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Introduction 

Los [1] concentrated a few properties of ternary semigroups and demonstrated that each ternary semigroup can be installed in 

a semigroup. Sioson [2] concentrated ideal theory in ternary semigroups. He likewise presented the thought of regular ternary 

semigroups and characterized them by utilizing the thought of quasi ideals. Santiago [3] built up the theory of ternary 

semigroups and semiheaps. Dutta and Kar [4,5] presented and concentrated the thought of regular ternary semirings. 

Jayalalitha et al. [6] presented and learned about the filters in ternary semigroups. As of late, various mathematicians have 

taken a shot at ternary structures. In this paper, we concentrate some intriguing properties of regular ternary semigroups and 

completely regular ternary semigroups. 

Definition 1 

An element x in a ternary semigroup T is said to be a regular if   an element Ta xax=x [2]. 

A ternary semigroup is said to be regular if all of its elements are regular. 

 

Theorem 1 

 The following conditions in a ternary semigroup T are equivalent: 

(i) T is regular. 

(ii) For any right ideal R, lateral ideal M and left ideal L of T, RML=R M L  . 
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(iii) For Tzyx  , , , 
lmrlmr

zyxzyx  . 

(iv) For Tx , 
lmrlmr

xxxxxx  . 

 

Proof 

(i)  (ii) Suppose T is a regular ternary semigroup. Let R, M and L be a right ideal, a lateral ideal and a left ideal of T. 

Then clearly, LMR RML  . Now for LMR x , we have x=xax for some Ta . This implies that

RMLxaxaxaxaxxaxx  ))()(( . 

Thus, we have RMLLMR  . So we find that RML= R M L  . 

Clearly, (ii)  (iii)  and (iv)    (iii)  . 

It remains to show that (iv)  (i) . 

Let Tx . Clearly, 
lmrlmr

xxxxxxx  . 

Then we have, xTxnxTTxnxTTxTTTxTnxxTTx  ))()(( .  

So we find that xTax  and hence there exists an elements Ta  such that x=xax. This implies that x is regular and 

hence T is regular. 

 

We note that every left and right ideal of a regular ternary semigroup may not be a regular ternary semigroup.  

However, for a lateral ideal of a regular ternary semigroup, we have the following result: 

 

Lemma  

 Every lateral ideal of a regular ternary semigroup T is a regular ternary semigroup. 

 

Proof  

Let L be a lateral ideal of regular ternary semigroup T. Then for each Lx  there exists Ta  such that x=xax. Now 

x=xax=xaxax=x(axa)x=xpx where p = axa  L . This implies that L is a regular ternary semigroup. 

 

Definition 2 

An ideal A of a ternary semigroup T is said to be a regular ideal if A  RML=R M L    for any right ideal AR  , 

lateral ideal AM   and left ideal AL  . 

 

Remark 1 

From Definition 2, it follows that T is always a regular ideal and any ideal that contains a regular ideal is also a regular ideal. 

Now if for any right ideal R, lateral ideal M and left ideal L; RML contains a regular ideal, then RML=R M L   

 

Proposition  

 A ternary semigroup T is a regular ternary semigroup if and only if  0  is a regular ideal of T. 
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Proof 

Let P be the nuclear ideal of a ternary semigroup T. i.e., the intersection of all non-zero ideals of T, Pr is the intersection of all 

non-zero right ideals of T, Pm is the intersection of all non-zero lateral ideals of T and Pl is the intersection of all non-zero left 

ideals of T. Now if P= 0 , then clearly P=Pr=Pm=Pl. 

 

Theorem 2 

Let T be a ternary semigroup and P=Pr=Pm=Pl. Then T is a regular ternary semigroup if and only if P is a regular ideal of T. 

 

Proof 

 If P=Pr=Pm=Pl={0}, then proof follows from proposition. So we suppose that,  

 P=Pr=Pm=Pl ≠ {0}. Let T be a regular ternary semigroup. Then from proposition, it follows that {0} is a regular ideal of T. 

Now,  0 r m lP P P P    implies that P is a regular ideal of T, by using Remark 1.  

Conversely, let P be a regular ideal of T. Then P  RML=R M L    for any right ideal PR  , lateral ideal PM 

and left ideal PL   of T. Since PPP is a right ideal of T and P=Pr, we have RMLPPPPP r  .  

Consequently, P  RML=RML . So RML=R M L   and hence from Theorem 2, it follows that T is a regular 

ternary semigroup. 

 

Corollary 1  

Let T be a ternary semigroup and P=Pr=Pm=Pl. Then T is a regular ternary semigroup if and only if every ideal of T is regular. 

 

Proof 

 Suppose T is a regular ternary semigroup. Then from Theorem 2, it follows that P is a regular ideal of T. Now P=Pr=Pm=Pl 

implies that every non-zero ideal of T contains the regular ideal P of T. Consequently, by using Remark 1, we find that every 

ideal of T is regular.  

    

Conversely, if every ideal of T is regular, then P is a regular ideal of T and hence from Theorem 2, it follows that T is a 

regular ternary semigroup. 

 

 

Theorem 3 

 The following conditions in a ternary semigroup T are equivalent: 

(i) A is a regular ideal of T. 

(ii) For Tzyx  , , , )(
lmrlmr

zyxAzyxA  . 

(iii) For Tx , )(
lmrlmr

xxxAxxxA  . 

(iv) For each  
1 1

 \ ,
n n

i i i i i i

i i

x T A A x a xp xq x xrs xu v x
 

      for some Aa  and Tvusrqp iiiiii  , , , , , . 
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Proof 

(ii)    (i)  Suppose A is a regular ideal of T. We note that for Tzyx  , , , 

).(  ),(  ),(
lmr

zAyAxAA   

Now ( )  ( )  ( ) ( ) ( ) ( )
r m l r m l r m l

A x y z A x A y A z A A x A y A z             
 
(since A is regular).   

lmrmrlrrllmm
zyxAyxzAxAAxzAAzyAAyAAAAA 

lmr
zyxA . 

Again
lmrlmr

zyxzyx   implies that
lmrlmr

zyxAzyxA  .  

So we find that  )(
lmrlmr

zyxAzyxA   .  

(iii)    (ii)  Put y=z=x in (ii) we get (iii). 

(iv)    (iii)  We first note that TTxATTxAxAxA
rrrrr



( )
r

A xTT nx TT A xTTTT nxTT A xTT A xTT           

Similarly we have, TTxTTTxTAxA
mm

  and .TTaAxA
ll

  

Now 
r m l r m lr m l

x x x A x A x A x          

   )(
llmmrr

xAxAxAA   

   )(
llmmrr

xAxAxAA    

   ))()(( TTxATTxTTTxTAxTTAA    

   )( xTTxTTxxTxTxA    

 Since, 
lmr

xxxx   there exists Aa  and Tvusrqp iiiiii  , , , , , such that 

  .  
11


n

i

iiii

n

i

ii xvxusxrxxqxpax


  

 (i)    (iv)  Let R, M and L be any right, lateral and left ideal of T respectively such that ALMR ,, . Then clearly, 

LMR  RML A  . Again, let LMR x . Then by using condition (iv), we have 

    
11


n

i

iiii

n

i

ii xvxusxrxxqxpax


 for some Aa  and Tvusrqp iiiiii  , , , , , . Since

RMLAxRMLxvxusxrxxqxp
n

i

iiii

n

i

ii 


  ,    ,
11

  and hence RMLALMR  . Thus 

LMR = RML A  . Consequently, A is a regular ideal. 
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Theorem 4 

 Let A be a regular ideal of a ternary semigroup T. For any right ideal R, lateral ideal M and left ideal L of T, if A RML  

then ALMR  . 

 

Proof 

 Suppose for any right ideal R, lateral ideal M and left ideal L of T, A RML , where A is a regular ideal of T. Then 

)(),(),( LAMARAA  .  

Now )()()(LMR LAMARA    

)))()((( LAMARAA   [Since A is regular]

RMLRMARALRAAAMLAMAAALAAAA    

 A . 

 

From Theorem 4, we have the following results: 

 

Corollary 2 

A regular and strongly irreducible ideal of a ternary semigroup T is a prime ideal of T. 

 

Corollary 3 

Every regular ideal of a ternary semigroup T is a semi prime ideal of T. 

 

Theorem 5 

A ternary semigroup T is regular if and only if every ideal of T is idempotent. 

 

Proof 

Let T be a regular ternary semigroup and A be any ideal of T. Then ATTAAAA 3A . Let Ax . Then there 

exists Ta  such that x=xax=xaxax. Since A is an ideal and Ax , Aaxa . Thus 
3Axaxaxx = xax =  . 

Consequently, 
3AA and hence AAAA 3A  i.e., A is idempotent. 

 Conversely, suppose that every ideal of T is idempotent. Let P, Q and R be three ideals of T. Then  ,PPTT PQR 

 QTQT PQR  and  RTTR PQR  . This implies that  RQP PQR  . Also, 

PQRRQPRQPRQP  ))(( )( . Again, since )( RQP   is an ideal of T, 

RQPRQPRQPRQP  ))(( )( . Thus PQRRQP   and hence 

PQRRQP  . Therefore, by Theorem 2, T is a regular ternary semigroup. 

 

Theorem 6 

A ternary semigroup T is left (resp. right) regular if and only if every left (resp. right) ideal of T is completely semiprime. 
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Proof 

Let T be a left regular ternary semigroup and L be any left ideal of T. Suppose Laaaa 3
 for Ta . Since T is left 

regular, there exists an element Tx  such that .)()( LTTLaaaxxaxaaxxaaa   Thus L is completely 

semiprime. 

 

Conversely, suppose that every left ideal of T is completely semiprime. Now for any Ta , Taa  is a left ideal of T. Then 

by hypothesis, Taa  is a completely semiprime ideal of T. Now Taaaaaa 3
. Since Taa  is completely semiprime, it 

follows that Taaa . So there exists an element Tx  such that a=xaa. Consequently, a is left regular. Since a is 

arbitrary, it follows that T is left regular. 

 

Equivalently, we can prove the Theorem for right regularity. 

 

Completely Regular Ternary Semigroup 

 

Definition 3 

A pair (p, q) of elements in a ternary semigroup T is known as an idempotent pair if pq(pqx)=pqx and (xpq)pq=xpq for all 

Tx [3]. 

 

Definition 4 

Two idempotent pairs (p, q) and (r, s) of a ternary semigroup T are known as an equivalent, if pqx=rsx and xpq=xrs for all 

Tx [3]. 

In notation we write (p, q) ~ (r, s). 

 

Definition 5 

An element x of a ternary semigroup T is said to be completely regular if   an element x xT xa a    and the 

idempotent pairs (a, x) and (x, a) are equivalent.  

If all the elements of T are completely regular, then T is called completely regular [3]. 

 

Definition 6 

An element x of a ternary semigroup T is known as a left regular if   an element Ta   axx=x 

 

Definition 7 

An element x of a ternary semigroup T is said to be right regular if   an element x aT xa x     

 

Theorem 7 

A ternary semigroup T is completely regular then T is left and right regular. [i.e., 
22 TxTxx   for all Tx ]. 
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Proof 

Suppose T is a completely regular ternary semigroup. Let Tx . Then   an element x xT xa a    and the idempotent 

pairs (x, a) and (a, x) are equivalent i.e., xab=axb and bxa=bax for all Tb . Now in particular, putting b=x we find that 

xax=axx and xaa=xax. This implies that xxTx  and Txxx . Hence T is left and right regular. 

 

Theorem 8 

A ternary semigroup T is left and right regular then 
22Txxx  for all Tx . 

 

Proof 

Suppose that T is both left and right regular. Let Tx . Then ,p q T x xxp    and x=qxx. This implies that 

xpz=qxxpz=qxz for all Tz .    

Now x=xxp=x(xxp)p=x2(xpp)=x2(qxxpp)=x2(qxp)=x2q(qxx)p=x2 q2(xxp)=x2 q2x=x2 q2qxx=x2 q3x2 
22Txx . Hence 

22Txxx  for all .Tx  

 

Theorem 9 

If T is ternary semigroup 
22Txxx  for all Tx  then T is completely regular. 

 

Proof 

Suppose 
22Txxx for all Tx . Then 

2 2a T x x ax     

Now xbaxxaxxaxxx  )(22
, where Txaxb  . This implies that T is regular. Also 

caxxcxaxxxbc 22)(   and caxxxcxaxbxc 22)(   for all Tc . This shows that the idempotent pairs (x, b) 

and (b, x) are equivalent. 

Consequently, T is a completely regular ternary semigroup. 

 

Definition 8 

A sub semigroup S of a ternary semigroup T is said to be a bi-ideal of T if .SSTSTS   

 

Theorem 10  

A ternary semigroup T is completely regular ternary semigroup if and only if every bi-ideal of T is completely semiprime. 

 

Proof 

 Let T is a completely regular ternary semigroup. Let P be any bi-ideal of T. Let Pp 3
 for Tp . Since T is completely 

regular, from Theorem 10, it follows that 
22Tppp . This implies that there exists Tx  such that 

2 2 2 2 2 2 3 2 2 2 3 3 2 3 2 3( ) ( ) ( ) ( ) ( ) ( )p p xp p p xp x p xp p p xp x p p xp xp p xp x p xp x p PTPTP P      . This 

shows that P is completely semiprime. 
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Conversely, assume that every bi-ideal of T is completely semiprime. Since every left and right ideal of a ternary semigroup 

T is a bi-ideal of T, it follows that every left and right ideal of T is completely semiprime. Consequently, we have from 

Theorem 6 that T is both left and right regular. Now by using Theorem 9, we find that T is a completely regular ternary 

semigroup. 

 

Theorem 11 

If T is a completely regular ternary semigroup, then every bi-ideal of T is idempotent. 

 

Proof 

 Let T be a completely regular ternary semigroup and P be a bi-ideal of T. Clearly T is a completely regular ternary 

semigroup. Let .Pp  Then there exists Tx such that p=pxp. This implies that PTPp  and hence .PTPP  Also 

.PPTPTPPTP   Thus we find that P=PTP. Again, we have from Theorem 11 that .2222 TPPTppp   This 

implies that PPPPPPTPPTPPp  )(22
. Hence .3 PP   Therefore every bi-ideal of P is idempotent. 

 

Conclusion 

Ternary structures and their speculation, the purported n-ary structures bring certain expectations up in perspective of their 

conceivable applications in organic chemistry.  
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