

Acta Chimica & Pharmaceutica Indica

Acta Chim. Pharm. Indica: 6(2), 2016, 32-44 ISSN 2277-288X

QUANTUM CHEMICAL STUDIES ON MOLECULAR STRUCTURE AND REACTIVITY DESCRIPTORS OF SOME *p*-NITROPHENYL TETRATHIAFULVALENES BY DENSITY FUNCTIONAL THEORY (DFT)

AMEL BENDJEDDOU^{a,*}, TAHAR ABBAZ^{a,b}, ABDELKRIM GOUASMIA^b and DIDIER VILLEMIN^c

 ^aLaboratory of Aquatic and Terrestrial Ecosystems, Organic and Bioorganic Chemistry Group, University of Mohamed-Cherif Messaadia, SOUK AHRAS, ALGERIA
 ^bLaboratory of Organic Materials and Heterochemistry, University of Larbi Tebessi, TEBESSA, ALGERIA
 ^cLaboratory of Molecular and Thio-Organic Chemistry, UMR CNRS 6507, INC3M, FR 3038, Labex EMC3, Ensicaen & University of Caen, CAEN 14050, FRANCE

(Received : 14.03.2016; Revised : 24.03.2016; Accepted : 26.03.2016)

ABSTRACT

The main purpose of this study was the determination of chemical reactivity and sites selective of the title compounds (**A-F**). Molecular geometries have been studied using the density functional theory (DFT) with B3LYP/6-31G (d,p) basis set. In addition, the molecular electrostatic potential maps and frontier molecular orbitals were performed at B3LYP/6-31G (d,p) level of theory. DFT global chemical reactivity descriptors (chemical hardness, energy, electronic chemical potential and electrophilicity) are calculated for the title molecules and used to predict their relative stability and reactivity. The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function. The chemometric method PCA was employed to find the subset of variables that could correctly classify the compounds according to their reactivity.

Key words: Tetrathiafulvalenes, Density functional Theory, Reactivity descriptors, Principal component analysis and Hierarchical cluster analysis

INTRODUCTION

With the development of computational chemistry, the quantum chemistry presents insights into electronic structures of molecules and strongly propels the development of the traditionally experimental chemistry.¹ Density functional theory (DFT) has been very popular for calculations in theoretical modeling since the 1970s. A search of the Science Citation Index for articles published in 1986 with the words "Density functional theory" in the title or abstract yields less than 50 entries. Repeating this search for 1996 and 2006 gives more than 1100 and 5600 entries, respectively.² Today, these numbers beyond 10,000s. In many cases the results of DFT calculations for solid-state systems agreed quite satisfactorily with experimental data. DFT predicts a great variety of molecular properties: molecular structures, vibrational

Available online at www.sadgurupublications.com

^{*}Author for correspondence; E-mail: amel.bendjeddou@univ-soukahras.dz

frequencies, atomization energies, ionization energies, electric and magnetic properties, reaction paths, etc. The reactivity descriptors, defined within the framework of density functional theory are global hardness, global electrophilicity, chemical potential, local softness, Fukui functions etc.³ These descriptors have been tested and studied in the literature by several research groups and are found to be very useful in rationalizing the reactivity patterns of the molecular systems.⁴⁻⁶ Chattaraj et al.⁷ have reviewed the theoretical basis for these descriptors and their applications. In general, the descriptors are classified to refer to the whole system, called "global reactivity descriptors", or to refer a local part of the system, called "local reactivity descriptors". Some of the recent developments and applications in this area of research are highly appreciable.⁸ Since most of these descriptors are the derivatives of energy and electron density variables. The objective of this work focused on the performance of a detailed calculation of the molecular structure and chemical reactivity of some *p*-nitrophenyl tetrathiafulvalene.

EXPERIMENTAL

Materials and mehtods

All computational calculations have been performed on personal computer using the Gaussian 09W program packages developed by Frisch and coworkers.⁹ The Becke's three parameter hybrid functional using the LYP correlation functional (B3LYP), one of the most robust functional of the hybrid family, was herein used for all the calculations, with 6.31G (d, p) basis set.^{10,11} Gaussian output files were visualized by means of Gaussian view 05 software.¹² Principal component analysis (PCA)^{13,14} is a chemometric method was performed using software XLSTAT.

RESULTS AND DISCUSSION

In a previous work¹⁵, we have described the synthesis of new unsymmetrical tetrathiafulvalenes (TTF) containing nitrophenyl rings (**A-F**) indicated in **Scheme 1**. The synthesis of these electron donors was carried out using a cross-coupling method of the respective 4,5-dialkyl-1,3-dithiole-2-one with 4-(p-nitrophenyl)-1,3-dithiole-2-thione.

Scheme 1: Synthetic route for the preparation of *p*-nitrophenyl tétrathiafulvalènes (A-F)

Molecular geometry

The geometric parameters of title compounds **A-F** were optimized with B3LYP method at 6-31G (d,p) level. No solvent corrections were made with these calculations. The computations were converged upon a true energy minimum, which were supported by the absence of imaginary frequencies. The chemical structure of compounds **A-F** are shown in **Scheme 1** and the final optimized molecular structures of compounds in accordance with the atom numbering scheme were shown in Fig. 1. The optimized energy for

compounds varies between -86324.8 and -67677.5 eV, which indicate that these compounds were stable. Based on these, some structural parameters such as bond distances and bond angles have been calculated. From the optimized geometries, various molecular properties such as energy of highest occupied molecular orbital (E_{HOMO}) and the lowest unoccupied molecular orbital (E_{LUMO}), energy gap ΔE_{gap} , ionization potential (I), electron affinity (A) and global reactivity parameters such as chemical hardness (η), softness, electronegativity, chemical potential (μ) and electrophilicity index (ω) were also calculated to analyze the reactivity of title molecules. The optimized geometrical parameters, namely Bond length and Bond Angles calculated with 6-31G (d, p) basis set were listed in Table 1-3.

	Compound A				Compound B			
Bond len	ond length (Å) Bond angles (°)		Bond len	gth (Å)	Bond angles (°)			
1C4S	1.75	10C1C4S	119.55	1C4S	1.75	10C1C4S	119.53	
10C2S	1.79	1C4S3C	94.79	10C2S	1.79	1C4S3C	94.78	
3C2S	1.78	10C2S3C	95.37	3C2S	1.78	10C2S3C	95.37	
5C6S	1.78	34032N330	124.69	5C6S	1.79	29027N280	124.72	
7C12S	1.77	5C6S7C	94.63	7C12S	1.77	5C6S7C	93.04	
12S14C	1.84	7C12S14C	101.76	12S14C	1.85	7C12S14C	91.43	
8C13S	1.77	7C8C13S	125.58	8C13S	1.77	7C8C13S	117.96	
13S18C	1.84	8C13S18C	101.81	13S14C	1.84	12S14C13S	109.15	
8C9S	1.79	2S3C4S	113.61	8C9S	1.76	4S3C2S	113.67	
10C22C	1.47	6S5C9S	112.15	10C17C	1.47	9S5C6S	113.63	

Table 1: Selected molecular structure parameters of compound A and B

Compound C					Compound D			
Bond len	ond length (Å) Bond angles (°)		Bond len	gth (Å)	Bond ang	Bond angles (°)		
1C19S	1.75	14C1C19S	119.35	1C19S	1.75	14C1C19S	119.37	
14C18S	1.79	1C19S2C	94.55	14C18S	1.79	1C19S2C	94.53	
2C18S	1.78	14C18S2C	95.14	2C18S	1.78	14C18S2C	95.10	
20C23S	1.78	16015N17O	124.67	20C34S	1.78	16015N17O	124.66	
22C25S	1.76	20C23S22C	93.57	22C23S	1.77	20C34S22C	94.61	
25S27C	1.84	22C25S27C	96.30	23S25C	1.84	22C23S25C	103.08	
30C26S	1.86	22C21C26S	127.71	31C24S	1.84	22C21C24S	117.24	
27C30C	1.52	21C26S30C	103.80	31C28C	1.53	25C28C31C	115.77	
21C24S	1.79	19S2C18S	113.32	28C25C	1.53	19S2C18S	112.28	
4C14C	1.47	24S20C23S	112.78	4C14C	1.47	35S20C34S	112.51	

-	Compound E				Compound F				
Bond len	Bond length (Å) Bond angles (°)		les (°)	Bond len	gth (Å)	Bond ang	les (°)		
1C4S	1.75	5C1C4S	119.35	1C22S	1.79	2C1C22S	115.62		
5C2S	1.79	1C4S3C	94.50	2C21S	1.75	1C22S20S	95.28		
3C2S	1.78	5C2S3C	95.07	20C21S	1.78	2C21S20C	94.71		
20C23S	1.79	19017N180	124.66	17C23S	1.79	15014N160	124.67		
21C23S	1.77	20C23S21C	93.07	19C23S	1.77	17C23S19C	93.99		
25021C	1.37	21C25O27C	110.36	19C25Se	1.89	19C25Se30C	100.80		
22C26O	1.37	21C22C26O	27.36	18C26Se	1.89	19C18C26Se	121.98		
27C30C	1.53	22C26O30C	110.86	27C30C	1.52	18C26Se27C	92.86		
22C24S	1.77	23S20C24S	115.11	18C24S	1.77	23S17C24S	112.92		
5C7C	1.47	2S3C4S	113.27	1C4S	1.47	21S20C22S	113.60		

Table 3: Selected molecular structure parameters of compound E and F

Compound E

Compound F

Global reactivity descriptors

In Table 4, it is reported the values of the electronic energies calculated for all studied compounds in order to describe their reactivity. The energy corresponding to HOMO represents the ionization potential of the molecule and LUMO the corresponding electron affinity value. Using the Koopmans' theorem¹⁶⁻¹⁷ (I) and (A) values can be correlated with the Frontier orbitals by the relation: $I = -E_{HOMO}$ and $A = -E_{LUMO}$.

Compounds	E _{HOMO} (eV)	E _{LUMO} (eV)	ΔE _{gap} (eV)	I (eV)	A (eV)
Α	-5.06	-2.68	2.38	5.06	2.68
В	-5.01	-2.70	2.31	5.01	2.70
С	-5.01	-2.65	2.36	5.01	2.65
D	-5.00	-2.63	2.38	5.00	2.63
Ε	-4.81	-2.62	2.19	4.81	2.62
F	-4.96	-2.63	2.33	4.96	2.63

 Table 4: Energetic parameters of *p*-Nitrophenyl tetrathiafulvalenes (A-F)

Fig. 2: Molecular electrostatic potential surface of compounds E and F

The frontier orbitals, HOMO and LUMO were the most important orbitals in a molecule. These orbitals determine the way how the molecule interacts with other species and give information about reactivity/stability of specific regions of the molecule. The energy of HOMO characterizes electron donating ability of a molecule while LUMO energy determines the ability to accept an electron. Therefore, higher values of E_{HOMO} indicate better tendency towards the donation of electron, As can be seen in Table 4 that the molecule (B) is the most molecule has the ability to accept electrons while (E) has the highest HOMO energy ($E_{HOMO} = -4,81eV$) that allows him to be the best electron donor molecule.

The energy gap between the HOMO and LUMO is very important in determining the chemical reactivity of the molecule. The high value of the energy gap indicates that the molecule shows high chemical stability, while a small HOMO-LUMO gap means small excitation energies to the manifold of excited states.

Ionization potential (I), which is defined as the amount of energy needed to remove an electron from a molecule. High ionization energy indicates high stability and chemical inertness and small ionization energy indicates high reactivity of the atoms and molecules. Compound (E) has the lowest ionization potential value (I = 4,81eV), which indicate that it is the best electron donor. The electronic affinity (A) is defined as the energy released when an electron is added to a neutral molecule. A molecule with high (A) values tend to take electrons easily. From Table 4 it is clear that Compound (B) is the best reactive.

The global chemical reactivity descriptors, chemical potential (μ), electronegativity (χ), hardness (η), softness (S), and electrophilicity index (ω) wich calculated from HOMO and LUMO energies were obtained at the level of theory B3LYP/6-31G and incorporated in Table 5. According to these parameters, the chemical reactivity varies with the structural configuration of molecules.

Global reactivity descriptors are described as:¹⁸⁻²² Chemical potential are described ($\mu = -\chi$), the absolute electronegativity (χ) is given by the relation ($\chi = (IP + EA)/2$), global hardness and global softness (S) are defined as ($\eta = (E_{LUMO} - E_{HOMO})/2$) and (S = 1/2 η), the electrophilicity (ω) can be calculated using the electronic chemical potential and the chemical hardness ($\omega = \mu^2/2 \eta$)

Compounds	μ (eV)	x (eV)	η (eV)	S (eV)	ω (eV)
Α	-3.87	3.87	1.19	0.42	6.30
В	-3.85	3.85	1.16	0.43	6.42
С	-3.83	3.83	1.18	0.42	6.21
D	-3.81	3.81	1.19	0.42	6.12
Ε	-3.72	3.72	1.10	0.46	6.31
F	-3.80	3.80	1.16	0.43	6.19

 Table 5: Quantum chemical descriptors of p-Nitrophenyl tétrathiafulvalènes (A-F)

The chemical potential μ (eV) measures the escaping tendency of an electron and it can be associated with the molecular electronegativity²³ then, as μ becomes more negative, it is more difficult to lose an electron but easier to gain one. As shown in Table 5, compound E is the least stable and the most reactive among all the compounds.

Electronegativity (χ), representing the ability of molecules to attract electrons, The (χ) values displayed in Table 2 shows that Compound A has higher electronegativity value compared to all the molecules.

Hardness (η) and softness (S) are a useful concept for understanding the behaviour of chemical systems. A hard molecule has a large energy gap and a soft molecule has a small energy gap.²⁴ Therefore, soft molecules will be more polarizable than hard molecules. From theoretical calculations established, it was found that the molecule **A** has the highest hardness value ($\eta = 2.19 \text{ eV}$), which indicates that is the hardest molecule. The molecules **E** has the highest softness (S = 0,46 eV), so it is the softest molecule.

Electrophilicity (ω), that gives an idea of the stabilization energy when the system gets saturated by electrons, which come from the external environment. These reactivity information shows if a molecule is capable of donating charge. A good, more reactive, nucleophile is characterized by a lower value of (ω), while higher values indicate the presence of a good electrophile. Our results indicate that, molecule **D** has lower values of (ω), so that compound is good nucleophile. However molecule **B** is a good electrophile.

Local reactivity descriptors

In a chemical reaction, a change in the number of electrons involves the addition or subtraction of at least one electron in the frontier orbitals. Thus, calculating Fukui functions helps us determine the active sites of a molecule, based on the electronic density changes experienced by it during a reaction.

Fukui functions $f^{+}(\vec{r})$, $f^{-}(\vec{r})$ and $f^{0}(\vec{r})$ are calculated using the following equations as: ²⁵⁻²⁸

 $f^{+} = [q(N+1)-q(N)], \text{ for nucleophilic attack,}$ $f^{-} = [q(N)-q(N-1)], \text{ for electrophilic attack,}$ $f^{0} = [q(N+1)-q(N-1)]/2, \text{ for radical attack.}$

Where q(N) is the charge on kth atom for neutral molecule while q(N + 1) and q(N - 1) are the same for its anionic and cationic species, respectively. The value of descriptors calculated at B3LYP/6-31G (d, p) level using Mulliken charges on atoms in molecules are presented in Table 6, 7 and 8.

Table 6 shows that at the DFT level the most susceptible site to a nucleophilic attack for compound **A** is located on 32N. In the case of an electrophilic attack, the most reactive site is on 29C. For a free radical attack the most reactive site is on 7C. For compound **B** the more susceptible sites to nucleophilic attacks is 3C, while 14C is the most susceptible sites for electrophilic and free radical attacks. Compound C and D (Table 7) show that the most susceptible sites to nucleophilic attack, respectively. For the Compound **E** (Table 8) our results reported that a preferred site for nucleophilic attack is the 3C while 30C represents the preferred sites for electrophilic attack is the 3C while 30C represents the preferred site for the compound **F**, 20 C implies that this will be preferred site for the nucleophilic attack is more probable on 4 S.

	Compo	ound A		Compound B				
Atom	$f^{\scriptscriptstyle +}$	f	$f^{ heta}$	Atom	$f^{\scriptscriptstyle +}$	f	$f^{ heta}$	
1 C	-0.089	0.004	-0.042	1 C	-0.049	-0.006	-0.028	
2 S	-0.259	-0.044	-0.152	2 S	-0.057	-0.124	-0.091	
3 C	0.248	-0.044	0.102	3 C	<u>0.023</u>	0.002	0.012	
4 S	-0.217	-0.103	-0.159	4 S	-0.097	-0.124	-0.110	
5 C	0.085	-0.116	-0.016	5 C	-0.012	0.014	0.001	
6S	-0.183	-0.103	-0.143	6 S	-0.017	-0.160	-0.089	
7 C	0.182	-0.091	<u>0.046</u>	7 C	-0.001	0.007	0.003	
8 C	0.071	-0.087	-0.007	8 C	-0.001	0.007	0003	
9 S	-0.153	-0.105	-0.129	9 S	-0.027	-0.163	-0.095	
10 C	0.094	-0.099	-0.002	10 C	-0.003	0.007	0.002	
11 H	0.039	-0.083	-0.022	11 H	-0.034	-0.046	-0.040	
12 S	-0.115	0.044	-0.036	12 S	-0.030	-0.112	-0.071	
13 S	-0.144	0.045	-0.049	13 S	-0.034	-0.112	-0.073	
14 C	-0.040	0.056	0.008	14 C	0.005	<u>0.032</u>	<u>0.018</u>	
15 H	0.026	-0.045	-0.009	15 H	-0.008	-0.034	-0.020	
16 H	0.033	-0.044	-0.006	16 H	-0.016	-0.042	-0.029	
17 H	0.027	-0.044	-0.009	17 C	-0.020	0.019	-0.001	

Table 6: Values of the Fukui function of the molecules A and B

	Compo	ound A		Compound B				
Atom	$f^{\scriptscriptstyle +}$	f	$f^{ m 0}$	Atom	$f^{\scriptscriptstyle +}$	f	$f^{ m 0}$	
18 C	-0.028	0.055	0.013	18 C	-0.012	-0.009	-0.011	
19 H	0.018	-0.046	-0.014	19 C	-0.010	-0.008	-0.009	
20 H	0.021	-0.047	-0.013	20 C	-0.027	-0.008	-0.018	
21H	0.024	-0.041	-0.009	21 H	-0.052	-0.005	-0.029	
22 C	-0.077	0.108	0.016	22 C	-0.021	-0.008	-0.015	
23 C	-0.139	0.034	-0.053	23 H	-0.055	-0.016	-0.036	
24 C	-0.150	0.052	-0.049	24 C	0.015	-0.005	0.005	
25 C	0.102	-0.053	0.024	25 H	-0.053	-0.022	-0.037	
26 H	0.026	-0.052	-0.013	26 H	-0.053	-0.024	-0.039	
27 C	0.095	-0.052	0.022	27 N	-0.099	-0.015	-0.057	
28 H	0.038	-0.072	-0.017	28 O	-0.126	-0.023	-0.075	
29C	-0.630	<u>0.429</u>	-0.1002	29 O	-0.126	-0.022	-0.074	
30 H	-0.002	-0.048	-0.025					
31 H	-0.001	-0.050	-0.025					
32N	<u>0.481</u>	-0.438	0.021					
33 O	-0.191	0.038	-0.077					
34 O	-0.192	0.039	-0.076					

Table 7: Values of the Fukui function of the molecules C and D

	Compo	ound C		Compound D				
Atom	$f^{\scriptscriptstyle +}$	f	$f^{ heta}$	Atom	$f^{\scriptscriptstyle +}$	f	$f^{ m 0}$	
1 C	-0.055	-0.003	-0.029	1 C	-0.054	-0.003	-0.029	
2 C	<u>0.032</u>	0.011	<u>0.022</u>	2 C	<u>0.031</u>	0.007	<u>0.019</u>	
3 H	-0.033	-0.047	-0.040	3 H	-0.033	-0.048	-0.040	
4 C	-0.013	0.013	-0.0002	4 C	-0.014	0.012	-0.001	
5 C	-0.012	-0.006	-0.009	5 C	-0.012	-0.006	-0.009	
6 C	-0.014	-0.008	-0.011	6 C	-0.013	-0.008	-0.011	
7 C	-0.022	-0.008	-0.015	7 C	-0.021	-0.008	-0.015	
8 H	-0.055	-0.017	-0.036	8 H	-0.055	-0.017	-0.036	
9 C	-0.029	-0.008	-0.018	9 C	-0.028	-0.008	-0.018	
10 H	-0.055	-0.003	-0.029	10 H	-0.054	-0.004	-0.029	
11 C	0.016	-0.005	0.006	11 C	0.016	-0.005	0.005	
12 H	-0.053	-0.025	-0.039	12 H	-0.052	-0.026	-0.039	

Cont...

	Compo	ound C		Compound D				
Atom	$f^{\scriptscriptstyle +}$	f	$f^{ m heta}$	Atom	$f^{\scriptscriptstyle +}$	f	f^{θ}	
13 H	-0.053	-0.022	-0.038	13 H	-0.052	-0.023	-0.038	
14 C	-0.007	0.009	0.001	14 C	-0.006	0.011	0.002	
15 N	-0.101	-0.015	-0.058	15 N	-0.100	-0.016	-0.058	
16 O	-0.128	-0.023	-0.075	16 O	-0.126	-0.023	-0.075	
17 O	-0.128	-0.024	-0.076	17 O	-0.127	-0.025	-0.076	
18 S	-0.040	-0.135	-0.088	18 S	-0.042	-0.146	-0.094	
19 S	-0.081	-0.132	-0.107	19 S	-0.082	-0.144	-0.113	
20 C	-0.023	0.007	-0.008	20 C	-0.021	0.004	-0.008	
21 C	-0.005	0.026	0.010	21 C	0.002	0.011	0.007	
22 C	0.015	0.013	0.014	22 C	0.003	0.011	0.007	
23 S	-0.025	-0.160	-0.093	23 S	-0.023	-0.070	-0.047	
24 S	-0.040	-0.160	-0.099	24 S	-0.027	-0.071	-0.049	
25 S	-0.014	-0.104	-0.059	25 C	0.006	<u>0.016</u>	0.011	
26 S	-0.039	-0.095	-0.067	26 H	-0.004	-0.013	-0.009	
27 C	0.020	0.022	0.021	27 H	-0.016	-0.034	-0.025	
28 H	-0.017	-0.027	-0.022	28 C	0.006	0.013	0.009	
29 H	-0.015	-0.040	-0.027	29 H	-0.036	-0.021	-0.029	
30 C	-0.007	<u>0.035</u>	0.014	30 H	0.009	-0.035	-0.013	
31 H	-0.001	-0.030	-0.016	31 C	0.007	0.016	0.012	
32 H	-0.019	-0.039	-0.029	32 H	-0.017	-0.034	-0.026	
				33 H	-0.005	-0.013	-0.009	
				34 S	-0.024	-0.149	-0.086	
				35 S	-0.035	-0.150	-0.093	

Table 8:	Values of	'the Fukui	function of	f the molecul	es E and F
1 4010 01	, and co of	the I amai	ranceion or	the molecul	

	Comp	ound E		Compound F			
Atom	$f^{\scriptscriptstyle +}$	f	$f^{ m 0}$	Atom	$f^{\scriptscriptstyle +}$	f	$f^{ m 0}$
1 C	-0.054	-0.002	-0.028	1 C	-0.004	0.008	0.002
2 S	-0.043	-0.134	-0.089	2 C	-0.053	-0.006	-0.029
3 C	<u>0.034</u>	-0.005	0.014	3 H	-0.033	-0.047	-0.040
4 S	-0.085	-0.131	-0.108	4 C	-0.019	<u>0.019</u>	0.001
5 C	-0.005	0.009	0.002	5 C	-0.013	-0.009	-0.011
6 H	-0.033	-0.047	-0.040	6 C	-0.010	-0.008	-0.009

Cont...

Compound E				Compound F			
Atom	$f^{\scriptscriptstyle +}$	f	$f^{ m heta}$	Atom	$f^{\scriptscriptstyle +}$	f	f^{0}
7 C	-0.015	0.013	-0.001	7 C	-0.028	-0.008	-0.018
8 C	-0.013	-0.008	-0.011	8 H	-0.053	-0.005	-0.029
9 C	-0.012	-0.006	-0.008	9 C	-0.021	-0.008	-0.015
10 C	-0.029	-0.008	-0.018	10 H	-0.056	-0.017	-0.036
11 H	-0.055	-0.003	-0.029	11 C	0.016	-0.005	0.006
12 C	-0.022	-0.008	-0.015	12 H	-0.053	-0.023	-0.038
13 H	-0.055	-0.017	-0.036	13 H	-0.053	-0.025	-0.039
14 C	0.017	-0.005	0.006	14 N	-0.101	-0.016	-0.058
15 H	-0.053	-0.023	-0.038	15 O	-0.128	-0.025	-0.076
16 H	-0.053	-0.025	-0.039	16 O	-0.127	-0.023	-0.075
17 N	-0.102	-0.016	-0.059	17 C	-0.019	0.001	-0.009
18 O	-0.129	-0.025	-0.077	18 C	0.006	0.019	0.012
19 O	-0.129	-0.023	-0.076	19 C	0.005	0.014	0.009
20 C	-0.022	0.022	-0.0002	20 C	<u>0.033</u>	0.003	<u>0.018</u>
21 C	-0.007	-0.029	-0.018	21 S	-0.086	-0.135	-0.111
22 C	-0.009	-0.029	-0.019	22 S	-0.047	-0.135	-0.091
23 S	-0.032	-0.163	-0.097	23 S	-0.033	-0.149	-0.091
24 S	-0.042	-0.164	-0.103	24 S	-0.024	-0.154	-0.089
25 O	-0.003	-0.027	-0.015	25 Se	-0.031	-0.092	-0.062
26 O	-0.005	-0.028	-0.016	26 Se	-0.029	-0.089	-0.059
27 C	0.009	0.020	0.015	27 C	0.004	0.013	0.008
28 H	-0.024	-0.035	-0.029	28 H	-0.017	-0.038	-0.027
29 H	-0.008	-0.048	-0.028	29 H	-0.002	-0.011	-0.007
30 C	0.009	<u>0.025</u>	<u>0.017</u>	30 C	0.005	0.013	0.009
31 H	-0.026	-0.034	-0.030	31 H	-0.014	-0.032	-0.023
32 H	-0.003	-0.048	-0.026	32 H	-0.015	-0.033	-0.024

Principal component analysis (PCA)

In this work, we auto scaled all calculated variables in order to compare them in the same scale. Afterwards, PCA (principal component analysis) was used to reduce the number of variables and select the most relevant ones, i.e. those responsible for the *p*-nitrophenyl tetrathiafulvalene reactivity. After performing many tests, a good separation is obtained between more active and less active tetrathiafulvalenes compounds using ten variables: I, A, χ , σ , s, μ , ω , E_{HOMO}, E_{LUMO}, ΔE_{gap} (Table 4-5).

We can observe from PCA results that the first three principal components (PC1, PC2 and PC3) describe 99.91% of the overall variance as follows: PC1 = 66.64%, PC2 = 33.27% and PC3 = 0.07%. The

score plot of the variances is a reliable representation of the spatial distribution of the points for the data set studied after explaining almost all of the variances by the first two PCs. The most informative score plot is presented in Fig. 3 (PC1 versus PC2) and we can see that PC1 alone is responsible for the separation between more active (E, F) and less active compounds (A, B, C, D) where PC1 > 0 for the more active compounds and PC1 < 0 for the less active ones. The same results follow in the case of global reactivity trend based on ω .

Fig. 3: Score plot for *p*-nitrophenyl tetrathiafulvalene in gas phase

The loading vectors for the first two principal components (PC1 and PC2) are displayed in Fig. 4. We can see that more active compounds (PC1 > 0) can be obtained when we have higher E_{HOMO} , E_{LUMO} , μ , s, ω values. In this way, some important features on the more active compounds can be observed.

Fig. 4: Loading plot for the variables responsible for the classification of the *p*-Nitrophenyl tetrathiafulvalene studied

CONCLUSION

From the whole of the results presented in this contribution it has been clearly demonstrated that the sites of interaction of the title compounds (A-F) can be predicted by using DFT-based reactivity descriptors such as the hardness, softness, and electrophilicity, as well as Fukui-function calculations. These descriptors were used in the characterization and successfully description of the preferred reactive sites and provide a firm explanation for the reactivity of the p-nitrophenyl tétrathiafulvalènes molecule.

ACKNOWLEDGMENT

This work was generously supported by the General Directorate for Scientific Research and Technological Development (DGRS-DT) and Algerian Ministry of Scientific Research.

REFERENCES

- 1. J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, USA (1996).
- D. S. Sholl and J. A. Steckel, Density Functional Theory, A Practical Introduction, Wiley, New Jersey (2009).
- 3. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York (1989).
- 4. A. K. Chandra and M. T. Nguyen, Faraday Discus., 135, 191 (2007).
- 5. J. S. M. Anderson, J. Melin and P. W. Ayers, J. Chem. Theory Comput., 3, 375 (2007).
- 6. T. Mineva, J. Mol. Struct. Theochem., 762, 79 (2006).
- 7. P. K. Chattaraj, U. Sarkar and D. R. Roy, Chem Rev., 106, 2065 (2006).
- 8. R. K. Roy and S. Saha, Annu. Rep. Prog. Chem. Sect. C: Phys. Chem., 106, 118 (2010).
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson and al. Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, USA (2010).
- 10. H. B. Schlegel and J. Comput. Chem., **3**, 214 (1982).
- 11. R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 54, 724 (1971).
- R. Dennington, T. Keith and J. Millam, Gauss View, Version 5, Semichem Inc., Shawnee Mission, KS (2009).
- 13. A. D. Becke, J. Chem. Phys., 98, 5648 (1993).
- 14. T. Koopmans, Physica., 1104 (1993).
- T. Abbaz, A. Bendjeddou, N. Nait Said, R. Khammar, D. Bouchouk, S. Bouacherine, N. Sedira, S. Maache, A. K. Gouasmia, R. Rehamnia, M. Dekhici and D. Villemin, J. Chem. Pharm. Res., 6, 1385 (2014).
- 16. T. Koopmans, Physica., 1, 104 (1933)
- 17. J. C. Phillips, Phys. Rev., **123**, 420 (1961)
- 18. L. A. Flippin, D. W. Gallagher and K. Jalali-Araghi, J. Org. Chem., 54, 1430 (1989).
- 19. R. G. Parr, L. V. Szentpály and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999).
- 20. P. K. Chattaraj and S. Giri, J. Phys. Chem. A., 111, 11116 (2007).
- J. Padmanabhan, R. Parthasarathi, V. Subramaniaan and P. K. Chattaraj, J. Phys. Chem. A., 111, 1358 (2007).
- 22. P. W. Ayers and R. G. Parr, J. Am. Chem. Soc., 122, 2010 (2000).
- 23. R. G. Parr, R. A. Donnelly, M. Levy and W. E. Palke, J. Chem. Phys., 68, 3801 (1978).

- 24. N. O. Obi-Egbedi, I. B. Obot, M. I. El-Khaiary, S. A. Umoren and E. E. Ebenso, Int. J. Electro Chem. Sci., 6, 5649 (2011).
- 25. R. G. Parr and R. G. Pearson, J. Am. Chem. Soc., 105, 7512 (1983).
- 26. R. G. Parr, L. V. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999).
- 27. P. K. Chattaraj, H. Lee and R. G. Parr, J. Am. Chem. Soc., 113, 1855 (1991).
- 28. P. K. Chattaraj and S. Giri, J. Phys. Chem. A., 111, 11116 (2007).