

Model of Nuclear

Buchakchiiskiy FF^{*}

University of St.Gagarin Severodonetsk, Ukraine

***Corresponding author:** Buchakchiiskiy FF, University of St.Gagarin Severodonetsk, Ukraine, Tel: 33662922853; E-mail: ffbuchak@gmail.com

Received: October 03, 2017; Accepted: March 21, 2018; Published: March 28, 2018

Abstract

It is assumed that basis for formutation of all nuclei is a nucleus of helium. All subsequent nuclei of elements consist of chain of nuclei of helium. They are constrained inter se to binding energy equal energy of separation of nucleus of helium. The chain of nuclei of helium coagulates in a ball.

Keywords: Nuclonous; Helium; Electrolysis; Calcium; Electrode

Introduction

It is known that the number of nuclonous in a nuclei is multiple four plays a large role at determination of properties of nucleus.

Foremost at the nuclei of containing an even number protons and neutrons spin of nucleus equal to the zero. To this group of elements belong helium $\frac{4}{2}He$, carbon $\frac{12}{6}C$, oxygen $\frac{16}{8}O$. Because the nucleus of helium $\frac{4}{2}He$ is the simplest, then it serves as basis for the constriction of all anther nuclei. We will consider the chart of formation of nuclei. We will bild a chart for calcium. For this purpose we will define the chain of values of energy of separation of nucleus of helium ($\alpha - \frac{4}{2}He$) [1-10].

Experimental

Energy of separation $\alpha \begin{pmatrix} {}^{8}_{4}Be \end{pmatrix} = \text{Binding Energy} \begin{pmatrix} {}^{8}_{4}Be \end{pmatrix} - \text{BE}\begin{pmatrix} {}^{4}_{2}He \end{pmatrix} - \text{BE}\begin{pmatrix} {}^{4}_{2}He \end{pmatrix} = 56.500-28.296-28.296=0.092 \text{ MeV}$ $\text{ES}_{\alpha} \begin{pmatrix} {}^{12}_{6}C \end{pmatrix} = \text{BE}({}^{12}_{6}C) - \text{BE}({}^{8}_{4}Be) - \text{BE}({}^{4}_{2}He) = 92.163 - 56.500 - 28.296=7.367 \text{ MeV}$ $\text{ES}_{\alpha} \begin{pmatrix} {}^{16}_{8}O \end{pmatrix} = \text{BE}({}^{16}_{8}O) - \text{BE}({}^{12}_{6}C) - \text{BE}({}^{4}_{2}He) = 123.621 - 92.163 - 28.296=7.162 \text{ MeV}$ $\text{ES}_{\alpha} \begin{pmatrix} {}^{20}_{10}Ne \end{pmatrix} = \text{BE}({}^{20}_{10}Ne) - \text{BE}({}^{16}_{8}O) - \text{BE}({}^{4}_{2}He) = 160.642 - 127.621 - 28.296=4.725 \text{ MeV}$ $ES_{\alpha} \binom{24}{12} Mg = BE \binom{24}{12} Mg - BE \binom{20}{10} Ne - BE \binom{4}{2} He = 198.260 - 160.642 - 28.296 = 9.322 \text{ MeV}$ $ES_{\alpha} \binom{28}{14} Si = BE \binom{28}{14} Si - BE \binom{24}{12} Mg - BE \binom{4}{2} He = 236.541 - 198.260 - 28.296 = 9.985 \text{ MeV}$ $ES_{\alpha} \binom{32}{16} S = BE \binom{32}{16} S - BE \binom{28}{14} Si - BE \binom{4}{2} He = 271.784 - 236.541 - 28.296 = 6.947 \text{ MeV}$ $ES_{\alpha} \binom{36}{18} Ar = BE \binom{36}{18} Ar - BE \binom{32}{16} S - BE \binom{4}{2} He = 306.721 - 271.784 - 28.296 = 6.641 \text{ MeV}$ $ES_{\alpha} \binom{40}{20} Ca = BE \binom{40}{20} Ca - BE \binom{36}{18} Ar - BE \binom{36}{18} Ar - BE \binom{4}{2} He = 342.067 - 306.721 - 28.296 = 7.050 \text{ MeV}$ $Let us now construct a chain of ten helium nuclei to obtain core the calcium \frac{40}{20} Ca .$

FIG. 1. BE(${}^{40}_{20}Ca$)=10 * BE(${}^{4}_{2}He$)+9 ES_a(1 – 9)=10 * 28.296++(-0.092)+7.367+7.162+4.725+9.322+9.985+6.947+6.641+7.050=342.067 MeV.

FIG. 2. This ten nuclei of helium coagulate in a ball.

Now we will create the table of formation all even nuclei from helium to uranium.

Results and Discussion

In table (picture 1) is presented the variant all even nuclei, since the nucleus of helium ${}^{4}_{2}He$, ending uranium ${}^{235}_{92}U$, ${}^{238}_{92}U$. Gonrned, used for the constraction of this table following:

Elements consist of chain of nuclei of helium or isotopes of helium, that enter into co-operation. The value of this cooperation is equal to energy of separation of nucleus of helium or isotope of helium from an element.

This energy links the chain of nuclei.

The constructon of nuclei with even number is begun with nucleus of helium, with an odd number a construction is begun with deuterium ${}_{1}^{2}H$ or tritium ${}_{1}^{3}H$. Therefore there are two chains of nuclei.

In lines the numbers against the name elements stand mass of isotopes.

For example:

Element ${}^{8}_{4}Be$ appears from a nucleus of helium addition of another nucleus,

$${}^{9}_{4}Be = {}^{4}_{2}He + {}^{4}_{2}He$$

or addition of isotope of helium,

$${}^{9}_{4}Be = {}^{4}_{2}He + {}^{5}_{2}He$$

For carbon is brought four isotope ${}^{15}_{6}C {}^{14}_{6}C {}^{13}_{6}C {}^{12}_{6}C$

The chart of formation of there isotopes is such,

$${}^{12}_{6}C = {}^{8}_{4}Be + {}^{4}_{2}He$$
$${}^{13}_{6}C = {}^{9}_{4}Be + {}^{4}_{2}He$$
$${}^{14}_{6}C = {}^{9}_{4}Be + {}^{6}_{2}He$$
$${}^{15}_{6}C = {}^{9}_{4}Be + {}^{6}_{2}He$$

10

Another example of formation of isotopes of calcium,

$$Wc \frac{k^* Z_1^* Z_1^* q^2}{R}$$

$$R = \frac{k^* Z_1^* Z_1^* q^2}{W_c} = \frac{9^* 10^{9^*} 2^* 50^* 1, 6^{2^*} 10^{-38}}{1.6^* 10^{-12}} = \frac{9^* 1.6^* 10^{11^*} 10^{-38}}{10^{-12}}$$

$$\frac{42}{20} Ca = \frac{38}{18} Ar + \frac{4}{2} He$$

$$\frac{43}{20} Ca = \frac{39}{18} Ar + \frac{4}{2} He$$

$$\frac{44}{20} Ca = \frac{40}{18} Ar + \frac{4}{2} He$$

$${}^{45}_{20}Ca = {}^{40}_{18}Ar + {}^{4}_{2}He$$
$${}^{46}_{20}Ca = {}^{40}_{18}Ar + {}^{4}_{2}He$$
$${}^{48}_{20}Ca = {}^{40}_{18}Ar + {}^{4}_{2}He$$

FIG. 3. For elements from Z=2 to Z=50 this formative element is α -nucleus $(\frac{4}{2}He)$, as and further from Z=52 to Z=92 this formative element is the isotope of helium $\frac{6}{2}He$, because using $\frac{4}{2}He$ are caused negative value of energy of separation. On a picture 3 the chart of dependence of energy of separation is presented from Z.

On a picture 2 a chain is presented from the isotope of helium ${}_{2}^{5}He$ to uranium ${}_{92}^{235}U$. This chain is also distinguished in the table of formation of nucleus (picture 1). Criterion of choice of method of formation of nucleus is a value of energy of separation of element. We find the value of energy of separation (ES_a) for all elements from beryllium (${}_{4}^{8}Be$) to uranium. If this value is positive, then of nucleus of helium(${}_{2}^{4}He$) becomes formative, if this value becomes negative then the isotope of helium ${}_{2}^{6}He$ becomes formative.

In a right side FIG. 1-4 the value of energy of separation (ES_{α}) ${}_{2}^{4}He$ and isotope helium ${}_{2}^{6}He$ is presented from Coo responding clements (TABLE 1).

A	Element	Z	ES a	$\frac{ES}{(\alpha+2n)}$	ES {a+1n}	ES {a+3n}
5	He	2				
9	Be	4	2.468			
14	С	6	12.011		19.716	
18	0	8	6.226			
22	Ne	10	9.668			
26	Mg	12	10.517			
30	Si	14	10.65			
36	S	16	9.009	23,820		
40	Ar	18	6.801			
46	Ca	20	11.137	25,960		
50	Ti	22	10.717			
54	Cr	24	7.931			
58	Fe	26	7.65			
65	Ni	28	8.634			29.163
69	Zn	30	5.757			
73	Ge	32	5.304			
77	Se	34	5.72			
81	Kr	36	5.52			
85	Sr	38	6.833			
89	Zr	40	6.191			
93	Мо	42	4.301			
97	Ru	44	1.734			
101	Pd	46	1.741			
105	Cd	48	1.357			
109	Sn	50	0.734			
115	Te	52	-1.46	17.11		
121	Xe	54	-0.199	18.007		
127	Ba	56	-0.009	17.938		
133	Ce	58	-0.217	17.203		
139	Nd	60	-0.209	17.163		
145	Sm	62	-1.115	16.262		
151	Gd	64	-2.653	11.132		
157	Dy	66	-1.036	13.293		
163	Er	68	-1.574	13.241		

TABLE 1. In a right side pictare 2 the value of energy of separation (ESα) and isotope helium is presented from COO responding clements.

169	Yb	70	-1.733	12.791	
175	Hf	72	-2.404	11.708	
181	W	74	2.211	11.266	
187	Os	76	-2.724	10.56	
193	Pt	78	-2.083	10.854	
199	Hg	80	-0.824	12.665	
205	Pb	82	-1.465	6.815	
211	Ро	84	-7.534	6.258	
217	Rn	86	-7.887	1.497	
223	Ra	88	-5,973	3.92	
229	Th	90	-5.167	5.253	
235	U	92	-4,678	6.26	

FIG. 4. Division of nucleus of uranium on two parts making 2/3 basic nucleus devides the break of chain near a nucleus.

Conclusion

Chain of nuclei convolves in a ball. Similar below. Division of nucleus of uranium on two parts making 2/3 basic nucleus devides the break of chain near a nucleus where ES α goes across through a Zero. Placing of the superfluous no included in a?-nuclei neutrons(n=A-2Z).

Appendix

		Γ	Γ	Π			Γ	Γ	Γ	Γ	Γ	Γ				Γ					Γ	Γ	Γ	Γ	Γ		130	134	138	Π		Τ	T	Τ	Τ	Т	Τ	Γ	Τ	Γ	Γ	Γ	Π			
		F						T	T	t	T											T		T	T	124	128	132	136	142	148	154	160	T	t	t	t	t	t	t	t					
		F		Π				T	t	T												T	T	Γ	T		127	131	135				1	t	t	t	t	t	t	t	t	F	Π			
		F		Π				t	t	t	T	F										t	F	T	t	122	126	130	134	140	146	152	200	5 10	176	2	t	t	t	t	t	t	Π			
		F		Η			-	t	T	t	t	F				F				-	F	t	t	t	t	121	125	129	133	139	145	151	JGL	103	t	t	t	t	t	t	t	t	Π			
		F						t	t	t										-		t	t	112	116	120	124	128	132	138	144	150	9901	107	174	180	186	192	198	204			Π			
		F		Η			Γ	t	t	t	t	F									F	t	t	11	115	119	123	127	131	137	143	149	CGL	101	17.3	170	2	t	t	t	t	t	Η			
		F		Η	5.0			t	t	t	t										F		109	110	114	118	122	126	130	136	142	148	5	100	170	178	184	190	196	202	208	214	220	226	232	238
		F	F	Η				t	t	t	t	F				-				-	F	t			113	117	121	125	129	135	141	147	591	224	14	1	183	189	195	201	207	213				
		F		Η	100			t	t	t							80	54	88	92	96	100	104	108	112	116	120	124	128	134	140	146	761	001	504	176	681	188	194	002	206		Η			
		F		Η				t	t	t	t						78	82	86	06	94	86	102	106										T		Î	T		Ť	Ī		t	Η			Π
clei		F		Η			-	t	t	t	t	F					11	81	58	89	93	16	101	105	t							1	1	+	t	t	t	t	t	t	t	t	Η			
of nu		F		Η		-		t	t	t	T					72	76	80	5	88	92	96	100	104	t							1	1	1	t	t	t	t	t	t	t	T	Η			
nation		F		Η				t	t	t	t					11	75	61	83	87	91	36	66	103	108	113	118	123	128			1	1	t	t	t	t	t	t	t	t	T	Π			Π
of for		F		Η				t	t	t	50	54	58	62	99	101	74	78	82	98	06	34	96	102								1	1	t	t	t	t	t	t	t	t	t	Η			
Table		F					-	t	t	t	49	53	57	61	59	69	73	11	81	85	68	93	16	101	105	109	115	121	127	133	139	145	19	101	100	175	181	187	193	199	205	211	217	223	229	235
		F		Π	100			t	t		48	52	99	60	64	68	72	76	80	84	88	92	96	100	104	108	114	120	126	132	138	144	ngt	001	168	174	180	186	192	198	204	T				
		F					ſ	t	t	T	47	51	55	59	63	67						t	F	T	t							1	1	t	t	t	t	t	t	t	T	t	Π			
		F		Η	20			t	t	t	46	50	54	58	62	99	10	74	78	82	86	06	94	86	102	106	112	118	124	130	136	142	148	100	155	173	178	184	190	196	t	t	Η		-	
		F		Η				t	t	t	45	49	53	57	61					-		ſ	t	T	t								1	1	t	t	t	T	t	t	t	T	Π			
		F			3.50			t	36	40	4	48	52	56	60	64					F	t	t	T	t								1	t	t	t	t	T	t	t	t	T	Π			
		F		15				t	T	39	43	47								-		t	T	T	t							1	1	1	t	t	t	T	t	t	t	t	Π			-
		F		14	100	22	26	30	34	38	42	46	50	54	58							t	T	T	t								1	1	t	t	T		T	T			Π			
	1	5	6	13	17	21	25	29	33													T	t	T	t							1	1	T	t	t	T	T	t	t		T	Π			
100	A	4	80	12	16	20	24	28	32	36	40											T	T	T	t							1	1	T	t	t	T		t	t	T	T	Π			
		He	Be	U	0	Ne	Mq	S	s	Ar	Ca	H	ŭ	Fe	ī	Zn	Ge	Se	Ł	Ś	72	Mo	Ru	Pd	PO	Sn	Te	Xe	Ba	e	PZ	Sm	3	3	1	Ť	1	Os	ā	PH	BB	bo	R	Ra	f	0
	Z	2	4	9	00	10	12	14	16	18	20	22	24	26	28	30	32	34	36	38	40	42	44	46	48	50	52	54	99	58	99	62	\$	000	202	54	74	76	78	80	82	84	86	88	06	92

To find a radius, where potential energy of coulomb forces is equal to 10 MeV.

 $q{=}l{=}1{,}6{*}10^{-19}\,Cl$

1 MeV=1,6*10⁻¹³ gl

k=9*10⁹

Wc=10 Mev=1.6 *10⁻¹² gl

1 MeV=1,6*10⁻¹³ gl

 $Z_1 = 2 \quad Z_2 = 50$

$$Wc \frac{k^* Z_1^* Z_1^* q^2}{R}$$

 $R = \frac{k^* Z_1^* Z_1^* q^2}{W_0} = \frac{9^* 10^{9*} 2^* 50^* 1, 6^{2*} 10^{-38}}{1.6^* 10^{-12}} = \frac{9^* 1.6^* 10^{11*} 10^{-38}}{10^{-12}} = 14.5 \text{ fm}$

REFERENCES

- 1. Varlamov VV. Photonuclear Reactions. Modern Status Experimental Data. UDC. 2017;539:12.
- 2. Global National Nuclear Data Center. 2017.
- 3. Centre for Photonuclear Experiments. 2017.
- Kadmensky SG, Kadmensky VG. Cluster degrees of freedom and nuclear reactions and decays cluster phenomena. Atoms and Nuclei. 1992.
- 5. Paolo A. Binuclear Atoms: A model to explain low energy nuclear reactions. J Nuclear Physics. 2017.
- 6. Stoyan SS. Theoretical feasibility of cold fusion according to the BSM. J Nuclear Physics. 2014.
- 7. Richard W. Physics and our universe: How it all works. The Great Courses. USA. 2017.
- 8. Wildermuth K, Tan Y. Unified theory of the nucleus. J Nuclear Physics. 1980.
- 9. Kadmensky SG. Soros Education Magazine. Clusters in Nuclei. 2000;3.
- 10. Chuvilsky YM. Cluster Radioactivity. M Publishing House. 1997;5.