENT

The paper was supported by Zhejiang province natural science fund project(LQ12E08006,LQ12E08007, LY14E080018),Postdoctoral fund in China(2014M561516), Scientific research project in zhejiang province department of education(Y201120696), Oujiang college scientific research project, and Earthquake industry special funds scientific research projects(200808027).

REFERENCES

[1] The national standard of the People's Republic of China: The part 3 of The work in earthquake field- survey specification (GB/T 18208.3) [S], The state bureau of quality and technical supervision, Beijing, (2001).

- [2] The national standard of the People's Republic of China: The part 4 of the work in earthquake field-the assessment of damage direct loss (GB/T 18208.4) The state bureau of quality and technical supervision, Beijing, (2005).
- [3] The department of housing and urban-rural development, Recovery and reconstruction of urban and rural housing construction special planning after the wenchuan earthquake, (2008).
- [4] FEMA, Financial incentives for seismic rehabilitation of hazardous buildings an agenda for action (FEMA198, FEMA199, FEMA216) [S].
- [5] FEMA, Planning for post-disaster recovery and reconstruction (FEMA 421) [S], (1998).
- [6] FEMA, Planning for seismic rehabilitation: Societal issues (FEMA275) [S].
- [7] FEMA, Typical costs for seismic rehabilitation of existing buildings (FEMA156 and FEMA157) [S], (1995).
- [8] Wang Yanru; Study on cost estimation method of post-earthquake rehabilitation [D], China Earthquake Administration Institute of Engineering Mechanics, (2010).