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ABSTRACT

In this paper, a quantitative structure-property relationships (QSPR) study
based on feed-forward artificial neural network (ANN) with back-propaga-
tion learning rule and multiple linear regression (MLR) methods has been
carried out to predict the Solubility behavior of pesticides. Accurate de-
scription of thewater Solubility of 38 compoundsincluding commonly used
insecticides, herbicides and fungicides and some metabolites is success-
fully achieved. The Stepwise SPSS was used for the selection of the vari-
ables that resulted in the best-fitted models. The regression coefficients of
prediction for training and test sets for ANN model were 0.997 and 0.992
respectively. The proposed nonlinear QSPR model (ANN) exhibits a high
degree of correlation between observed and computed water Solubility and
agood predictive performance that supports its application for the predic-
tion of the Solubility behavior of unknown pesticides. A multiple linear
regression (MLR) based on the same selected descriptors shows a signifi-
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cantly worse predictive capability. © 2011 Trade Sciencelnc. - INDIA

INTRODUCTION

Solubility inwater playsone of themost important
rolesamong many physicochemical parametersthat
characterizeachemicd pollutant. It influencesbehavior
of thechemica compound in many physical and bio-
logica processes, involvinginformation ontheability of
the compound to take part in metabolic processesas
well asassessingitsenvironmenta persistence, trans-
port and fate'!l,

Pesticides, asaconsequence of massiveuseinag-
ricultureand other human activities, arewiddy diffuse
environmenta contaminants subjectedin Europeand
USA toredtrictivelegidation aimed at the protection of

natural ecosystemsand health safeguard. Rather thana
well identifiablechemical class, theterm “pesticide”
identifiesalarge spectrum of structuraly different com-
pounds. A widestructural variability aso characterizes
the pesticide subfamilies (insecticides, herbicidesand
fungicides) that group together moleculesaccordingto
thetarget of biocideactivity!?3. Activity traditional ex-
perimenta determination methodsusua ly need specid
equipment and samples, aswell aslarge amounts of
money and manpower. Despite methods devel opment
and automation, itisunlikely that |aboratory determina
tions can cope with the pace that new pollutantsare
identified. Hencethereisanincreasing need for using
thetechnol ogy of quantitative structure—property/ac-
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tivity relaionships(QSPR/QSAR), which corrdatesand
predicts property dataof pollutantsfrom their struc-
tural descriptors, and can be used to study the physi-
cochemical propertiesand generate predicted data ef-
fidently. Themain advantage of quantitative structure
property relationships (QSPR), like quantitative struc-
tureactivity relationships (QSAR), liesinthefact that
oncesuch arelaionship isascertained with an adequate
statistical degree of confidence, it can beof valuable
assistancein theprognosisof thebehavior of new mol-
ecules, even beforethey areactudly synthesized>8.

Artificia neural network (ANN)[™ modelling rep-
resents the most common non-linear approach tothe
investigation of structure-property relationships. ANN
statistical treatment, which does not requirethe pre-
liminary knowledgeof the mathematica form of there-
| ationshi p between the descriptors and themodel re-
sponse, adlowsovercoming possibleinaccuracy of MLR
related with the existence of non-linear effects or
colinearitiesamong the descriptor variables. Inthecon-
text of QSRR studies, the better predictive capability
of theANN-based models compared with the perfor-
mance of the related MLR models has been largely
documented(® 3,

Artificid neurd networksareamong thebest avail-
abletoolsto generate nonlinear models. Artificia neu-
ral networksare parallel computational devices con-
sisting of groupsof highly interconnected processing
elements called neurons. Artificial neural networks
(ANN), inspired by scientist’s interpretation of the ar-
chitectureand functioning of thehuman brain*% mean,
however, amethodol ogy rel ated to nonlinear regres-
siontechniques’®, Reviewshavebeen published con-
cerning applications of ANN in different fieldg819,
ANNSshave been applied to QSPR anaysissincethe
late 1980sduetoitsflexibility inmodeling of nonlinear
problems, mainly in responseto increaseaccuracy de-
mands; they have been widely used to predict many
physicochemical properties?®24,

In the present work, aQSPR study has been car-
ried out on thelogarithm water solubility (Log S, ) for
38 diverse pesticides or toxicants by using structural
molecular descriptors. Thelinear method MLR and non-
linear method feed forward neural network with back-
propagation training a ong with Stepwise SPSSasvari-
able sdlection softwarewereused to model theLog S,

TABLE 1 : Data set and corresponding observed and
(ANN,MLR,) predicted valuesof Log S, (mg/l) (25°C)*

No. Name log S, log S, log S,
Training set (EXP) (ANN) (MLR)

1 Ethoprophos 2.87 2.864 3.324

2 Phorate 1.70 1.690 1.743

3 Trietazine 1.30 1.312 1.108

4 Lindan 0.86 0.911 -0.173

5 Dichlorofention -0.61 -0.654 0.080

6 PCB3l -0.84 -0.971 -0.837

7 Aldrin -1.77 -1.641 -1.357

8 Paraoxon-ethyl 2.86 2.882 2.374

9 Fenitrothion 1.58 1.557 1.597

10 Thiobencrab 1.45 1.404 1.955
11 Isodrin -1.85 -1.620 -1.385
12 Allethrin 0.66 0.596 0.908
13 Isocarbophos 1.85 1.953 1.502
14  Fumetralin -1.15 -1.148 -1.193
15 Procymidone 0.65 0.643 1.104
16 Chinomethionate 0.00 0.007 0.633
17 2,4-DDD -1.00 -0.821 -0.990
18 Endrin -0.60 -0.875 -1.463
19 24-DDT -1.07 -1.497 -1.424
20 Ethion 0.30 0.310 0.201
21 4,4-DDT -2.26 -1.984 -1.618
22 Benaaxyl 1.57 1.554 1.587
23 Famphur 2.04 2.054 1.556
24 PCB202 -3.83 -3.840 -3.679
25 Dicofol -0.10 -0.118 -0.227
26 Phosalone 0.48 0.527 0.446
27 Fenarimol 1.15 1.146 0.424

Test set

28 Terbufos 0.70 0.439 1.083
29 Carbofuran 2.50 2.428 2.103
30 Benfuresate 242 2.183 1.913
31 PCB52 -1.81 -1.398 -1.330
32 PCB70 -1.39 -1.454 -1.382
33 2,4-DDE -0.85 -0.959 -1.248
34 4,4DDE -1.40 -1.261 -1.438
35 PCB149 -2.37 -2.321 -2.325
36 4,4DDD -1.05 -1.196 -1.171
37 Fenpropathrin -0.48 -0.626 -0.066
38 Tetramethrin 0.26 -0.226 0.375

*Logarithm water solubility (mg/1) (25°C)

withthestructura descriptors.
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TABLE 2: Molecular descriptor semployed for the proposed QSPR models

No. Descriptor Notation Type Coefficient
1 Mean atomic van der waals volume (scaled on carbon atom) Mv Constitutional -11.82915(+3.15366)
2 Volume Volume  Molecular properties -0.00712(+3.28211)
3 Maximal electrotopological positive variation MAXDP Topological 0.49396(+0.00283)
4 Superpendentic index SPI Topological -0.00007(+0.18904)
5 Kier flexibility index PHI Topological 0.17031(+0.00003)

Constant

11.56081(:0.15071)

METHODS

Sepwisemultiplelinear regression

Themultiplelinear regression (MLR) isan exten-
sion of the classical regression method to morethan
onedimension’®. MLR calculates QSPR equation by
performing standard multivariableregression calcula
tionsusing multiplevariablesinasingleequation. The
sepwisemultiplelinear regressonisacommonly used
variant of MLR. Inthiscase, dsoamultiple-term linear
equationisproduced, but not al independent variables
are used. Each variableisadded to the equation at a
timeand anew regressionisperformed. Thenew term
isretained only if equation passesatest for significance.
Thisregression method isespecially useful when the
number of variablesislarge and whenthekey descrip-
torsare not known(?9l,

Artificial neural networks

Principles, functioning and applicationsof artificia
neura networks have been adequately described el se-
whered? 2, A three-layer feed-forward network formed
by oneinput layer consisting of anumber of neurons
equd to the number of descriptors, oneoutput neuron
and anumber of hidden unitsfully connected to both
input and output neurons, were adopted in thisstudy.
Themost used learning procedureisbased on the back-
propagation agorithm, in which the network readsin-
puts and corresponding outputsfrom aproper data set
(training set) and iteratively adjustsweightsand biases
inorder tominimizetheerror in prediction. Toavoid
overtraining and consequent deterioration of itsgener-
alization ability, the predictive performance of the net-
work after each weight adjustment ischecked on un-
seen data (vaidation set).

Inthiswork, training gradient descent with momen-
tum isapplied and the performance function wasthe

mean squareerror (M SE), theaverage squared error
between the network outputs and theactua output.

Computer hardwareand software

All caculationswererunonaPentium IV persond
computer with windows X P as operating system. The
molecular 3D structuresof dataset were sketched us-
ing hyperchem (ver. 7.1), then each molecule was
“cleaned up” and energy minimization was performed
using geometry. Optimization was done using
semiempirical AM1 (Austin Model) Hamiltonian
method. After optimization, 3D structureswith lower
energy conformersobtaned by theaforementioned pro-
cedure were fed into dragon (ver. 5.2-2005) and
ChemOffice 2005 molecular modeling softwarever. 9,
supplied by Cambridge Software Company, for calcu-
lation of thestructural molecular descriptors (constitu-
tiond, topologica, connectivity, geometrical, getaway,
thermodynamic and charge descriptors) a so hyperchem
can calculate several descriptors. Through these de-
scriptorswhich have valuesfurther than 90% zero or
have equal valuesfurther than 90% are not useful and
cut. Then Descriptor sel ection was accomplished by
using Stepwise SPSS (SPSS Ver. 11.5, SPSS Inc.).
other cdculaionswereperformedintheMATLAB (ver-
sion 7.0, MathWorks, Inc.) environment.

RESULTSAND DISCUSSION

Experimental data

Water solubility (mg/1)(25°C) of 38 compoundsin-
cluding pesticidesor toxicantsweretakenfromthelit-
erature® that shownin TABLE 1. The QSPR moddls
for theestimation of theLog S, of various compounds
areedtablishedinthefollowingfivesteps: 1) molecular
sructureinput and generation of thefilescontainingthe
chemical structuresstoredin acomputer—readable for-
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Figurel: Plotsof predicted Log S estimated by ANN (a) and
MLR (b) modeling ver susexperimental L og S, compounds

mat; 2) quantum mechanicsgeometry optimizationwith
asemi—empirical (AM1) method,; 3) structural descrip-
torscomputation; 4) structural descriptorsselection; 5)
structure-Solubility models generation with the multi-
variate methods(ANN,MLR) and statistical anaysis.

The dataset was divided into two subsetsinANN
and MLR: atraining set of 27 compoundsand atest set
of 11 compounds.

Descriptorsselection

Generally thefirst stepin variablessdlectionisthe
calculation of the corre ation between variablesand with
seeking property. In the present case, to decreasethe
redundancy existed in the descriptorsdatamatrix, the
correlationsof descriptorswith each other and withthe
Log S, of themolecul eswere examined, and descrip-
torswhich showed highinterrelation (i.e., r>0.9) with
LogS, andlowinterrelation (i.e., r<0.9) with each other
were detected. For each class of the descriptor just
one of themwaskept for construction thefina QSPR
model and the rest were deleted. In second step,
Stepwise SPSSwas used for variables selection. After
these processing five descriptors were remained, that
keepsmodt interpretiveinformationfor LogS . TABLE
2 showsfivedescriptorsand their coefficients (+ confi-
denceinterval) that usedin MLR method. A correlation
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Figure2: Plotsof residual versusexperimental Log S, in
ANN (@) and M LR (b) models

analysiswas carried out to eval uate correl ations be-
tween sel ected descriptors with each other and with
LogS, (TABLE3).

ANN optimization

A three-layer neura network wasused and starting
network weightsand biaseswererandomly generated.
Descriptors sdl ected by stepwise method wereused as
inputsof network and thesignd of the output noderep-
resentthelLog S, of pestisides. Thus, thisnetwork has
five neuronsininput layer and one neuron in output
layer. Thenetwork performancewas optimizedfor the
number of neuronsin the hidden layer (hnn), thelearn-
ing rate (Ir) of back-propagation, momentum and the
epoch.Aswe ghtsand biased are optimized by theback-
propagation iterative procedure, training error typicaly
decreases, but vaidation error first decreasesand sub-
sequently beginsto riseagain, revealingaprogressive
worsening of generaization ability of thenetwork. Thus
training was stopped when thevalidation error reaches
aminimumvalue. TABLE 4 showsthearchitectureand
specification of the optimized network.

Results of ANN analysis and comparison with
MLR

The QSPR mode s provided by theoptima ANN

Au Tudian Yournal
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TABLE 3: Corréation matrix of thefivedescriptorsand L og
S, used in thiswork®

Mv VOLUME MAXDP SPI PHI Log S,
Mv 1 -0.376 -0.505 -0.095 -0.458 -0.841
VOLUME 1 0.448 0.270 0.482 0.007
MAXDP 1 0.338 -0.040 0.523
SPI 1 0.126 -0.127
PHI 1 0.237
Log Sy 1

“The definitions of the descriptors are given in TABLE 2

TABLE 4: Architectureand specification of the generated
ANNs

No. of nodes in the input layer
No. of nodes in the hidden layer
No. of nodes in the output layer

learning rate 0.3
Momentum 0.1
Epoch 4000
Transfer function Sigmoid

TABLE 5: Satistical parametersobtained usingthe ANN
and MLR modeis'
Ft Fc Rt Rc SEt SEc Mode
525194 3561449 0.992 0.997 0.207 0.138 ANN
215189 284339 0979 0959 0.316 0452 MLR

¢ refers to the calibration (training) set; R is the correlation
coefficient; R? isthe correlation coefficient; and F isthe statis-
tical F value

and MLR are presentedinfigure 1aand 1b wherecom-
puted or predicted Log S values are plotted against
the corresponding experimentd data. Figure 2aand 2b
showsaplot of residualsversustheobserved Log S,
values. Thesubstantid random pattern of thisplot indi-
catesthat most of the datavarianceisexplained by the
proposed model.

The agreement between computed and observed
valuesin ANN training and test sets are shown in
TABLE 1. Thedatigtica parameterscal culated for the
ANN model are presented in TABLE 5. Goodness of
the ANN-based mode isfurther demonstrated by the
high value of the correlation coefficient Rbetween cal-
culated and observed Log S, values 0.997 and 0.992
for training and test set, respectively.

For comparison, alinear QSPR modd relating Log
S, valuesto the sel ected descriptorswere obtained by
meansof MLR method. With the purpose MLR model

—— Fyll Peper

built on the same subsetsthat usedin ANN analysis.
Multiplelinear regression (MLR) isone of the most
used modeling methodsin QSPR. Comparison between
datistica parametersin TABLE 5reved sthat nonlin-
ear ANN model produced better resultswith good pre-
dictiveability than linear mode!.

CONCLUSIONS

QSPR anaysiswasperformed on aseriesof pes-
ticidesor toxicantsus ngANN and MLR methodsthat
correlateLog S, valuesof these compoundtothetheir
structural descriptors. According to obtained resultsit
isconcluded that theANN can beused successfully for
modeling Log S, property of the under study com-
pounds. Thestatistical parametersof thebuilt QSPR
model swere sati sfactory which showed the high qual-
ity of the chose descriptors. High correl ation coeffi-
cientsandlow prediction errorsobtained confirm good
predictive ability of ANN model. The QSPR models
proposed with thesmply cal culated molecular descrip-
torscan beused to estimatethewater solubility vaues
for new compounds even in the absence of the stan-
dard candidates.A non-linear modeling approach based
onartificia neural networksalowstosignificantlyim-
provethe performance of the QSPR model.
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