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ABSTRACT

In this paper, two different multivariate calibration methods, feed-forward
artificial neural networks (ANN) with back-propagation learning rule and
Multiple Linear Regression (MLR) were applied to predict the logarithm
values EC50 (effective concentration which causesthe considered effect in
the 50% of the population) in daphnia (after 16 days) of 31 diverse organic
pollutants by using molecular structural descriptors. three descriptors are
considered to account for the effect of pollutant structure on the logarithm
values EC50. These are (Eigenvalue 10 from edge adj matrix weighted by
edge degrees, Heat of formation, Partition coefficient (octanol/water)). The
Stepwise SPSS was used for the selection of the variables that resulted in
the best-fitted model. After variables selection, 31 compounds randomly
are divided into two training and test sets. The regression coefficients of
prediction are 0.9967, 0.9958 and the mean square error (M SE) are 0.0051
and 0.0091, of training and test setsfor the ANN model respectively. Result
obtained showed that ANN model can simulate the relationship between
structural descriptors and the Log EC50 of the molecules in data set accu-
rately. © 2011 TradeSciencelnc. - INDIA
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INTRODUCTION

Quantitative structure-activity relationships
(QSARYS) arethefundamental basisof devel oped ap-
proachesfor estimating thetoxicity of chemicalsfrom
their molecular structureand/or physicochemica prop-
ertied??, QSARsare mathematica model sthat can be
used to predict the physi cochemica andbiological prop-
ertiesof moleculesconsidering that thebiological activ-
ity of anew or untested chemical canbeinferred from
the molecul ar structure or other propertiesof similar
compounds whose activities have aready been as-

sessed. Thetwo main objectivesof QSARsareto al-
low prediction of the biological propertiesof chemi-
cally characterized compoundsthat have not been bio-
logically tested and to obtain information on the mo-
lecular characteristicsof acompound that areimpor-
tant for thebiological properties?.

Artificid neural networks (ANNS) areamong the
best availabletool sto generate nonlinear models. Arti-
fidd neurd networksare parald computationd devices
consisting of groupsof highly interconnected process-
ing elementscalled neurons. Artificia neura networks
(ANNS), inspired by scientist’s interpretation of the ar-
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TABLE 1: Dataset and cor responding obser ved and ANN and

MLR predicted valuesof L og EC50*

Name
No.

Training set

Log Log Log
EC50 EC50 ECS50
(EXP) (ANN) (MLR)

(2,4,5-Trichlorophenoxy)acetic acid

2-(2,4-Dichlorophenoxy)propionic acid
2-(3-Chlorophenoxy)propionic acid

2,4-Dichlorophenoxyacetic acid

2-Phenoxypropionic acid

© 00 N O U B~ W N P

Anthracene
10 Benzene

11 Biphenyl

12 Bromobenzene
13 Buprofezin
14 Buturon

15 Chloroxuron
16 Chlortoluron
17 Fenuron

18 Fluometuron
19 isoproturon
20 Monolinuron
21 Neburon

22 Propargite
23 Triclopyr

2-(2,4,5-Trichlorophenoxy)propionic acid

2-(4-Chlorophenoxy)-2-methylpropionic acid

4-(2-Methyl-4-chlorophenoxy)butyric acid

1.1102 1.1104 1.0925
0.8310 0.8322 0.9098
1.2396 1.2024 1.1776
1.6316 1.6285 1.4181
1.2649 1.3514 1.2843
1.5081 1.4902 1.3246
2.0106 2.0243 1.8550
0.8892 0.8874 0.9774

-0.8297-0.8303-0.956&

0.5099 0.5995 0.6035

-0.4685-0.4702-0.563E

0.1723 0.1975 0.2004

-0.5607 -0.5593-0.716¢

0.5091 0.5028 -0.011¢

-0.4237-0.4270-0.2677

0.5201 0.4856 0.7335
1.2718 1.2631 1.3892
0.7239 0.4926 0.6241
0.3197 0.5248 0.8029
0.7545 0.7191 0.9848

-0.4989-0.4986-0.074¢
-1.4202-1.4200-1.4172

1.6374 1.5952 1.3331

Test set

24 (4-Chloro-2-methylphenoxy)acetic acid
25 2-(4-Chlorophenoxy)propionic acid

26 3,6-Dichloro-2-methoxybenzoic acid
27 Chlorbromuron

28 Diuron

29 Metoxuron

30 Monuron

31 Tetradifon

1.5380 1.5045 1.3469
1.6316 1.6267 1.4167
1.8537 1.8048 1.6049
0.2497 0.2384 0.4930
0.4951 0.4181 0.6378
0.8900 0.9163 1.2542
0.8865 0.6389 0.9148

-1.1308-1.1018-1.0292

“Log ECS50 in daphnia (after 16 days)

chitectureand functioning of the human brain®4. mean,
however, amethodol ogy rel ated to nonlinear regres-
siontechniques®d. Reviewshavebeen published con-
cerning applicationsof ANN indifferent fields”8. Re-
cently, artificia neural networks (ANNS) havebeenused
toawidevariety of chemical problemssuch asspectra
andysig?, prediction of didlectric constant!'? and mass
spectral searchi*, ANNs have been applied to QSPR
andysssncethelate 1980sduetoitsflexibility inmod-

eling of nonlinear problems, mainly inresponsetoin-
crease accuracy demands; they have been widely used
to predict many physicochemical propertied?? ¢, The
mainam of thepresent work isdevelopment of aQSAR
modelsby using ANN as nonlinear method to predict
the Log EC50 (effective concentration which causes
the considered effect in the 50% of the population) in
daphnia(after 16 days) of variousorganic pollutants
and comparison with MLR aslinear method.

In the present work, a QSAR study, hasbeen car-
ried out on the Log EC50 in daphniafor 31 diverse
organic pollutantsby using structurad molecular descrip-
tors. Linear method, multiplelinear regressons(MLR)
and nonlinear method, feed forward neura network with
back-propagation training along with Stepwise SPSS
asvariable selection software were used to model the
Log EC50 withthe structural descriptors.

MATERIALSAND METHODS

Experimental data

The experimental data of the Log EC50, for 31
chemica compoundsincluding variousorganic pollut-
antsweretaken from*”, that shownin TABLEL. The
dataset randomly wasdivided into two subsetsinANN:
training and test setsincluding 23 and 8 compounds

respectively.
MLR analys

Themultiplelinear regression (MLR) isan exten-
sion of the classical regression method to morethan
onedimension®®. MLR cal culates QSAR equation by
performing standard multivariableregression calcula-
tionsusing multiplevariablesinasingleequation. The
sepwisemultiplelinear regressonisacommonly used
variant of MLR. Inthiscase, alsoamultiple-termlinear
equationisproduced, but not al independent variables
are used. Each variableisadded to the equation at a
timeand anew regressionisperformed. Thenew term
isretained only if equation passesatest for sgnificance.
Thisregression method isespecially useful when the
number of variablesislargeand when thekey descrip-
torsare not known(*¥,

Artificial neural networks(ANN)
Principles, functioning and applicationsof artificia
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TABLE 2: Molecular descriptor semployed for the proposed
ANNand MLR modes

No. Descriptor Notation class Coefficien
Eigenvalue 10 from edge adj .

1 matrix weighted by edge EEig10x Edg(_e ac_hacency -0.3507

indices

degrees

2 Heat of formation HF  Thermodynamic -0.0016
Partition coefficient .
(octanol/water) CLogP Thermodynamic -0.4395

Constant 1.6742

TABLE 3: Correlation matrix of thethreedescriptorsand
Log EC50used in thiswork®*

EEig10x HF CLogP Log EC50
EEig10x 1 0.4656 0.8411 -0.8531
HF 1 0.2632 -0.7368
CLogP 1 -0.7962
Log EC50 1

“The definitions of the descriptors are given in TABLE 2

TABLE 4: Architectureand specification of the generated
ANNs

No. of nodes in theinput layer
No. of nodes in the hidden layer
No. of nodes in the output layer

learning rate 0.3
Momentum 0.9
Epoch 26000

Transfer function Sigmoid

TABLE 5: Satistical parametersobtained usingthe ANN
and MLR modeis'

Ft Fc R* R% Rt Rc SEt SEc Modd
3146.7044 704.8337 0.9934 0.9916 0.9967 0.9958 0.0747 0.0941 ANN
317.1479 124.0688 0.9379 0.9539 0.9684 0.9767 0.2222 0.1961 MLR

neura networks have been adequately described el se-
wherd?24, There evant principle of supervised learn-
inginanANN isthet it takesnumericd inputs(thetraning
data) and transferstheminto desired outputs. Theinput
and output nodesmay be connected to any other nodes
withinthenetwork. Theway inwhich each nodetrans-
formsitsinput depends on the so-called ‘connection
weights’ or ‘connection strength’ and bias of the node,
which aremodifiable. The output values of each node
depend on both the weight strength and biasvalues.
Training of theANN can be performed by using the
backpropagation agorithm. In order to train the net-
work using theback propagation agorithm, the differ-
ences betweenthe ANN output and itsdesired value

—— Fyll Peper

arecalculated after each training iteration and theval -
uesof welghtsand biasesmodified by usng theseerror
terms.

A three-layer feed-forward network formed by one
input layer congisting of anumber of neuronsequal to
the number of descriptors, one output neuron and a
number of hidden unitsfully connected to both input
and output neurons, were adopted in thisstudy. The
most used learning procedure is based on the back-
propagation agorithm, in which the network readsin-
puts and corresponding outputsfrom aproper data set
(training set) and iteratively adjustsweightsand biases
inorder tominimizetheerror in prediction. Toavoid
overtraining and consequent deterioration of itsgener-
aization ability, the predictive performance of the net-
work after each weight adjustment ischecked on un-
seendata(vaidation set).

Inthiswork, training gradient descent with momen-
tum isapplied and the performance function wasthe
mean squareerror (M SE), theaverage squared error
between the network outputs and theactual output.

The QSAR modelsfor the estimation of theLog
EC50 of various compounds are establishedinthefol -
lowing six steps: molecular structureinput and genera:
tion of thefilescontainingthechemica structuresstored
inacomputer—readable format; quantum mechanics ge-
ometry optimization with asemi—empirical method;
structura descriptors computation; structural descrip-
torssdlection; structure-Log EC50 models generation
withthe multivariatemethodsand statisticd andysis.

Computer hardwareand software

All cdculationswererunonaPentium IV persond
computer with windows X P as operating system. The
molecular 3D structures of data set were sketched us-
ing hyperchem (ver. 7.1), then each molecule was
“cleaned up” and energy minimization was performed
using geometry. Optimization was done using
semiempirical AM1 (Austin Model) Hamiltonian
method. After optimization of structures, 3D structures
with lower energy conformers obtained by the afore-
mentioned procedure werefed into dragon (ver. 5.2-
2005) and ChemOffice 2005 molecular modeling soft-
warever. 9, supplied by Cambridge Software Com-
pany, for calculation of thestructural molecular descrip-
tors(congtitutional, topol ogical, connectivity, geometri-
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Figurel: Plotsof predicted L og EC50egtimated by ANN (a) and
MLR (b) modding ver susexperimental L og EC50 compounds

cal, getaway, thermodynamic and charge descriptors).
Through these descriptorswhich have values further
than 90% zero or have equal va uesfurther than 90%
arenot useful and cut. Then Descriptor selection was
accomplished by using Stepwise SPSS (SPSS Ver.
11.5, SPSSInc.). other cal culationswere performedin
the MATLAB (version 7.0, MathWorks, Inc.) envi-
ronmertt.

RESULTSAND DISCUSSION

Descriptor s selection

Generally thefirst stepin variablessdlectionisthe
calculation of the correlation between variablesand
with seeking activity. In the present case, to decrease
theredundancy existed inthe descriptorsdatamatrix,
the correlations of descriptorswith each other and
with the Log EC50 of themoleculeswere examined,
and descriptorswhich showed highinterrelation (i.e,
r>0.9) with Log EC50 and low interrelation (i.e.,
r<0.9) with each other were detected. For each class
of the descriptor just one of them waskept for con-
struction thefinal QSAR model and therest were de-
leted. In second step, Stepwise SPSS was used for
variables selection. After these process three descrip-
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Figure2: Plotsof residual ver susexperimental Log EC50in
ANN (@) and M LR (b) models

torswereremained, that keeps most interpretivein-
formationfor Log EC50. TABLE 2 shows descrip-
torsthat used in ANN method. A correlation analysis
was carried out to eval uate correl ations between se-
lected descriptorswith each other and with Log EC50
(TABLE3).

ANN optimization

A three-layer neura network wasused and starting
network weights and biaseswere randomly generated.
Descriptors sel ected by stepwise method wereused as
inputsof network andthesigna of the output node rep-
resent the Log EC50 of organic pollutants. Thus, net-
works havethreeneuronsininput layer, and one neu-
ron in output layer. The networks performance was
optimized for thenumber of neuronsinthehidden layer
(hnn), thelearning rate (Ir) of back-propagation, mo-
mentum and the epoch. Asweights and biased are op-
timized by the back-propagation iterative procedure,
training error typically decreases, but test error first
decreases and subsequently beginstoriseagain, re-
veding aprogress veworsening of generaization abil-
ity of thenetwork. Thustraining wasstopped when the
test error reachesaminimum vaue. TABLE 4 shows
thearchitectureand specification of theoptimized net-
works.
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Results of ANN analysis and comparison with
MLR

The QSAR model s provided by the optimal ANN
and MLR are presented infigure 1aand 1b wherecom-
puted or predicted Log EC50 val uesare plotted against
the corresponding experimentd data. Figure 2aand 2b
showsaplot of resdudsversustheobserved Log EC50
values. Thesubstantid random pattern of thisplot indi-
catesthat most of the datavarianceisexplained by the
proposed models.

The agreement between computed and observed
values in ANN training and test sets are shown in
TABLE 1. Thegatistica parameterscal culated for the
ANN model are presented in TABLE 5. Goodness of
the ANN-based model isfurther demonstrated by the
high valueof the correlation coefficient Rbetween cal-
culated and observed Log EC50 values are (0.9967,
0.9958) for training and test set respectively. For com-
parison, alinear QSAR model relating Log EC50to
the selected descri ptorswere obtained by meanof MLR
method. With the purposeMLR modd built onthesame
subsetsthat usedinANN analysis. Multiplelinear re-
gresson(MLR) isoneof themaost used modding meth-
odsin QSAR. For thebest MLR mode contained three
el ected descriptors corre ation coefficient (R) between
ca culated and observed Log EC50 va uesare (0.9684,
0.9767) for training and test set respectively

Comparison between statistical parameters in
TABLE 5revedsthat nonlinear ANN model produced
better resultswith good predictive ability than linear
modd.

CONCLUSIONS

QSAR analysiswas performed on aseries of or-
ganic pollutantsusng ANN method that correlate Log
EC50 values of these compound to thetheir structural
descriptors. According to obtained resultsit is con-
cluded that the (EEig10x, HF, CLogP) can be used
successfully for modeling Log EC50 of theunder study
compounds. Thedatistica parametersof thebuilt ANN
mode were satisfactory which showed thehigh quality
of the chose descriptors. High correlation coefficients
and low prediction errors obtained confirm good pre-
dictiveability of ANN model. The QSAR modelspro-

—— Fyll Peper

posed withthesmply calculated molecular descriptors
can be used to estimate the Log EC50 for new com-
poundseveninthe absence of the standard candidates.
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