International Journal of Chemical Sciences

Intermational Journal of
c-ssmm x Research | Vol 15 Iss4
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Introduction

Los [1] concentrated a few properties of ternary semigroups and demonstrated that each ternary semigroup can be installed in
a semigroup. Sioson [2] concentrated ideal theory in ternary semigroups. He likewise presented the thought of regular ternary
semigroups and characterized them by utilizing the thought of quasi ideals. Santiago [3] built up the theory of ternary
semigroups and semiheaps. Dutta and Kar [4,5] presented and concentrated the thought of regular ternary semirings.
Jayalalitha et al. [6] presented and learned about the filters in ternary semigroups. As of late, various mathematicians have
taken a shot at ternary structures. In this paper, we concentrate some intriguing properties of regular ternary semigroups and

completely regular ternary semigroups.
Definition 1

An element x in a ternary semigroup T is said to be a regular if 3 an element aeT 3 xax=x [2].

A ternary semigroup is said to be regular if all of its elements are regular.

Theorem 1

The following conditions in a ternary semigroup T are equivalent:

(i) T is regular.

(i) For any right ideal R, lateral ideal M and left ideal L of T, RML=R "M L.
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(i Forx,y,zeT. (x) (y) (z), =(x). n(y)_ n(z),.
() ForxeT, (x) (x) (x), =(x). N (x) N(x),.

Proof

(1) = (ii) Suppose T is a regular ternary semigroup. Let R, M and L be a right ideal, a lateral ideal and a left ideal of T.
Then clearly, RMLc RNMMNL. Now forxeRNMML, we have x=xax for somea €T . This implies that
X = xax = (xax)(axa)(xax) € RML .

Thus, we have R "M L < RML. So we find that RML=R "M L.

Clearly, (if) = (iii) and (iii) = (iv).

It remains to show that (iv) = (i).

LetxeT . Clearly, X € (X} M (X) (), =(x) (X) (x),.

Then we have, X € (XTT UnX)(TXT UTTXTT UNX)(TTXxWnNX) < XTX.

So we find that X € XTa and hence there exists an elements @ € T such that x=xax. This implies that x is regular and

hence T is regular.

We note that every left and right ideal of a regular ternary semigroup may not be a regular ternary semigroup.

However, for a lateral ideal of a regular ternary semigroup, we have the following result:

Lemma

Every lateral ideal of a regular ternary semigroup T is a regular ternary semigroup.

Proof
Let L be a lateral ideal of regular ternary semigroup T. Then for each X € L there exists @€ T such that x=xax. Now

x=xax=xaxax=x(axa)x=xpx where p = axa e L. This implies that L is a regular ternary semigroup.

Definition 2
An ideal A of a ternary semigroup T is said to be a regular ideal if A W RML=R ~MmnL for any right ideal R > A,

lateral ideal M > A and leftideal L © A.

Remark 1

From Definition 2, it follows that T is always a regular ideal and any ideal that contains a regular ideal is also a regular ideal.

Now if for any right ideal R, lateral ideal M and left ideal L; RML contains a regular ideal, then RML=R "ML

Proposition

A ternary semigroup T is a regular ternary semigroup if and only if {0} is aregular ideal of T.
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Proof
Let P be the nuclear ideal of a ternary semigroup T. i.e., the intersection of all non-zero ideals of T, P is the intersection of all

non-zero right ideals of T, Py, is the intersection of all non-zero lateral ideals of T and P, is the intersection of all non-zero left

ideals of T. Now if P={0}, then clearly P=P=P,=P,.

Theorem 2

Let T be a ternary semigroup and P=P,=P,=P,. Then T is a regular ternary semigroup if and only if P is a regular ideal of T.

Proof
If P=P,=P,=P\={0}, then proof follows from proposition. So we suppose that,

P=P,=Pm=P, # {0}. Let T be a regular ternary semigroup. Then from proposition, it follows that {0} is a regular ideal of T.
Now, {0} = P =P, =P, =P, implies that P is a regular ideal of T, by using Remark 1.

Conversely, let P be a regular ideal of T. Then PLU RML=R "M ML for any right ideal R > P, lateral ideal M o P

and leftideal L > P of T. Since PPP is a right ideal of T and P=P,, we have P = P. ¢ PPP < RML.

r

Consequently, P\ RML=RML. So RML=R "ML and hence from Theorem 2, it follows that T is a regular

ternary semigroup.

Corollary 1

Let T be a ternary semigroup and P=P,=P,=P\. Then T is a regular ternary semigroup if and only if every ideal of T is regular.

Proof
Suppose T is a regular ternary semigroup. Then from Theorem 2, it follows that P is a regular ideal of T. Now P=P,=P,=P,
implies that every non-zero ideal of T contains the regular ideal P of T. Consequently, by using Remark 1, we find that every

ideal of T is regular.

Conversely, if every ideal of T is regular, then P is a regular ideal of T and hence from Theorem 2, it follows that T is a

regular ternary semigroup.

Theorem 3
The following conditions in a ternary semigroup T are equivalent:

(i) Alis aregular ideal of T.
(i Forx,y,zeT, AU(x) (y) (z), = Au((x), N(y) N (z),).
iy ForxeT, Au(x) (x) (x) = AU((x) N(X) N(x),).

(iv) Foreach X eT\A=A,x={a}u| Jxpxgxu| Jxrsxuvx forsome ae Aand p;, 0, 1;,S;, U, V; €T .
i=1 i=1
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Proof

(i) = (ii)Suppose A is a  regular ideal of T. We note that forx,y,zeT,
Ac (AU(x)), (AU(y) ), (AU(z)).
Now AU (x), (y), N(2), = (A(x))n (A(y),) N (A(z)) = AU(AL(x) ) (AL(y),) (Au(z),) (since Als regular).
S AUAMUAY) AUAYY), (z), W AAZ), L(x), AU (X), AZ), (X} (¥), AV(X) (Y),(2),
< AU}, {¥)n(2);-
gain(X),(¥),,(2), < (X), Ay}, A (2), impteshat AL(X), (v), (2), € AU{X), A(y), A(2),
Sowe find that AU(X) (y) (z), = AU((x) n(y) N(z),) .
(i) = (iii) Put y=z=x in (ii) we get (iii).
(i) = (vwe  fist ottt (AU(X),) =AU(X) = AU(X) AT AT =AU(x) TT
= AU(XTT UNX)TT = AUXTTTT UNXTT = AU(XTT) = AUXTT
similarly we have, (AU(x) ) = AUTXT UTTXTT and (AU(X),) = AUTTa
Now (x), (), A(x), = (AU(X), ), A(AU(), ). A(AU(K),)
c AU((AL(x) ) N(AU(K), ) ~(AU(X)))
=AV(AL),) (AU, ) (AU(X),))

=AUAUXTT)(AUTXT UTTXTT)(AUTTX)
< AU (XTXTX U XTTXTTX)

Since, Xe <X>r m<X>m ﬁ<X>| there  existt a€A  and P, ;. 1, S, U;,V; €T such  that

X = {a}uLanpixqix uLanrisixuivix :
i=1 i=1

(iv) = (i) Let R, M and L be any right, lateral and left ideal of T respectively such that R,M,L o A. Then clearly,

AURMLcCRNAMANL. Again, let XxXeRNMMNL. Then by wusing condition (iv), we have

n n
x={ajul Jxpxaxu| Jxrsxuvx for  some aeA and  p,Q.r,S.U,V, €T.  Since
i=1 i=1

prixqix, eriSiXUiViXe RML, xe AURML and hence RAMnLcAURML. Thus
i=1 i=1

AURML=R M nNL. Consequently, A is a regular ideal.
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Theorem 4

Let A be a regular ideal of a ternary semigroup T. For any right ideal R, lateral ideal M and left ideal L of T, if RMLc A
then RNMNLCA.

Proof

Suppose for any right ideal R, lateral ideal M and left ideal L of T, RMLc A, where A is a regular ideal of T. Then
Ac (AUR),(AUM),(AUL).
Now RNnMnNnLc(AUR)N(AUM)N(AuUL)

=AU(AUR)(AUM)(AUL)) [Since A is regular]
< AUAAA U AAL U AMAU AML U RAA U RAL U RMA U RML
c A.

From Theorem 4, we have the following results:

Corollary 2

A regular and strongly irreducible ideal of a ternary semigroup T is a prime ideal of T.

Corollary 3

Every regular ideal of a ternary semigroup T is a semi prime ideal of T.

Theorem 5

A ternary semigroup T is regular if and only if every ideal of T is idempotent.

Proof

Let T be a regular ternary semigroup and A be any ideal of T. Then A® = AAACTTAC A. Let X € A. Then there

exists @e€T such that x=xax=xaxax. Since A is an ideal andX € A, axae A. Thus X =Xxax = xaxax € A®.

Consequently, A< Aland hence A® = AAA = A ie., Ais idempotent.

Conversely, suppose that every ideal of T is idempotent. Let P, Q and R be three ideals of T. Then PQR < PTT < P,
PORcCTQT <cQ and POR<TTR<R.. This implies that PORcPmnQ MR . Also,
(PNQNR)Y(PNQNR)(PNQNR)c PQR. Again, since (PNQMNR) is an ideal of T,
(PNQNR)(PNQNRY(PNQNR)=PNQNR. Thus PNQNRc POR and hence

P NQ "R =PQR. Therefore, by Theorem 2, T is a regular ternary semigroup.

Theorem 6

A ternary semigroup T is left (resp. right) regular if and only if every left (resp. right) ideal of T is completely semiprime.
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Proof
Let T be a left regular ternary semigroup and L be any left ideal of T. Suppose a®=aaacL for aeT . Since T is left
regular, there exists an element X €T such that a=xaa=X(xaa)a=xx(aaa) e TTLc L. Thus L is completely

semiprime.

Conversely, suppose that every left ideal of T is completely semiprime. Now for anya €T , Taa is a left ideal of T. Then
by hypothesis, Taa is a completely semiprime ideal of T. Now a®=aaaeTaa. Since Taa is completely semiprime, it

follows thata € Taa. So there exists an element X €T such that a=xaa. Consequently, a is left regular. Since a is

arbitrary, it follows that T is left regular.
Equivalently, we can prove the Theorem for right regularity.
Completely Regular Ternary Semigroup

Definition 3
A pair (p, q) of elements in a ternary semigroup T is known as an idempotent pair if pg(pgx)=pgx and (xpg)pg=xpq for all

xeT [3].

Definition 4
Two idempotent pairs (p, q) and (r, s) of a ternary semigroup T are known as an equivalent, if pgx=rsx and xpg=xrs for all

xeT [3].

In notation we write (p, q) ~ (r, S).

Definition 5
An element x of a ternary semigroup T is said to be completely regular if 3 an element a€T 3 XaX=X and the
idempotent pairs (a, x) and (x, a) are equivalent.

If all the elements of T are completely regular, then T is called completely regular [3].

Definition 6

An element x of a ternary semigroup T is known as a left regular if 3 anelement a €T > axx=x

Definition 7

An element x of a ternary semigroup T is said to be right regular if 3 anelement a€T 3 XXa =X

Theorem 7

A ternary semigroup T is completely regular then T is left and right regular. [i.e., X € X?T NTX? forall XeT 1.
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Proof
Suppose T is a completely regular ternary semigroup. Let X € T . Then 3 anelement a € T 3 XaX = X and the idempotent
pairs (x, a) and (a, x) are equivalent i.e., xab=axb and bxa=bax for all b € T . Now in particular, putting b=x we find that

xax=axx and xaa=xax. This implies that X € XXT and X € TXX. Hence T is left and right regular.

Theorem 8

A ternary semigroup T is left and right regular then X € X?Tx? forall XeT .

Proof
Suppose that T is both left and right regular. LetX €T . Then dp,qeT >X=Xxpand x=gxx. This implies that
xpz=qxxpz=qgxz forall zeT .

2

NOW  X=XXP=X(XXP)P=X2(XpP)=XA(qXXPP)=X2(qxP)=x2q(xX)p=x2 q2(xxp)=x?> @2x=x%2 qPaxx=x> G2 e X°Tx?. Hence

X € X°Tx? forall xeT.

Theorem 9

If T is ternary semigroup X € X?Tx? forall x e T then T is completely regular.

Proof
Suppose X € X>Tx?forall X e T . Then JaeT > X = x?ax’
Now X=Xx’ax’ =x(xax)x=xba, where b=xaxeT. This implies that T is regular. Also

xbc = x(xax)c = x*ax’c and bxc = (xax)xc = x?ax°c for all ¢ €T . This shows that the idempotent pairs (x, b)

and (b, x) are equivalent.

Consequently, T is a completely regular ternary semigroup.

Definition 8
A sub semigroup S of a ternary semigroup T is said to be a bi-ideal of T if STSTS — S.

Theorem 10
A ternary semigroup T is completely regular ternary semigroup if and only if every bi-ideal of T is completely semiprime.

Proof

Let T is a completely regular ternary semigroup. Let P be any bi-ideal of T. Let p3 € P for p €T . Since T is completely
regular, from Theorem 10, it follows that p e pszz. This implies that there exists Xe&T such that

p=p°xp® = p(p*xp*)x(p°xp®) p = p°(xp°x) p(p*xp*)xp* = p*(xp*x) p*(xp’x) p° e PTPTP = P.  This

shows that P is completely semiprime.
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Conversely, assume that every bi-ideal of T is completely semiprime. Since every left and right ideal of a ternary semigroup
T is a bi-ideal of T, it follows that every left and right ideal of T is completely semiprime. Consequently, we have from
Theorem 6 that T is both left and right regular. Now by using Theorem 9, we find that T is a completely regular ternary

semigroup.

Theorem 11
If T is a completely regular ternary semigroup, then every bi-ideal of T is idempotent.

Proof
Let T be a completely regular ternary semigroup and P be a bi-ideal of T. Clearly T is a completely regular ternary

semigroup. Let p € P. Then there exists X € T such that p=pxp. This implies that p € PTP and hence P < PTP. Also
PTP — PTPTP < P. Thus we find that P=PTP. Again, we have from Theorem 11 that p € p*Tp® < P*TP?. This

implies that p = P?’TP? = P(PTP)P = PPP < P. Hence P® e P. Therefore every bi-ideal of P is idempotent.

Conclusion
Ternary structures and their speculation, the purported n-ary structures bring certain expectations up in perspective of their

conceivable applications in organic chemistry.
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