ISSN : 0974 - 7435

Volume 10 Issue 4

FULL PAPER BTAIJ, 10(4), 2014 [982-985]

Research hotspots analysis of intracerebral hemorrhage puncture-draining by PubMed

Zhang Zhanying¹, Wu Yuhong², Liu Hongzhi², Hou Jinjie³* ¹XuYi People's hospital, XuYi, Jangsu Province, 211700, (CHINA) ²First Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei Province, 054001, (CHINA) ³Second Affiliated Hospital of Xingtai Medical College, Xingtai, Hebei Province, 054000, (CHINA) E-mail: wein871@sohu.com

ABSTRACT

Objective: To understand the research hotspots of punctures to ICH by Pubmed. With MS Excel, SPSS, Cytoscape software, we took MeSH (Medical Subject Headings) word frequency analysis, clustering analysis, co-word network graph of PubMed papers. **Results**: It shows that the Punctures to ICH research hotspots had focus on lumbar puncture and hematoma, Stereotaxic Techniques, Stereotaxic Techniques, etc, also the most importance of which was the lumbar puncture. © 2014 Trade Science Inc. - INDIA

INTRODUCTION

Intracerebral hemorrhage (ICH) is a devastating disease with high rates of mortality and morbidity^[1]. Approximately 10% to 23% of strokes are caused by the rupture of cerebral blood vessels^[2,3]. and the overall ICH incidence worldwide is 24.6 per 100 000 personyears^[4]. Hypertensionis and arteriosclerosisone is two of the top causes of ICH. It was important that therapy to deal with surgery puncture-draining for the prognosis of ICH, we hope that through this research the analysis of the MeSH can draw the outline of ICH puncturedraining research hotspots.

Therefore this research retrieved the ICH puncturedraining papers of PubMed (http:// www.ncbi.nlm.nih.gov/pubmed) within recent 214 papers, and analyzed MeSH of above papers using Co-

KEYWORDS

Intracerebral hemorrhage; Punctures; Word frequency analysis; Clustering analysis; Co-word network graph; Lumbar puncture.

word Analysis^[5].

MATERIALAND METHODS

We retrieved PubMed papers with default publication dates on 10 November 2013. First, search terms was "Punctures "[Mesh] AND "Cerebral Hemorrhage"[Mesh]; Second, using Microsoft Excel we recorded All MeSH terms of above papers, and sort and filter the terms, and looked for the high frequency terms (occurrences), and we also counted occurrences of two high frequency terms together in the same paper, setting up the original co-word matrix. Third, the statistical analysis: we made MeSH term's clustering analysis using SPSS13.0 statistical software, draw the co-word network graph of the high frequency terms using Cytoscape software^[6].

983

THE MESH TERMS ANALYSIS OF PAPERS ABOUT ICH PUNCTURE-DRAINING

The MeSH terms word frequency analysis

We retrieved 214 papers, every paper has MeSH terms, we extracted MeSH terms and established the MeSH terms database. We got 26 MeSH terms of ICH puncture-draining which occurrences frequency was over 5 (including 5). From TABLE 1, we can infered some ideas: the relevant research hotspots of ICH puncture-draining mainly concentrated in the Spinal Punc-

TABLE 1 : The top 26 MeSH terms about ICH puncture-draining

		Occurrences
Ranking	MeSH terms	Frequency
		(times)
1	Cerebral Hemorrhage	127
2	Spinal Puncture	53
3	Hydrocephalus	29
4	Hematoma	22
5	Infant, Premature, Diseases	20
6	Stereotaxic Techniques	18
7	Stereotaxic Techniques	15
8	Tomography, X-Ray Computed	15
9	Biopsy, Needle	14
10	Brain Neoplasms	13
11	Cerebral Ventricles	13
12	Cerebrovascular Disorders	12
13	Intracranial Aneurysm	11
14	Brain	9
15	Infant, Newborn, Diseases	9
16	Brain Diseases	8
17	Brain Injuries	7
18	Drainage	7
19	Cerebral Angiography	6
20	Subarachnoid Hemorrhage	6
21	Cerebrospinal Fluid Shunts	6
22	Blood Specimen Collection	5
23	Neurosurgery	5
24	Cerebrospinal Fluid	5
25	Brain Abscess	5
26	Intracranial Pressure	5

ture, Hematoma, Stereotaxic Techniques, punctures, etc. it also suggests that Spinal Puncture has become ICH puncture-draining the most major research hotspots.

Clustering analysis of the high frequency MeSH terms

This research used hierarchical clustering analysis which is one of the most commonly used Classify analysis to analyze the above 21 MeSH terms, drew a dendrogram, and the results were shown in Figure 1.

From the Figure 1, except individual MeSH term as "Infant, Newborn, Diseases", we could seen the other high frequency MeSH terms could be divided into the following four groups. Group 1 contains MeSH terms (Cerebral Hemorrhage; Cerebral Angiography; Spinal Puncture; Intracranial Aneurysm; Subarachnoid Hemorrhage), it suggests that Cerebral Hemorrhage such as Subarachnoid Hemorrhage are usually caused by aneurysm, it to be diagnosed by cerebral angiography. The treatment of complication with spinal puncture. Group 2 contains MeSH terms(Infant, Premature, Diseases; Cerebrospinal Fluid Shunts; Hydrocephalus; Punctures; Cerebral Ventricles), It suggest that infant, premature dieases were often to combined with hydrocephalus that were be treatment with fluid shunts. Group 3 contains MeSH(Stereotaxic Techniques; Biopsy, Needle; Tomography, X-Ray Computed; Brain Diseases; Brain; Brain Neoplasms), it suggest that Brain Neoplasms were diagnosed by Tomography, X-Ray Computed Tomography, Biopsy with needle by sterotaxic techniques. Group 4 contains MeSH(Brain Injuries; Drainage; Hematoma; Cerebrovascular Disorders), it suggest that Brain injuries and Cerbrovascular Disorders were often complicated with Hematoma, it were be treated with drainage at times.

The above clustering results suggest that several MeSH terms within one group have certain inherent logic connection between eachother; If there are no known correlation between the MeSH terms, it indicates we find a new research hotspot.

Co-word network graph of the high frequency MeSH terms pair

By analyzing MeSH terms of the top 13 (word frequency), we got the top 12 MeSH terms pair (A and B, see TABLE 2) and co-word network graph of the

BioTechnology An Indian Journal

Full Paper

CASE		0	5	10	15	20	25
Label	Num	+	+	+	+	+	+
Cerebral Hemorrhage	1	1	1				
Cerebral Angiography	19	<u>ل</u> ـ	F-				
Spinal Puncture	2	10 - 10 - 27	ŀ-	-			
Intracranial Aneurysm	13	-				1	
Subarachnoid Hemorrhage	20	1				En .	
Infant, Premature, Diseases	5	-1				11	
Cerebrospinal Fluid Shunts	21					11	
Hydrocephalus	3	I			101015-0		
Punctures	7	3 <u>- 1.27</u>		t		1	
Cerebral Ventricles	11	_	1			+	7
Stereotaxic Techniques	6	$\neg \neg$				1	1
Biopsy, Needle	9					1	1
Tomography, X-Ray Computed	8	ताली	1			1	1
Brain Diseases	16	- I	1	a and		1	1
Brain	14		1		1	1	1
Brain Neoplasms	10				ł	د	1
Brain Injuries	17	-		·1	1		1
Drainage	18	1					1
Hematoma	4		-		<u>+</u>		1
Cerebrovascular Disorders 12					······		1
Infant, Newborn, Diseases				<u></u>	_		1

Figure 1 : Hierarchical clustering analysis dendrogram of MeSH

TABLE 2 : The top 12 MeSH terms pair

Ranking	MeSH terms A	MeSH terms B	Occurrences frequency (times)
1	Cerebral Hemorrhage	Spinal Puncture	42
2	Cerebral Hemorrhage	Hydrocephalus	22
3	Cerebral Hemorrhage	Hematoma	21
4	Spinal Puncture	Hydrocephalus	18
5	Cerebral Hemorrhage	Infant, Premature, Diseases	13
6	Hydrocephalus	Infant, Premature, Diseases	12
7	Cerebral Hemorrhage	Stereotaxic Techniques	11
8	Cerebral Hemorrhage	Cerebral Ventricles	11
9	Cerebral Hemorrhage	Punctures	9
10	Spinal Puncture	Infant, Premature, Diseases	8
11	Stereotaxic Techniques	Biopsy, Needle	8
12	Cerebral Hemorrhage	Intracranial Aneurysm	7

MeSH terms pair (see Figure 2). Especially the first MeSH terms pair of Cerebral Hemorrhage and Spinal Puncture appeared 42times in the same paper, it was far higher than that of the second MeSH terms pair (22 times, Cerebral Hemorrhage and Hydrocephalus). In Figure 2 the edge represents the concurrence rela-

BioJechnology An Indian Journal

985

Figure 2 : Co-word network graph of the high frequency MeSH terms pair

tionship between MeSH terms pair and if the edge between one MeSH term to other MeSH term, it suggests that the one MeSH term is more important, it is in the center of the research hotspots. So we could infer that Spinal Puncture is the research hotspots of ICH puncture-draining now.

CONCLUDING REMARKS

By analyzing MeSH terms (word frequency analysis, clustering analysis, co-word network graph) of PubMed papers about ICH puncture-draining, we could infer that the current research hotspots had focus on Spinal Puncture and Hematoma, Stereotaxic Techniques, Punctures, etc, also the most importance of which was the Spinal Puncture.

REFERENCES

- K.M.Crandall, N.S.Rost et al.; Prognosis in intracerebral hemorrhage. Rev.Neurol.Dis., 8(1-2), 23– 29 (2011).
- [2] M.S.Dennis, J.P.Burn et al.; Long-term survival after

first-ever stroke: The Oxfordshire Community Stroke Project. Stroke, **24**, 796–800 (**1993**).

- P.M.Lavados, C.Sacks et al.; Incidence, 30-day case-fatality rate, and prognosis of stroke in Iquique, Chile: A 2-year community-based prospective study (PISCIS project) Lancet., 365(9478), 2206–2215 (2005).
- [4] C.J.Van Asch, M.J.Luitse et al.; Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol., 9(2), 167–176 (2010).
- [5] M.I.Viedma-Del-Jesus, P.Perakakis et al.; Sketching the first 45 years of the journal Psychophysiology (1964-2008): A co-word-based analysis. Psychophysiology., **48(8)**, 1029-36, Aug (**2011**).
- [6] M.E.Smoot, K.Ono et al.; Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics., 27(3), 431-2, Feb 1 (2011).

BioTechnology An Indian Journal