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The propagation of weakly solitary pressure waves in a fluid-filled elastic
tube have been investigated. The reductive perturbation method has been
employed to derive the modified Korteweg-de Vries equation for small but
finite amplitude. The effect of the final inner radius of the tube r

f
 on the

basic properties of the soliton wave were discussed.
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INTRODUCTION

The theoretical modeling and experimental investi-
gation in the Biosciences are the elucidation of the un-
derlying biological processes that result in a particular
observed phenomenon[1]. In blood vessels experiments,
it is found that the flow velocity depends on the elastic
properties of the vessel wall and they propagate to-
wards the periphery with a characteristic diagram[2]. The
propagation of pressure waves in fluid-filled distensible
tubes has been theoretically studied by several research-
ers[3-5]. Yomosa[6] investigated the nonlinear propaga-
tion of localized solitary waves in large blood vessels.
He found that the wave pulses of pressure and flow
propagating through the arteries can be described as
soliton waves excited by cardiac ejections of blood and
the features of the pulse wave such as �peaking� and

�steepening� are interpreted in the viewpoint of soliton.

Later, Shoucri and Shoucri studied the application of
the method of characteristics of shock waves in blood
flow in the Aorta[7]. By using various asymptotic meth-
ods[8], Demiray[9] studied the motion of weakly nonlin-

ear pressure waves in a thin nonlinear elastic tube filled
with an incompressible fluid. He proved that, when vis-
cosity of blood is neglected, the dynamics are governed
by the Korteweg-de Vries equation. Theoretical inves-
tigations for the blood waves by the weakly nonlinear
theory have been developed[10-13]. It is shown that the
dynamics of the blood waves are governed by the KdV
or modified KdV equations. The solitary wave model
gives a plausible explanation for the peaking and steep-
ing of pulsatile waves in arteries[6]. Recently, many au-
thors have been drived KdV or modified KdV equa-
tions to investigate the propagation of solitary waves in
plasma physics[14-17]. The major topic of this work is to
study the propagation of pressure waves in weakly non-
linear waves in a fluid-filled elastic tube by means of
modified KortewegdeVries equation (mKdV). This
paper is organized as follows: in section 2, we present
the basic set of fluid equations governing our model. In
section 3, long wave approximation is used to drive
mKdV equation and solution for mKdV equation are
obtained. In Section 4, some discussions and conclu-
sions are given.
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BASIC EQUATIONS

To drive the equation of motion of the tube, let us
consider a circular cylindrical long tube of radiusR

0
 with

a uniform inner pressure P
0
, the axial stretch ratio 

z

and r
0
 be the radius of the cylindrical tube after such a

finite static deformation. The position vector of a ge-
neric point of the tube may be described by.
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Where u*(z*,t*), e
r
, e


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z
, z*, are a finite time time de-

pendent radial displacement, unite base vectors in the
cylindrical polar coordinates, the spatial coordinate in
the intermediate configuration and the axial coordinate
of a point in the undeformed configuration respectively.
The axial displacement in neglected in view of the ex-
ternal tethering, the unit tangnt vector t to the meridi-
onal curve and the unit exrerior normal vector n to the
deformed membrane are given by
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Where  is defined by.
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The stretches in the axial and circumferential direc-
tions may be given as follows:
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Where 

=r

0
/R

0
 is the stretch ratio in the circumferen-

tial direction after finite static deformation.
Let F

1 
and F

2
 be the membrane forces acting along each

unit length of the meridional and circumferential curves
of the tube respectively. The equation of motion of the
tube in the radial direction is given by
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Where  is the shear modulus of the tube material, 
is the strain energy density function, H is the initial tube
thickness, p* is the fluid pressure and p

0
 is the mass

density of the tube material. In order to complete the
field equations one must know the value of the fluid
pressure p* . Therefore, Equation (5) is to be comple-
mented with the equations governing the blood fluid.
Blood is known to be an incompressible non-Newtonian
fluid. The main factor for blood to behave like a non-

Newtonian fluid is the deformability of red blood cells
and the level of cell concentration (hematocrit ratio).
When blood flow in arteries the red cells move to the
central region of the artery and, thus, the hematocrit
ratio is reduced near the arterial wall, where the shear
rate is quite high, as can be seen from Poiseuille flow. In
another word experimental observations indicate that
when the shear rate is high, blood behaves like a
Newtonian fluid. The ratio of the viscous terms to the

nonlinear term is  5
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, con-

sidering ì
í
 = 0.04p and ñ

í
 = 1.05g / cm3. Therefore,

the viscous effect in comparison to the nonlinear effect
can be neglected. Based on these observations, we
assume that blood is an incompressible inviscid fluid
whose equations of axially symmetrical motion in the
cylindrical polar coordinates are given by

 
*

** *

*
0 ,r r z

VV V

r r z


  

 
(6)

 
*

* * *
* *

* *

1
0 ,r r r

r z
f

V V V P
V V

t r z r

   
   

   
(7)

 
* * *

*

* * *
* *

* * *

1
0 ,z z z

r z
f

V V V P
V V

t r z z

   
   

   
(8)

Where V
r
*; V

z
*

*
 are the fluid velocity components in the

radial and axial directions, respectively, P
f
 is the mass

density of the fluid and P  is the fluid pressure function.
These field equations must satisfy the following bound-
ary conditions:
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HereP  is the fluid pressure function, P
f
 is the fluid mass

density and r
f
 is the final inner radius of the tube. Where



= (r

0
/R

0
) is the stretch ratio in the circumferential

direction after the finite static deformation. Where, from
Equation (5) it is obtained that.
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In general, the strain energy density  is a function of 


and 

. For our purposes, we shall assume that  is

analytic in 

 and 


 and can be expanded into power

series of the following form:
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Where the coefficients 




 are defined by.
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Equations (6)�(11) give sufficient relations to de-

termine the unknowns u*, V
r
*, V

z
* and P.

LONGWAVE APPROXIMATION

The reductive perturbation method is used to study
the propagation of small-but-finite amplitude. Let us in-
troduce the following types of stretched coordinates[18]:

  * * *, ,z g t z      (13)

Where  is a small parameter measuring the smallness
of nonlinearity, dissipation and dispersion, g is the phase
velocity in the longwave approximation to be deter-
mined later. By introducing transformation (13) into
Eqns. (6)-(11) there are founded that. All physical
quantities appearing in equations (6-10) are expanded
as power series in å about their equilibrium values as:
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We impose the boundary conditions that as
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Substituting (13) and (14) into equations (6-8) and (11)
and equating coefficients of like powers of å. Then, from

the lowest-order equations in å, the following results

are obtained:
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And the boundary conditions.
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From the solution of the sets (16) and (17) there
are obtained that.

 
   

 
 

2
* 0

1 1
1

*1 * 1

2 1
2

0

, , , ,

,1 1
, , ,

2

2

z r
f f

f

f

R
p P u P

H

P
V P V r

g g

H r
g

R

   
 

 
 

  

 



 


  





(18)

Where P (,) is an unknown function whose govern-
ing equation will be obtained later and g is the phase
velocity in the longwave approximation. Considering
now the coefficients of O(å²), we derive with the aid of

(18) the following set of equations:
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And the boundary conditions can be written as.
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From Eqn. (19-a) and Eqn. (20-a) we have
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From Eqn. (19-b) we have.
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Considering now the coefficients of O(å³), we derive

with the aid of (18), (21) and (22) the following set of
equations:
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And the boundary conditions.
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From the solution of the sets (23) and (24) we obtain
that.
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Eliminating the third order perturbed quantities  3P

and  * 3
rV  the desired modified Korteweg-de Vries

equation obtained as follows:
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Where the coefficients A and B are defined by.
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Our system can support two kinds of potential struc-
ture depending on the sign of the coefficient of the non-
linear term (A). A stationary solitary wave solution of
the mKdV equation can be obtained by transforming
the space variable to:
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Thus, the steady state solution of (27) can be expressed
as
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where the soliton amplitude P
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 and the soliton width Ä

are given by
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NUMERICAL RESULTS AND DISCUSSION

The weakly nonlinear pressure waves in a fluid-
filled elastic tube have been investigated. To make our
result physically relevant, numerical studies have been
made using parameters close to those values corre-
sponding to actual biologically relevant parameters for
experimental data in dogs[6]. The effect of the final inner
radius of the tube r

f
 and the wave velocity v on the

basic properties of the amplitude and width of the pres-

Figure 1 : The variation of the soliton amplitude P0 with
respect to r

f
  for different values of ì�  for different values of

  for 1=296.105,  2=991.496, P
f
=1.05 gm/cm3, R

0
=0.38

cm, P
0
=1.03 gm/cm3, ë

z
=ë


=1.6, 

0
=78.692, H=2×10-2 cm,

=0.4.
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sure soliton are shown in Figures 1-2. It is obvious from
Figures1-2 that the magnitude of the soliton amplitude
decrease with the increase r

f
 and increase with the in-

crease of   while the width increases with the increase
r

f
 and decrease with the increase of  . The application

of our model might be particularly interesting in the new
observations for the biological experimental data.
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