
 

________________________________________ 

*Author for correspondence; E-mail: sama.hanumantharao@gmail.com, vvkumar@kluniversity.in, 
tsr_2505@kluniversity.in, sk_bhavirisetty@kluniversity.in 

Int. J. Chem. Sci.: 14(3), 2016, 1742-1754
     ISSN  0972-768X 

www.sadgurupublications.com

M/M/1 TWO-PHASE GATED QUEUEING SYSTEM WITH 
UNRELIABLE SERVER AND STATE DEPENDENT 

ARRIVALS 

S. HANUMANTHA RAOa*, V. VASANTA KUMARb, T. SRINIVASA RAOb 
and B. SRINIVASA KUMARb 

aVFSTR University, VADLAMUDI – 522213, Dist.: Guntur (A.P.) INDIA 
bKL University, VADDESWARAM – 522502, Dist.: Guntur (A.P.) INDIA 

ABSTRACT 

In this paper, we analyze an N-policy, two-phase queueing system where the service station is 
subject to breakdowns while in operation and repair may delayed due to non-availability of the repair 
facility. Arrivals follow a Poisson process with rates depending upon the system state namely-vacation, 
startup, operational and breakdown state. The service is in two essential phases; the first one being batch 
service to all the customers waiting in the queue and the second one is individual to each of them. The 
server is turned off each time the system empties. As and when the total number of customers in the 
system reaches the threshold N(N ≥1), the server is turned on and requires preparatory time before starting 
the batch service. The customers who arrive during batch service are not allowed to join the batch, which 
is in service, but are bunched together and are served along with the other arrivals during the next visit of 
the server to the batch queue. Startup times, uninterrupted service times, length of each delay period and 
repair period follows exponential distribution. Closed form expressions for the mean system size at 
various states of the server are derived. Effect of the system parameters on the optimal threshold N is 
studied through numerical examples. 

Key words: Two-phase, Vacation, Breakdowns, N-policy, Delayed repair, State dependent arrival rates. 

INTRODUCTION 

In many real-life queuing systems like communication systems, manufacturing 
systems, and computer networks, the server is subject to unpredictable breakdowns and can 
be repaired. The performance of such systems may be affected by the breakdowns of the 
service station and delay in repair due to non-availability of the repairman or of the 
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apparatus needed for repairs. Therefore, it is necessary to see how the breakdowns affect the 
server's level of performance. The arrival of customers may depend on the state of the 
system. Gray et al.1 analyzed a multiple-vacation queueing model where the service station 
is subject to breakdowns while in operation and the arrival rates depend upon the state of the 
system. Hanumantha Rao et al.2 presented the optimal operating policy of an N-policy two 
phase M/M/1 queueing model with unreliable server, server startup and state dependent 
arrival rates. Vasanta Kumar et al.3 studied optimal strategy analysis of an N-policy two-
phase M/Ek/1 queueing system with server startup, breakdowns and gating. 

Present study is aimed to analyze the economic behaviour of an N-policy M/M/1 
gated queue with service in two phases, state dependent arrival rates and the server is 
typically subject to unpredictable breakdowns and delay in repair. 

Mathematical model 

The following assumptions and notations are used to study the steady state behaviour 
of the model under consideration.  

The service is in two phases, the first one being batch service to all waiting 
customers in the queue and the second one is individual to each of them. The uninterrupted 
batch and individual service times are of exponential lengths. The server goes on vacation at 
the instant when the queue becomes empty and continues to take vacation until N customers 
accumulate. The server needs a startup time for preparatory work, which is of exponential 
length. The service mechanism breakdowns occur only during active service and repair will 
not take place immediately due to non-availability of the repair facility. Hence, there will be 
delay in repair. Server breakdowns occur at a poisson rate. The delay times and repair times 
are of exponential length. The arrival processes during vacation, startup, active service, and 
breakdown are poisson with different arrival rates. All inter-arrival, vacation, startup, 
service, inter-breakdown, delay and repair times are independent of each other. By gating, 
we mean that the customers who arrive during batch service are not allowed to enter the 
batch, which is already in service, but are bunched together and served along with other 
arrivals during the next visit of the server to the batch queue. 

Notations: 

λ1 : Arrival rate during vacation and startup 

λ2 : Arrival rate during batch or individual service 

λ3 : Arrival rate during vacation 
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θ : Vacation rate 

β  : Batch service rate  

μ : Individual service rate 

ξ  : Breakdown rate 

η : Delay rate 

α : Repair rate 

In order to study the steady state behavior of the system, the following steady state 
probabilities are defined. 

V (i,0) = The probability that there are i customers in the batch queue when the 
server is on vacation, I = 0,1, 2,...N-1. 

Q (i,0) = The probability that there are i customers in the batch queue while the 
server is in pre-service, where i = N , N+1 , N+2,… 

B (i,0) = The probability that there i customers in the batch, which is in batch 
service, i = 1, 2, 3… 

P (i, j) = The probability that there are i customers in the batch queue and j customers 
in the individual queue while the server is in individual service, i = 0, 1, 2,… and j = 1, 2, 3… 

Pd (i, j) = The probability that there are i customers in the batch queue and j customers 
in the individual queue while the server is in individual service, but found to be broken down  
and waiting for repair , i = 0,1,2…, and j = 1,2,3….     

Pr (i, j) = The probability that there are i customers in the batch queue and j customers 
in the individual queue while the server is in individual service, but the server is under 
repair, i = 0,1,2…, and j = 1,2,3….     

The steady state results 

The steady state equations satisfied by the system size probabilities are as follows:  

 λ1 V(0,0) = μP (0,1) …(1) 

 λ1 V(i,0) = λ1 V(i – 1, 0), 1 ≤ i ≤ N – 1 …(2) 

 (λ1 + θ) Q (N, 0) = λ1 V(N – 1, 0) …(3) 

 (λ1 + θ) Q (i, 0) = λ1 Q(i – 1, 0), i > N …(4) 
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 β B(i,0) = μP(i, 1), 1 ≤ i ≤ N – 1 …(5) 

 β B(i,0) = μP(i, 1) + θQ (i, 0), i > N …(6) 

 (λ2 + ξ + μ)P(0, j) = μP(0, j + 1) + βΠ0 B(j, 0)P + αPr(0, j), j ≥ 1 …(7) 

 (λ2 + ξ + μ)P(i, j) = μP(i, j + 1) + βΠi B(j, 0) + λ2 P(i – 1, j) + αPr (0, j), i ≥ 1, j ≥ 1 …(8) 

 (λ3 + η) Pd(0, j) = ξP(0, j), j ≥ 1 …(9) 

 (λ3 + η) Pd(i, j) = ξP(i, j) + λ3Pd (i – 1, j), i ≥ 1, j ≥ 1 …(10) 

 (λ3 + α) Pr(0, j) = ηPd (0, j), j ≥ 1 …(11) 

 (λ3 + α) Pr(i, j) = ηPd (i, j) +  λ3Pr (i – 1, j), i ≥ 1, j ≥ 1 …(12) 

where Πi = ,
β)(λ
βλ

1i
2

i
2

++
πi is the probability that there are i arrivals during  batch 

service. Define Π(z) = 1.z,zπ
0i

i
i ≤∑∞

=
 

We define the following generating functions to solve the steady state equations 

F z V i, 0 z
N

,  F z , 0 z  ,
∞

N

 F z B i, 0 z
∞

, 

F z, y P , z y
∞

,  F z, y P , z y
∞

,
∞∞

 

F z, y P i, j z y
∞

,   
∞

R z P i, j z  ,
∞

 S z P , z ,
∞

 

T z P , z , |z| 1 and |y| 1
∞

 

Multiply equation (2) by zi, sum over from 1 to N-1 and add equation (1). Then we 
have –  

 F z
N

V 0,0  …(13) 
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Multiply equation (4) by zi, sum over i from (N+1) to ∞ and add zN times equation 
(3). Then we have – 

 F z λ N ,
λ θ

 ...(14) 

Multiply equations (5) and (6) by zi, sum over i from 1 to ∞. Then we have – 

 βF z µR z θF z λ 0,0  …(15) 

Multiply equation (8) by zi, sum over from 1 to ∞ and add equation (7). Then we 
have 

 λ 1 z ξ µ R z µR z βB j, 0 Π z αT z  …(16) 

Multiply this equation by yj and sum over j from 1 to ∞. Then we have – 

 λ y 1 z ξy µ y 1 F z, y βy Π z F y μyR z αy z, y  …(17) 

Similarly from the equations (10) to (13), we get – 

 λ 1 z η F z, y ξ F z, y  …(18) 

 λ 1 z α F z, y ηF z, y  …(19) 

Substitute the value of F z, y  in equation (17). Then we have –  

λ y 1 z ξy μ y 1
αξηy

λ 1 z α λ 1 z η
z, y  

 μyR z βyΠ z F y  …(20)  

Put y = z and substitute the value of F z  from equation (15) in equation (20) and 
cancel the common factor (z-1) on both sides. Then – 

µ λ z λ 1 z α λ 1 z η ξλ z 1 z ξλ α η z
λ 1 z α λ 1 z η

F z, z  

 μzR z Π  + 
λ Π V , θ

N
 λ

λ θ
  …(21) 
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This can be written as – 

Φ(z)F z, z μzR z Π λ Π V , θ
N

λ

λ θ
 

                                                                          λ 1 z δ λ 1 z η  …(22) 

Where  

Φ(z) = λ λ z 2λ λ λ λ η α µλ λ ξ z λ λ λ λ η α
λ ηα 2µλ λ μ η α λ ξ λ ξ η α z µλ λ µ η α
µηα  …(23) 

Put z = 1 and y = 1 in equations (13), (14), (19), (21), and (22). Then – 

 F 1 N 0,0  …(24) 

 F 1 λ ,
θ

 …(25) 

 F 1 μR
β

 …(26) 

 F 1,1 αη 1 Π′ 1 0,0
Φ

 …(27) 

 F 1,1 ,  …(28) 

and  F 1,1 ξF , . …(19) 

Where Π′ 1 λ /β. 

The probability that the server is in vacation or startup is given by – 

1 1 1  

This gives – 

0,0 1 1  
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Where  …(30) 

Hence the stationary queue length distribution exists if 1. 

The generating function of the queue length distribution is given by – 

 F z, z z z z F z, z z, z z, z  …(31) 

The normalizing condition is F(1,1) = 1. 

This condition gives – 

 1
Φ

1 1
Φ

1 1  …(32) 

Using the conditionlim 1, y lim z, 1 , we obtain – 

 1 ′ 1 1   …(33) 

We now determine the roots of Φ(z) =0 for positive . Referring to (23), Φ(z) is 
cubic equation. Φ(z) has three changes of sign and Φ(-z) has no change of sign. By 
Descarterule of signs the equation Φ(z) = 0  has three positive real roots. In order that steady 
state queue length distribution to exist, all the three roots of the equation Φ(z) = 0 must be 
greater than one. Since the coefficient of z3 in Φ(z) is negative, the roots of Φ(z) = 0 will be 
greater than 1, if and only if Φ(1) > 0, Φ′ 1 0 and  Φ′′ 1 0 . Since  Φ 1

ηα λ ξ η α ,we must assume thatµηα λ ηα λ ξ η α . 

This gives – 

 λ
µ

λ ξ
µ η α

1 …(34) 

Now (30) and (34) implies that μ is greater than β,  and . Hence if (34) holds, 
then –  

Φ′ 1 λ λ µ η α λ ηα λ ξ η α 0 

and  Φ′′ 1 2λ µ λ 2λ λ η α 2λ α 0 



Int. J. Chem. Sci.: 14(3), 2016 1749

Thus, if we assume that (34) holds, then the roots z1, z2 and z3 of Φ(z) = 0 will be 
greater than 1.Under the condition (34), choose λ , λ and β such that 0 < V(0,0) < 1. 

Let k , k  and  k   

Then Φ z µ λ λ η α ηα 1 k z 1 k z 1 k z . 

Now, from (22). 

µ λ λ η α ηα 1 k z 1 k z 1 k z ,  

μzR z Π λ Π V , θ
N

λ

λ θ
λ 1 z η λ 1 z α  …(35) 

Expected number of customers in the system 

Using the probability generating functions expected number of customers in the 
system at different states are presented in this section. Let L ,L ,L ,L ,L ,and L , be the 
expected number of customers in the system when the server is in vacation, in startup, in 
batch service, in individual service, waiting for repair during individual service and under 
repair during individual service states, respectively. Then – 

L ∑ i V 0,0 F ′ 1 N NN V 0,0 ,                           …(36) 

L ∑ i Q i, 0 F ′ 1 λ λ Nθ
θ

∞ V 0,0 ,                                     …(37) 

L ∑ i B i, 0 F ′ 1N µ
β

R′ 1 V 0,0  …(38) 

L ∑ i P i, j P , ,
′ 1,1∞  …(39) 

1 1 1 1,1
Φ 1

1 ′′ 1
2

′ 1 1 ′ 1  

      +  ,
Φ

1 Π′ 1
Φ

V 0,0  
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- 1 Π′ 1 V 0,0
Φ

  

L ∑ i P i, j ′ 1,1N 1,1 ′ 1,1  …(40) 

L ∑ ∑ i j∞ P i, j ′ 1,1∞ 1,1 ′ 1,1  …(41) 

The expected number of customers in the system is given by – 

L N L L L L L L  …(42) 

Where Π′′ 1  and 1  and ′ 1  are given by (32) and (33), respectively. 

Some other system characteristics 

Wv,Wq, Wb,Wp, Wd and Wr denote the expected length of vacation period, startup 
period, batch service period, individual service period, delay period during individual 
service and waiting period for repair during individual service respectively, then the 
expected length of a cycle is given by 

W W  

The long run fractions of time the server is in different states are, respectively. 

 
W

1 NV 0,0   …(43) 

 
W

1   λ V ,
θ

 …(44) 

 
W

1  μR
β

  …(45) 

 
W

1,1  ηα
Φ

λ λ λ Nθ
θ

V 0,0   …(46) 

 W
W

1,1 1,1   …(47) 

and  W
W

1,1    1,1  …(48) 
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The expected length of vacation period WV
N
λ

. Substituting this in equation (41), 

WC
1

λ V 0,0  

Optimal control policy 

In this section we determine the optimal value of N, which minimizes the long run 
average cost for the N-policy M/M/1 gated queue with server break downs and delay in 
repair. The following linear cost structure is considered.  

A(N) be the average cost per unit of time , then 

 A N C L N
W W

C
W

W
W

W
W

 

                                                                                  C C
W

 …(49) 

where  ≡hC  Holding cost per unit time for each customer present in the system, 

≡0C  Cost per unit time for keeping the server on and in operation, 

≡mC Startup cost per unit time, 

≡sC  Setup cost per cycle, 

≡bC  Break down cost per unit time for the unavailable server, and 

≡rC  Reward per unit time as the server is doing secondary work during 
vacation. 

From (45) to (48), it is observed that 
W

,
W

,
W

 and 
W

 are independent of the 

decision variable N. Hence for determination of the optimal operating N-policy, minimizing 
A(N) in (49) is equivalent to minimizing. 

 A N C L N C
W

C
W

C
W

 …(50) 

Differentiating A N  with respect to N and setting the result to 0, we obtain the 
optimal threshold N* of N. Hence  
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N 1
2

C θC C  

where   (mean number of arrivals during startup time) and B 1
λ
θΦ

1 . 

Sensitivity analysis 

It is observed from Table 1 that (i) N* is convex with increase in the values of λ , 
insensitive with increase in λ  and λ , and (ii) L(N*) and T(N*) increase with increase in the 
values of λ ,λ , and λ . 

Table 1: The optimal  , L(N*) and minimum expected cost T(  by varying                
(λ1, λ2, λ3,) 

(µ = 5, β = 10.0, θ = 0.7, ξ = 0.5, α = 4, η = 5, Ch = 25, Cm = 50, Cb = 30, Cs = 500, Co = 40, Cr = 20) 

λ2 = 1.0, λ3 = 5 λ1 = 0.5, λ3 = 1.5 λ1 = 0.5, λ2 = 1.0 

λ1 N* L(N*) T(N*) λ2 N* L(N*) T(N*) λ3 N* L(N*) T(N*) 

0.5 4 4.69 149.59 1.1 4 5.23 162.45 2.5 4 5.00 157.05 

1.0 6 6.84 210.47 1.3 4 6.66 196.36 5.0 4 6.09 183.20 

3.0 8 11.56 343.81 1.4 4 7.58 218.31 6.5 4 7.08 207.00 

6.0 9 16.35 462.05 1.5 4 8.66 244.32 8.0 4 8.50 241.35 

9.5 8 20.56 564.59 1.6 4 9.93 275.06 8.5 4 9.12 256.26 

17.5 7 30.41 799.29 1.7 4 11.43 311.33 9.5 4 10.65 293.66 

From Table 2 it can be seen that (i) with increase in the values of µ, β and , N* is 
insensitive, (ii) L(N*) increases with increase in the value of μ and decreases with increase in 
β and , and iii) T(N*) increases with increase in the values of μ and β, and decrease with 
increase in . 

It can be seen from Table 3 that (i) N and L N  are insensitive with increase in the 
values of Cb and shows increasing trend with increase in Cm and Cs, and (ii) T(N*) is 
insensitive with increase in the values of Cb and increases with increase in Cs and Cm. 
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Table 2: The optimal , L(N*)  and minimum expected cost T(  by varying (µ, β, θ) 

(λ 0.5, λ 1.0, λ 1.5, α = 4, ξ = 0.5, η = 5, Ch = 25, Cm = 50, Cb = 30, Cs = 500, Co = 
40, Cr = 20). 

. , .  μ . , .  μ . ,  .  

μ  L(N*) T(N*)   L(N*) T( )   L( ) T( ) 

5 4 4.69 149.59 12 4 4.67 150.01 0.7 4 4.69 149.59 

10 4 4.35 144.90 14 4 4.66 150.24 1.2 4 4.41 142.29 

15 4 4.50 149.69 16 4 4.65 150.39 1.7 4 4.29 139.25 

20 4 4.73 156.03 18 4 4.63 150.49 2.2 4 4.23 137.58 

25 4 4.99 162.89 20 4 4.63 150.55 2.7 4 4.19 136.52 

30 4 5.27 169.99 22 4 4.62 150.60 3.2 4 4.16 135.80 

Table 3: The optimal ,  and minimum expected cost T(  by varying (Cb, Cs, 
Cm) 

(λ 0.5, λ 1.0, λ 1.5, µ=5.0, β=10.0, θ=0.7, ξ=0.5, α=4, η=5, Ch=25, Co=40, Cr=20) 

Cs =500, Cm=50 Cb=30, Cm =50 Cs=500, Cb=30 

Cb  L(N*) T(N*) Cs  L(N*) T(N*) Cm  L(N*) T(N*) 

30 4 4.69 149.59 550 4 4.69 153.53 100 5 5.13 156.94 

50 4 4.69 149.59 600 5 5.13 158.79 200 5 5.13 166.22 

70 4 4.69 149.59 900 6 5.57 179.74 300 5 5.13 175.50 

90 4 4.69 149.59 1300 7 6.02 203.04 400 6 5.57 185.27 

110 4 4.69 149.59 1700 8 6.47 223.64 500 6 5.57 193.16 

130 4 4.69 149.59 2000 8 6.47 236.42 600 7 6.02 202.36 

From Table 4 we observe that (i) N and L N decrease with increase in the values of 
Ch and insensitive with increase in Co and Cr, and (ii) T(N*) increases with increase in Ch, 
insensitive with Co and decreases with Cr. 
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Table 4: The optimal ,  and minimum expected cost T(  by varying (Ch,C0, Cr) 

(λ 0.5, λ 1.0, λ 1.5, ξ = 0.5, µ = 5.0, β = 10.0, θ = 0.7, α = 4, η = 5, Cm = 50, Cb= 
30, Cs = 500) 

Co=40, Cr=20 Ch=25, Cr=20 Ch=  25, Co=40 

Ch  L(N*) T(N*) Co  L(N*) T(N*) Cr  L(N*) T(N*) 

25 4 4.69 149.59 50 4 4.69 149.59 50 4 4.69 130.69 
45 3 4.26 236.82 100 4 4.69 149.59 60 4 4.69 130.69 
55 3 4.26 279.42 150 4 4.69 149.59 70 4 5.13 119.82 
65 2 3.86 317.85 200 4 4.69 149.59 80 4 5.13 113.32 
75 2 3.86 365.49 250 4 4.69 149.59 90 4 5.13 106.83 
165 1 3.52 695.41 300 4 4.69 149.59 100 4 5.13 100.33 

CONCLUSION 

An N-policy two-phase M/M/1 gated queueing of an unreliable server with pre-
service work, delay repair and state dependent arrival rates is studied. Some of the system 
performance measures are obtained. Sensitivity of the optimal threshold N, expected system 
length and average cost with changes in the system parameters and cost elements is also 
studied.  
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