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ABSTRACT

The propagation of weakly solitary pressure wavesin afluid-filled elastic
tube have been investigated. The reductive perturbation method has been
employed to derive the modified K orteweg-de Vries equation for small but
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finite amplitude. The effect of the final inner radius of the tube r, on the

basic properties of the soliton wave were discussed.
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INTRODUCTION

Thetheoretical modding and experimenta investi-
gationinthe Biosciencesarethee ucidation of theun-
derlying biologica processesthat resultinaparticular
observed phenomenon™®. Inblood vessa sexperiments,
itisfoundthat theflow velocity dependsontheeastic
properties of the vessel wall and they propagate to-
wardsthe periphery with acharacteristic diagram?. The
propagation of pressurewavesinfluid-filled disgensble
tubeshasbeentheoreticaly studied by severd research-
erg®. Yomosa® investigated the nonlinear propaga-
tion of localized solitary wavesinlarge blood vessels.
He found that the wave pulses of pressure and flow
propagating through the arteries can be described as
soliton wavesexcited by cardiac g ectionsof blood and
thefeatures of the pulsewave such as“peaking” and
“steepening’ are interpreted in the viewpoint of soliton.
Later, Shoucri and Shoucri studied the application of
themethod of characteristicsof shock wavesin blood
flow intheAortd”. By using variousasymptotic meth-
ods®, Demiray'® studied themotion of weakly nonlin-

ear pressurewavesinathin nonlinear dagtictubefilled
with anincompressblefluid. Heprovedthat, whenvis-
cosity of bloodisneglected, thedynamicsaregoverned
by theK orteweg-deVrieseguation. Theoretica inves-
tigationsfor the blood waves by theweakly nonlinear
theory have been devel oped*®*3., It isshown that the
dynamicsof theblood wavesare governed by the KdV
or modified KdV equations. The solitary wave model
givesaplausibleexplanationfor the peaking and steep-
ing of pulsatilewavesin arteries®. Recently, many au-
thorshave beendrived KdV or modified KdV equa-
tionstoinvestigatethe propagation of solitary wavesin
plasmaphysicd***". Themgjor topic of thiswork isto
study the propagetion of pressurewavesinweskly non-
linear wavesin afluid-filled elastic tube by means of
modified KortewegdeVriesequation (mKdV). This
paper isorganized asfollows: in section 2, we present
thebasic set of fluid equationsgoverningour modd. In
section 3, long wave approximation isused to drive
mKdV equation and solutionfor mKdV equationare
obtained. In Section 4, some discussionsand conclu-
sonsaregiven.
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BASIC EQUATIONS

To drivetheequation of motion of thetube, let us
congder acircular cylindrica longtubeof radiusR with
auniforminner pressure P, theaxial stretchratio A,
andr  betheradiusof thecylindrical tubeafter sucha
finite static deformation. The position vector of age-
neric point of the tube may be described by.
r=(r0+u*)er+z*ez, Z =A,Z, @
Whereu'(Z' '), e, e, e, Z, areafinitetimetimede-
pendent radia displacement, unite base vectorsinthe
cylindrical polar coordinates, the spatia coordinatein
theintermediate configuration and theaxia coordinate
of apoint intheundeformed configuration respectively.
Theaxid displacement in neglectedin view of theex-
ternal tethering, theunit tangnt vector t to the meridi-
ond curve and theunit exrerior normal vector ntothe
deformed membranearegiven by
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Where A isdefined by.

Thedretchesintheaxid and circumferentia direc-
tionsmay begiven asfollows:
A =A,A, A,=Ag+U" /Ry, @
Where 1,=r /R isthestretch ratiointhe circumferen-
tid direction after finite tatic deformation.
Let F,and F, bethemembraneforcesactingaong each
unit length of themeridiona and circumferential curves
of thetuberespectively. The equation of motion of the
tubeintheradial directionisgiven by

KA p 8y au’
oz [l+ (au“ /62*)2}1/2 o oz
Where pistheshear modulusof thetube material, ux
isthestrain energy density function, Histheinitia tube
thickness, p" isthefluid pressure and p, is the mass
density of thetube material. In order to completethe
field equations one must know the value of thefluid
pressurep’ . Therefore, Equation (5) isto becomple-
mented with the equations governing the blood fluid.
Bloodisknownto beanincompress ble non-Newtonian
fluid. Themainfactor for blood to behavelikeanon-
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Newtonian fluidisthedeformability of red blood cells
and thelevd of cell concentration (hematocrit ratio).
When blood flow in arteriesthered cellsmoveto the
central region of the artery and, thus, the hematocrit
ratioisreduced near thearterial wall, where the shear
rateisquitehigh, ascan be seen from Poiseuilleflow. In
another word experimental observationsindicate that
when the shear rate is high, blood behaves like a
Newtonian fluid. Theratio of theviscoustermsto the
pl@zu* o ' - Ly

ps 022 oz p VT
sidering p, = 0.04p and p_ = 1.05g/ cm®. Therefore,
theviscouseffect in comparison to the nonlinear effect
can be neglected. Based on these observations, we
assumethat blood isanincompressibleinviscid fluid
whose equationsof axially symmetrical motioninthe
cylindricd polar coordinatesaregiven by

nonlinear termis ~of10-®), con-
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WhereV’; V', arethefluid velocity componentsinthe
redial and axial directions, respectively, P, isthemass
densty of thefluidand p isthefluid pressurefunction.
Thesefield equationsmust satisfy thefollowing bound-
ary conditions:

V, = ai + ai ,
r=r ot 0z
Herep isthefluid pressurefunction, P, isthefluid mass
density andr, isthefind inner radiusof thetube. Where
A,= (r/R) isthestretchratio in the circumferential
direction after thefinite static deformation. Where, from

Equation (5) itisobtained that.
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Ingenerd, thestrain energy density X isafunctionof 4,
and A,. For our purposes, we shall assumethat ¥ is
analyticin 4,and 4, and can be expanded into power
seriesof thefollowing form:

pr o Bt - poH o
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Wherethecoefficients« , ... , 5, aredefined by.
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Equations (6)—(11) give sufficient relations to de-
terminetheunknownsu’, V',V and p.

LONGWAVEAPPROXIMATION

Thereductive perturbation method isused to study
the propagation of small-but-finiteamplitude. Let usin-
troducethefollowing typesof stretched coordinates®:

¢=c(z" -gt"),
Where e isasmall parameter measuring the smallness
of nonlinearity, disspationand dispersion, gisthephase
velocity in thelongwave approximation to be deter-
mined later. By introducing transformation (13) into
Eqgns. (6)-(11) there are founded that. All physical
quantities appearingin equations (6-10) are expanded
aspower seriesin e about their equilibrium values as:

T=6‘Z*, (13)

0 0

=Yt (g ), Vv, =)eY

n=1

R CRAN
(14)

P ng (&)

Il
=3
=]
i g
)
=]

Weimposethe boundary conditionsthat as
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Substituting (13) and (14) into equations(6-8) and (11)

and equating coefficientsof likepowersof €. Then, from

thelowest-order equationsin g, the following results
areobtained:

o0&t

1 9P
py Or
ov,® 1 0P,
-9 +— =0,
08 p, 0&
ov W vy @ gy @
r r + V4
or r o0&
Andtheboundary conditions.
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From the solution of the sets(16) and (17) there

areobtained that.
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WhereP (&,7) isan unknown function whose govern-
ing equation will be obtained later and gisthe phase
velocity inthelongwave approximation. Considering
now the coefficientsof O(e?), we derive with the aid of
(18) thefollowing set of equations:

1 9P

py O
*(2) D

_g@VZ N 212P6P+16P2_0’
o0& g py o0& py 0§

ov @ vy @

+
or r o0&
And the boundary conditions can bewritten as.
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From Egn. (19-a) and Egn. (20-a) we have
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From Egn. (19-b) we have.
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Considering now the coefficients of O(e*), we derive
withtheaid of (18), (21) and (22) thefollowing set of

equations.
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From the solution of the sets (23) and (24) we obtain
that.
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Eliminating thethird order perturbed quantities P,

and v " the desired modified Korteweg-de Vries
equation obtained asfollows:
3
P pelP g 0P
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Wherethe coefficientsA and B are defined by.
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Our system can support two kindsof potential struc-
turedepending onthesign of the coefficient of thenon-
linear term (A). A stationary solitary wave solution of
themKdV equation can be obtained by transforming
the spacevariableto:

n=(-vr) (29
where v isveocity of thewave. Thishasbeen doneby
imposing the boundary conditionsfor localized pertur-

P dP
i i 0. —=0 —=0
bations, viz., P=0, a7 and for n—dw.

Thus, the steady state solution of (27) can beexpressed
as

P =P,sech [i}
A

wherethe soliton amplitude P, and thesoliton widthA
aregivenby

S AN ]
A 1%

NUMERICAL RESULTSAND DISCUSSION

(29)

(30)

Theweakly nonlinear pressurewavesinafluid-
filled e astic tube have been investigated. To make our
result physically relevant, numerical sudieshave been
made using parameters close to those values corre-
sponding to actua biologicaly relevant parametersfor
experimenta datain dogs®. Theeffect of thefina inner
radius of the tube r, and the wave velocity v on the
basi ¢ properties of theamplitude and width of the pres-
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Figurel: Thevariation of the soliton amplitude PO with

respect tor, for different valuesof p, for different valuesof

v for f1=296.105, §2=991.496, P,=1.05 gm/cm?, R =0.38

cm, P=1.03 gm/cm?®, A,=A,=1.6, @ ,=78.692, H=2x10" cm,

p=0.4.
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Figure2: Thevariation of thesoliton width A with respect to
r. for different valuesof p, for different valuesof v for
B,=296.105, B,=991.496, P=1.05 gm/cm?, R =0.38 cm,P,
=1.03 gm/cm?, A =A,=1.6, a,=78.692, H=2x10" cm, n=0.4.
suresoliton areshownin Figures1-2. Itisobviousfrom
Figuresl-2 that the magnitude of the soliton amplitude
decreasewith theincreaser, andincreasewith thein-
creaseof v whilethewidthincreaseswiththeincresse
r.and decreasewiththeincreaseof v . Thegpplication
of our modd might beparticularly interestinginthe new
observationsfor thebiologica experimentd data.
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