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Introduction 

In recent years, fluid mechanics had made significant progress in many segments of engineering, science and technology 

sectors. In this paper, an attempt has been made to explain the possibility of supporting thermal transfer in many industrial 

and technological applications. Experimental situations related to relevant phenomena should be very specific. Engineering 

systems especially are generally complicated and experimentally confusing. It is characterized by the complex currents where 

the fluid stream currents often have a sudden change with reference to the geometry. This of course is not uncommon, but it 

needs to be studied in detail. In recent years, exploration of oil and the extraction of geothermal energy from the deepest part 

of the earth, evaluation of heat removal capacity from nuclear fuel debris, nuclear reactors, flow of liquids through ion-

exchange beds, drug permeation through human skin and glands etc. are some of the wide-ranging applications. Further, due 
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to extensive applications of physics, chemistry and chemical technology had shown considerable interest in theoretical and 

experimental investigations over the past few decades. In all experiments, where the transfer of liquid from one container to 

another is involved, the rate at which such transfer takes place and the thin film adhering to the surfaces of the container is to 

be taken in to account, for the purpose of chemical calculations. Failure to do so leads to experimental error. Therefore, such 

an analysis is required. Analyzing the skin friction that affects the boundary is responsible for the safety of chemical reactors 

which is a most important factor. Generally, in the chemical processing industries slurry adheres to the walls of the container 

and gets consolidated. As a result, the chemical compound within the reactor vessel percolates through the boundaries 

causing loss of production and then consuming more reaction time. The slurry thus formed inside the reactor vessel often acts 

as a porous boundary for the next cycle of chemical processing.  

 

The porous medium can be considered as an ordered flow in a disordered geometry. A porous medium may be either an 

aggregate of large number of particles such as sand or a solid containing more capillaries such as a porous rock. When the 

fluid percolates through a porous material, because of complexity of microscopic flow in the pores, the actual part of an 

individual fluid particle cannot be analytically analyzed. However, the process can be defined in terms of equilibrium forces. 

 

Experimental 

The resistance force is characterized by Darcy's semi-empirical law set up by Darcy [1]. The simplest model for flow through 

a porous medium in one dimensional model derived by Darcy [1]. Heat transfer in the porous media has become most 

prominent due to the exploitation of geothermal energy, nuclear waste disposal, fossil fuel identification, regenerator bed, etc. 

Using the method of similarity solution, Murthy and Singh [2] studied the effect of lateral mass and thermal penetration in 

porous media. Later, Cheng and Minkowycz [3] analyzed sustainable free convection of vertical plates on porous dynamics 

in the form of dissipative inequality (Clausius – Duhem), and generally accepted idea of the specific Helmholtz free power 

balance must be minimum in the equilibrium state. Subsequently, Dupit and Frochheimer presented empirical evidence,  

 

MacDonald et al. [4] and others presented the balance between speed and pressure variations, breaks down for large enough 

flow speed (compilation of many experimental results). This was subsequently emphasized by Joseph et al [5] who stressed 

that Frochheimer’s actions were forced to work in the opposite direction to the velocity vector. In a multi-stream flow, it 

follows that the momentum equations are at least predictable for each speed component derived by Frochheimer's expanded 

Darcy equation. The effects of the existence of solid boundary and the presence of initial forces on mass transfer in Porous 

Media were submitted by Vafai and Tien [6]. Later, Knupp and Lage [7] analyzed the theoretical generalization to the tensor 

permeability case of emphatically obtained Frochheimer's extended Darcy’s unidirectional flow model. Thereafter, 

MacDonald et al. [8] presented the balance between speed and pressure contradictions: a large enough flow rate (compilation 

of many experimental results). 

 

The local volume average method was used to establish the governing equations. The numerical solution of governing 

equations is used to examine the mass concentration field in a porous media which is close to an impermeable boundary. A 

transitional mass transfer experiment was conducted to demonstrate boundary and inertial effects on mass transfer, combined 

with numerical solution. This is possible by estimating the average mass flux through a porous medium. Non-Darcy natural 

convection over a vertical plate in porous medium has been the subject of interest. Also, the effect of lateral mass and thermal 

penetration in thermal conduction was studied. 
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Further, they had discussed the combined effect of heat exchanges and liquid injection on Darcy mixed transfer. Hassain et al 

[9] studied the effects of heat dissemination and side effects on mixed synthesis problems and established the trend of heat 

transfer rate from a vertical plate in porous medium and researched in drain and temperature sectors. Later, Kuznetsov [10] 

examined the effect of transverse thermal dispersion on forced convection in porous media and found favourable conditions 

for heat transfer with dispersion effects. Mohahammadien and El-Amin [11] studied the dispersion and radiation effects in 

fluid saturated porous medium and the effects of radiation on the heat transfer rate for both Darcy and non-Darcy Medium. 

Cheng and Lin [12] in their observation pointed out that the rate of unsteady heat transfer can be accelerated by thermal 

dispersion. Without taking MHD into consideration Chamka and Quadri [13] examined the heat and mass transfer properties 

in mixed convective conditions. Wang et al [14] applied in explicit analytical techniques namely homotopy analysis to solve 

the Non-Darcy natural convection over a horizontal plate with surface mass flux and thermal diffusion and obtained a totally 

analytic and uniformly valid solution. 

 

Formulation of the problem 

We consider the laminar mixed convection flow of a Newtonian fluid through a porous medium in a vertical permeable 

channel, the space between the plates h being the same. It is expected that the rate of injection at a wall is equal to the suction 

rate at the other wall. A rectangular coordinate system (x, y) x-axis is parallel to the gravitational acceleration vector , the y-

axis is perpendicular to the x-axis. The left wall (i.e., y=0) is maintained at constant temperature   and the right wall (at y=h) 

is maintained at constant temperature  . It is always maintained that      . The flow is assumed to be laminar, steady and 

is fully developed, i.e., the transverse velocity is zero. Then the equation of continuity drops down to 
  

  
    

 

The basic equations of momentum and energy governing such a flow, subject to the Boussinesq approximation, are  
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             (2)  

 

Where   is the pressure,   is the density,   is the dynamic viscosity of the fluid,   is the acceleration due to gravity,   

coefficient of thermal expansion,    is the viscoelastic parameter,    is the permeability of the porous medium and    is the 

transpiration cross flow velocity. Further, here 
  

  
 is a constant. 

 

The boundary conditions are given by,  

                    and           (3)  

 

Introducing the following non-dimensional variables: 
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 into the equations (1) and (2), we obtain 
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where   
  

    is the viscoelastic parameter,   
    

 
 is the cross flow Reynolds number,    

          
 

   is the Grashoff 

number,    
    

 
 is the Reynolds number,    

 

 
 is the Prandtl number,    

     

     
 is the wall temperature parameter, 

    
  

  
 
   

   is the constant pressure gradient. 

 

The corresponding dimensionless boundary conditions are given by, 

            ;         and         (6)  

 

Solution of the problem 

We consider the first order perturbation solution of the BVP (1)-(2) for small . The perturbation solution obtained by 

retaining the terms up to the same order of smallness of   must be quite logical and reasonable. We write,  

           (7)  

and           (8)  

 

Substituting equations (7) and (8) into equations (4) and (5) and boundary conditions (6) and then equating the like powers 

of, we obtain, 

 

Zeroth-order system (    : 

  
    

    
    

     
   

  
 

 

  
    

  

  
            

 

Under the assumption that 
  

    is negligible the above equation reduces to  
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       (10)  

 

Together with the set of boundary conditions: 

              ;                       (11)  

First-order system      : 

  
    

    
    

     
   

  
 

 

  
   

  

  
    

 

Under the assumption that 
  

    is negligible the above equation reduces to, 
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Together with the set of boundary conditions, 

              ; and                (14)  
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Zeroth-order solution: 

Solving equations (9) and (10) using the boundary conditions (11), we get, 

   
(        )            

        
    (15)  

      
      

   
  

  
       

                    (16)  

Where   
  √       ⁄
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                ,    
      

 

     ,  

    
   

    

     . 

First order solution:  

Solving equation (13) with boundary conditions, we obtain,  

             (17) 

Substituting equation (17) in the equation (12) and then solving the resulting equation with the corresponding conditions, we 

get, 

    . 

 

Results, Discussion and Conclusion 

FIG. 1-9 illustrates the variation of temperature with respect to Prandtl number for different values of radiation parameter. In 

each of these observations it is noticed that as a Prandtl number increases the temperature also increases. Not much of 

significant change is observed when the radiation parameter (R) is slightly decreased. However, a drastic change is noticed 

when the Prandtl number changes considerably along with the radiation parameter (R). 

 

 

FIG. 1. Temperature profiles along the width of the channel. 
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FIG. 2. Variation of temperature along the width of the channel. 

 

FIG. 3. Distribution of temperature profiles along the width of the channel. 

 

 

 

FIG. 4. Variation of temperature profiles along the width of the channel.  
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FIG. 5. Temperature profiles along the width of the channel. 

 

 

FIG. 6. Temperature profiles along the width of the channel. 

 

 

FIG. 7. Temperature profiles along the width of the channel. 
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FIG. 8. Temperature profiles along the width of the channel. 

 

 

FIG. 9. Temperature profiles along the width of the channel. 

 

FIG. 10 and FIG. 11 demonstrates the distribution of temperature profiles in the fluid medium for different values of Prandtl 

number (Pr). In both of these illustrations it is observed that as we move far away from the lower boundary the temperature 

decreases. Further it is observed that as the radiation parameter (R) increases the temperature of the fluid decreases. 

 

 

FIG. 10. Variation of temperature profiles. 
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FIG. 11. Distribution of temperature profiles. 
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