ISSN : 0974 - 7435

Volume 10 Issue 10

2014

An Indian Journal

FULL PAPER BTALJ, 10(10), 2014 [4685-4691]

Multiple regression research on the structure relationship between sports and economy

Chao Wan Department of Physical Education, Xi'an University of Finance and Economics, Xi'an 710000, (CHINA)

ABSTRACT

In this paper the status of the development of sports industry and economic indicators relations are studied, through reasonable sports production and national economic indicators. Using multiple regression mathematical methods, studies the overall how far is the relationship between sports industry and economy, optimization of the structure of sports industry development and economic means for research. Through the establishment of the sports industry and economy between how far the regression mathematical equations. Concluded that the increase of per capita GDP and employment in the tertiary industry to promote the development of sports industry in the largest extent.

KEYWORDS

Sports industry; Multiple regressions; SPSS; Sports economy.

© Trade Science Inc.

INTRODUCTION

Economy continuous development surely will drive sports industry forming and development. Similarly, sports development will also impel economic growth in turn, but which factors in economy can better impel sports industry development? The problem solution involves how to design scientific reasonable sports industrial policies, highlights key points' development and reduces blind investment, and rapidly impels sports industry development that has important practical significance.

By references, it applies multiple linear regression mathematical models to further research on sports industry and economic relation. Calculate multiple equation, as well as relational degree matrix analysis, sports industry important effects on economic development. By economic indicators coefficient sizes, it judges best economic factor that impels sports industry.

Economy to sports industry mathematical regression model

Sports industry development status indicators factors are quite a lot, the paper selects most typical three factors that are respectively sports industry product, sports consumption, sports industrial staff amount. These three factors basically can on behalf of Chinese sports industrial development form level that are defined as sports industry three sub factors, as TABLE 1.

Indicator	Sub factor				
	Sports industry product				
Sports industry	Sports consumption				
	Sports industrial staff amount				
	Gross domestic product				
	The tertiary industry product				
Frequencie development	Per capita GDP				
Economic development	Per capita consumption expenditures				
	Per capita disposable income				
	The tertiary industry staff amount				

TABLE 1 : Economy, sports indicators

Indicator data collecting and processing

Sports industry and economic development factor data from year 1997 to 2007 is as following TABLE 2.

During year 1997 to 2007, sports and economic correlation factors indicators original data has different dimensions, it needs to carry out dimensionless handling with data to eliminate different dimensions impacts, let model reliability to be higher, here adopts initial value transformation:

$$f(x(k)) = \frac{x(k)}{x(1)} = y(k), k = 1, 2, \dots n \text{ and } x(1) \neq 0$$

That is f initialized transformation. Take initialized transformation on matrix A, adopt matrix form transformation. In A, line respectively represents sports and economic relative indicators data. Define transformation matrix C:The matrix that lets original data matrix A to be transformed into initial value matrix D is called transformation matrix. Relationship is:

 $C \bullet A = D$

Matrix C general form is:

TABLE 2 : Each factor previous data

	Year	1997	1998	1999	2000	2001	2002
Sports product	<i>y</i> ₁	157.95	168.8	179.35	198.43	219.31	240.67
Sports consumption	<i>Y</i> ₂	2562.12	2687.96	2818.2	3014	3129.72	3250.28
Sports employees amount	<i>y</i> ₃	471	478	482	488.09	493.04	193.25
GDP	x_1	78973.03	84402.28	89677.05	99214.55	109655.2	120332.7
The tertiary industry product	x_2	26988.15	30580.47	33873.44	38713.95	44361.61	49898.9
Per capita GDP	<i>x</i> ₃	6420.18	6796.03	7158.5	7857.68	8621.71	9398.05
Per capita consumption	X_4	5832	6109	6405	6850	7113	7387
Per capita disposable income	x_5	5160.3	5425.1	5854.02	6280	6859.6	7702.8
The tertiary industry employees amount	x_6	18432	18860	19205	19823	20228	21090
	Year	2003	2004	2005	2006	2007	
Sports product	y_1	271.65	319.76	366.43	423.847	199.06	
Sports consumption	<i>Y</i> ₂	3476.44	3818.76	4140.4	4586.12	5216.2	
Sports employees	<i>Y</i> ₃	493.15	493.2	493.17	493.18	493.18	
GDP	x_1	135822.8	159878.3	183217.4	211923.5	249529.9	
The tertiary industry	x_2	56004.73	64561.29	73432.87	84721.4	100053.5	
Per capita GDP	<i>x</i> ₃	10541.97	12335.58	14053	16165	18934	
Per capita consumption	x_4	7901	8679	9410	10423	11855	
Per capita income	x_5	8472.2	9421.6	10493	11759.5	13785.8	
The tertiary industry employee	x_6	21809	23011	23771	24614	24917	

	$(1/a_{11})$	0	•••	0
0	0	$1/a_{21}$	•••	0
C =	:	÷	·.	÷
	0	0		$1/a_{n1}$

Sports industry size is up to three indicators, to better regress economic factors, use weighted method to carry out dimensionless handling with sports industry factor indicators. Assume sports industry three indicators factors weights are:

 $w = \begin{pmatrix} w_1 & w_2 & w_3 \end{pmatrix}$ $w_1 + w_2 + w_3 = 1$

Take w

$$w = (0.4 \quad 0.3 \quad 0.3)$$

Among them, w represents each indicator weight in comprehensive evaluation sports industry, sports industry evaluation's sports product, sports consumption, sports employees data should be the

data after initialized processing, otherwise it cannot calculate. Then sports industry comprehensive evaluation is:

$$Y = w_1 y_1 + w_2 y_2 + w_3 y_3$$

After handling with sports three indicators data, it gets dimensionless data, as following TABLE 3:

Year	1997	1998	1999	2000	2001	2002
<i>Y</i> ₁	1.00	1.07	1.14	1.26	1.39	1.52
<i>y</i> ₂	1.00	1.05	1.10	1.18	1.22	1.27
<i>Y</i> ₃	1.00	1.01	1.02	1.04	1.05	0.41
Year	2003	2004	2005	2006	2007	
\mathcal{Y}_1	1.72	2.02	2.32	2.68	1.26	
<i>y</i> ₂	1.36	1.49	1.62	1.79	2.04	
<i>Y</i> ₃	1.05	1.05	1.05	1.05	1.05	
	Year y1 y2 y3 Year y1 y2 y3 Year y1 y2 y3	Year1997 y_1 1.00 y_2 1.00 y_3 1.00Year2003 y_1 1.72 y_2 1.36 y_3 1.05	Year19971998 y_1 1.001.07 y_2 1.001.05 y_3 1.001.01Year20032004 y_1 1.722.02 y_2 1.361.49 y_3 1.051.05	Year199719981999 y_1 1.001.071.14 y_2 1.001.051.10 y_3 1.001.011.02Year200320042005 y_1 1.722.022.32 y_2 1.361.491.62 y_3 1.051.051.05	Year1997199819992000 y_1 1.001.071.141.26 y_2 1.001.051.101.18 y_3 1.001.011.021.04Year2003200420052006 y_1 1.722.022.322.68 y_2 1.361.491.621.79 y_3 1.051.051.051.05	Year19971998199920002001 y_1 1.001.071.141.261.39 y_2 1.001.051.101.181.22 y_3 1.001.011.021.041.05Year20032004200520062007 y_1 1.722.022.322.681.26 y_2 1.361.491.621.792.04 y_3 1.051.051.051.051.05

TABLE 3 : Sports indicator data dimensionless processing

After taking dimensionality reduction with sports indicators data as well as handling with economic indicators data, it gets data as following TABLE 4:

	Year	1997	1998	1999	2000	2001	2002
Sports product	Y	2.00	2.09	2.17	2.32	2.47	2.43
GDP	x_1	1.00	1.07	1.14	1.26	1.39	1.52
The tertiary industry product	x_2	1.00	1.13	1.26	1.43	1.64	1.85
Per capita GDP	<i>x</i> ₃	1.00	1.06	1.11	1.22	1.34	1.46
Per consumption	X_4	1.00	1.05	1.10	1.17	1.22	1.27
Per capita disposable income	x_5	1.00	1.05	1.13	1.22	1.33	1.49
The tertiary industry employees amount	x_6	1.00	1.02	1.04	1.08	1.10	1.14
	Year	2003	2004	2005	2006	2007	
Sports product	Y	2.84	3.19	3.52	3.93	2.59	
GDP	x_1	1.72	2.02	2.32	2.68	3.16	
The tertiary industry	x_2	2.08	2.39	2.72	3.14	3.71	
Per capita GDP	<i>x</i> ₃	1.64	1.92	2.19	2.52	2.95	
Per capita consumption	X_4	1.35	1.49	1.61	1.79	2.03	
Per capita income	<i>x</i> ₅	1.64	1.83	2.03	2.28	2.67	
The tertiary industry employees	X_6	1.18	1.25	1.29	1.34	1.35	

TABLE 4 : Dimensionality reduction and initialize data

Multiple regression model establishment

Adopt SPSS to make multiple regressions modeling, multiple linear equation, two predicted equation forms are respectively as following:

$$Y = \sum_{i=1}^{6} a_i x_i + C$$

Among them, Y respectively represents sports industry comprehensive value that represented by economic indicators, X_i represents economic indicators data. C Represents constant.

Firstly introduce data into SPSS, make multiple regression, establish multiple linear regression equation, apply software SPSS, it can get as following TABLE 5:

		D	A djugt D	Standard actimated	Alter st	atistical	qua	ntity	у	Durhin
Model	R	square	square	error	R square alter	F Alter	df1	df2	Sig. F alter	Watson
1	.980 ^a	.960	.919	.17722	.960	23.699	5	5	.002	3.004
			a. Pre	dictive variable: (constant), x6, x4, x5, x3	3, x2 •				
				b. Dependent varia	ıble: Y					

Regression equation significance test is as following TABLE 6.

	Anova ^b									
	ModelSum of squaresdfMean squareFSig.									
	Regression	3.722	5	.744	23.699	.002 ^a				
1	Residual	.157	5	.031						
	Total	3.879	10							
a. Predictive variable: (constant), x6, x4, x5, x3, x2 •										
	b. Dependent variable: Y									

By above calculation, it can get multiple regression linear equations as:

 $Y = 2.195x_2 + 4.768x_3 - 4.453x_4 - 8.945x_5 + 14.238x_6 - 5.834$

Regression value test, standardized residual conforms to following Figure, it gets closer to normal distribution, which shows predicted value residual distribution is reasonable, model accuracy is good. Test histogram Figure 1:

(3)

TABLE 5 : Model summary^b

Figure 1 : Standardized residual distribution

Error test

Make comparison between actual sports comprehensive level value and regression equation calculation value as well as its error value as following TABLE 7.

Actual value	Regression value	Error
2.00	1.96925	0.015
2.09	2.20450	0.055
2.17	2.04031	0.060
2.32	2.33749	0.008
2.47	2.47690	0.003
2.43	2.49677	0.027
2.84	2.67222	0.059
3.19	3.38573	0.061
3.52	3.57111	0.015
3.94	3.72728	0.054
2.59	2.66045	0.027
Error	average value	0.035

TABLE 7 : Actual value and predicted value comparison

CONCLUSION

The paper takes sports industry comprehensive level as dependent variable to establish economic relative indicators that is variable multiple regression models. Model calculation result well conforms to error test. And from regression equation variable coefficients, it gets that increase the tertiary industry employees can better impel sports industrial development. It needs each department to increase investment on the tertiary industry, add construction of the tertiary industry economic chain, let more people participate so that better impel sports industry overall rapidly development.

REFERENCES

- [1] L.I.U.Bao, H.U.Shan-lian, X.U.Hai-xia, G.A.O.Jian-hui; Indices of the equality of Essential Public Health Services in China, Chinese Journal of Health Policy, **2**(6), 13-17 (**2009**).
- [2] Z.H.A.N.G.Da-chao, L.I.Min; Studies on Evaluation Index System of Public Sports Facilities Development Level in China, China Sport Science, **33**(4), 3-23 (**2013**).
- [3] C.A.I.Jing-tai, F.A.N.Bing-you, W.A.N.G.Ji-shuai; A Survey of Residents' Satisfaction Degree for Urban Public Sport Services. Journal of Beijing Sport University, 6, (2009).

- [4] Wang Guo-hong, Zhang Wen-hui; Construction of the Evaluation Index System of City Community Sports-Taking Shanghai as an Example, Journal of Chengdu Physical Education Institute, **36**(2), (**2010**).
- [5] Z.H.A.N.G.Jie, W.U.Ying; The Evaluation Index System of Extracurricular Sports Activities in Secondary Schools in Shanghai under the Background of "Sunshine Sports", Journal of Shanghai Physical Education Institute, 6, 80-82 (2012).
- [6] H.E.Ying, X.U.Ming; Study on Evaluating System of Sports Consciousness of Community Residents in Southwest Cities, Journal of Chengdu Physical Education Institute, **33**(2), 43-45 (2007).
- [7] H.E.Ying, X.U.Ming; Theoretical and Empirical study on evaluation mode of sports service satisfaction degree in city community, Journal of Wuhan Institute of Physical Education, **41**(**11**), 40-42 (**2007**).
- [8] C.H.E.N.Yang, M.A.Ge-sheng; An Empirical Study on Community Sports Service Residents' Satisfaction Index Model, China Sport Science and Technology, **45**(4), (2009).
- [9] H.E.Ying, X.U.Ming; Theoretical and Empirical study on evaluation mode of sports service satisfaction degree in city community, Journal of Wuhan Institute of Physical Education, 41(11), 40-42 (2007).