METAL DERIVATIVES OF ORGANO-PHOSPHOROUS COMPOUNDS LIGATED BY ANTHRANILIC ACID

R. N. PANDEY* and RAKESH RANJAN

P.G. Centre of Chemistry (M.U.), College of Commerce, PATNA - 800020 (Bihar) INDIA

Abstract

Mixed ligand complexes of $\mathrm{Ru}(\mathrm{II}), \mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Cu}(\mathrm{II}), \mathrm{Zn}(\mathrm{II})$ and $\mathrm{Cd}(\mathrm{II})$ of composition $\left[\mathrm{MA}_{2}\left(\mathrm{P} \phi_{3}\right)_{2}\right.$] with anthranilic acid (AH) and triphenyl phosphine $\left(\mathrm{P} \phi_{3}\right)$ have been prepared and characterized by elemental analyses, conductivity measurements, IR, UV-vis and ${ }^{1} \mathrm{H}$ NMR studies. The anthranilic acid acts as bindentate anion and triphenyl phosphine as neutral monodentate. The octahedral configuration of all six-coordinated complexes are tentatively assigned.

Key words: Bivalent Metal ions, Anthranilic acid, Triphenyl phosphine, Metal-ligand vibrations.

INTRODUCTION

The literature survey revealed that anthranilic acid has excellent coordinating ability and bio-activities ${ }^{1,2}$. The thermodynamic and electrical propeties of aminophenol and anthranilic acid complexes with some transition metals are reported by Wahed et al. ${ }^{3}$ Borowski and Cole-Hamilton ${ }^{4}$ have examined structures and properties of Anthranilato and N-phenyl anthranilatorhodium(1) complexes containing triphenyl phopsphine. There are many report on the metal anthranilate complexes ${ }^{5-7}$. The present study aims at synthesis and spectral characterization of metal derivatives of organo-phosphorous compounds ligated by anthranilic acid.

EXPERIMENTAL

All chemical used were of AR grade or CP grade. The anthranilic acid and triphenyl phosphine were obtained from E. Merck. Solvents were dried before use. The precursor complex $\left[\operatorname{RuCl}_{2}\left(\mathrm{P}_{3}\right)_{4}\right]$ was prepared by the method reported in literature ${ }^{8}$.

[^0]
Preparation of complexes

S. No. $1\left[\mathrm{Ru}\left(\mathrm{P}_{3}\right)_{2} \mathrm{~A}_{2}\right]$

A benzene solution of $\left[\mathrm{RuCl}_{2}\left(\mathrm{P}_{3}\right)_{4}\right]$ (1 mmol) was added to ethanolic solution of anthranilic acid (2 m mol) and triphenyl phosphine (2 mmol). The resulting mixture was refluxed on a water bath for about 2 hr . and filtered hot. The pH of the mixture was made 7.5 using 50% aquous solution of NaOH and ethanol. The solution was concentrated to 15 mL and addition of 15 mL petrolium ether, the separated solid was filtered and dried over anhydrous CaCl_{2} in a desiccator (yield $=67 \%$).
S. No. 2 to $5\left[\mathrm{M}\left(\mathrm{P}_{3}\right)_{2} \mathrm{~A}_{2}\right]$

$$
\left(\mathrm{M}=\mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}, \mathrm{A}=\text { Anthranilate ion }\right)
$$

An aquous solution of metal chloride (1 mmol) was added gradually with stirring to ethanolic potassium anthranilate (2 mmol .) and triphenyl phosphine (2 mmol). The mixture was refluxed with constant stirring for an hour. The mixture was concentrated (20 mL) and cooled and separated solid was filtered and recrystillized from ethanol and dried (yield = 75\%).

The C, H and N analysis were performed by conventional methods and results are given Table 1.

Table 1: Analytical and physical data of complexes

$\begin{gathered} \text { S. } \\ \text { No. } \end{gathered}$	Complex/ (colour)	Analysis (\%) : Found / (Calcd)				$\begin{gathered} \mathbf{M}_{\text {eff. }} \\ \text { (BM) } \end{gathered}$	Molar Cond. $\mathrm{Ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
		C	H	N	Metal		
1	$\begin{gathered} {\left[\mathrm{RuA}_{2}\left(\mathrm{P}_{332}\right]\right.} \\ (\text { Brown }) \end{gathered}$	$\begin{gathered} 68.72 \\ (68.89) \end{gathered}$	$\begin{gathered} 4.60 \\ (4.68) \end{gathered}$	$\begin{gathered} 3.33 \\ (3.12) \end{gathered}$	$\begin{gathered} 11.31 \\ (11.25) \end{gathered}$	dia. Mag.	22.32
2	$\begin{gathered} {\left[\mathrm{CuA}_{2}\left(\mathrm{P}_{332}\right]\right.} \\ \text { (Blue) } \end{gathered}$	$\begin{gathered} 69.92 \\ (69.80) \end{gathered}$	$\begin{gathered} 4.89 \\ (4.88) \end{gathered}$	$\begin{gathered} 3.35 \\ (3.25) \end{gathered}$	$\begin{gathered} 7.45 \\ (7.39) \end{gathered}$	1.67	32.50
3	$\left[\mathrm{CoA}_{2}\left(\mathrm{P}_{3) 2}\right]\right.$ (Green)	$\begin{gathered} 70.22 \\ (70.18) \end{gathered}$	$\begin{gathered} 5.01 \\ (4.91) \end{gathered}$	$\begin{gathered} 3.43 \\ (3.27) \end{gathered}$	$\begin{gathered} 7.01 \\ (6.89) \end{gathered}$	4.72	21.72
4	$\left[\mathrm{NiA}_{2}\left(\mathrm{P}_{3}\right)_{2}\right]$ (Yellowish green)	$\begin{gathered} 70.31 \\ (70.20) \end{gathered}$	$\begin{gathered} 5.01 \\ (4.91) \end{gathered}$	$\begin{gathered} 3.15 \\ (3.27) \end{gathered}$	$\begin{gathered} 6.92 \\ (6.86) \end{gathered}$	3.15	18.68
5	$\begin{gathered} {\left[\mathrm{ZnA}_{2}\left(\mathrm{P}_{332}\right]\right.} \\ \text { (Yellow) } \end{gathered}$	$\begin{gathered} 69.82 \\ (69.65) \end{gathered}$	$\begin{gathered} 4.88 \\ (4.87) \end{gathered}$	$\begin{gathered} 3.20 \\ (3.25) \end{gathered}$	$\begin{gathered} 7.62 \\ (7.59) \end{gathered}$	dia. Mag.	28.10
6	$\begin{gathered} {\left[\mathrm{CdA}_{2}\left(\mathrm{P}_{332}\right]\right.} \\ \text { (Yellow) } \end{gathered}$	$\begin{gathered} 66.27 \\ (66.07) \end{gathered}$	$\begin{gathered} 4.72 \\ (4.62) \end{gathered}$	$\begin{gathered} 3.21 \\ (3.08) \end{gathered}$	$\begin{gathered} 12.36 \\ (12.34) \end{gathered}$	dia. Mag.	21.11

IR Spectra of ligands and complexes were recorded with the help of Perkin Elmer Model 621 in the range of $4000-200 \mathrm{~cm}^{-1}$ using KBr pellets technique. The magnetic measurements were made on gouy balance using $\mathrm{Hg}\left[\mathrm{CO}(\mathrm{SCN})_{4}\right]$ as calibrant. ${ }^{1} \mathrm{H}$ NMR Spectra of ligands and complexes were recorded on a high resolution varian HR-100 (cross coil type) NMR Spectrometer in CDCl_{3} solution. Electronic Spectra ($10^{-3} \mathrm{M}$ DMF) were recorded using Hilger watt Uvispeck spectrophotometer.

RESULTS AND DISCUSSION

$\mathrm{RuCl}_{2}\left(\mathrm{P}_{3}\right)_{4}$ undergoes ligand substitution reaction :

$$
\mathrm{RuCl}_{2}\left(\mathrm{P} \phi_{3}\right)_{4}+2 \mathrm{AH} \xrightarrow[\mathrm{EtOH}]{\mathrm{C}_{6} \mathrm{H}_{6}}\left[\mathrm{Ru}\left(\mathrm{P} \phi_{3}\right)_{2} \mathrm{~A}_{2}\right]+2 \mathrm{HCl}+2 \mathrm{P} \phi_{3}
$$

Metal salts as chloride react with ligands leading to the formation of other complexes :

$$
\begin{gathered}
2 \mathrm{AH}+2 \mathrm{KOH} \rightarrow 2 \mathrm{~A}^{-} \mathrm{K}^{+}+2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{MCl}_{2}+2 \mathrm{~A}^{-} \mathrm{K}+2{\mathrm{P} \phi_{3} \xrightarrow{\mathrm{EtOH}}\left[\mathrm{MA}_{2}\left(\mathrm{P}_{3}\right)_{2}\right]+2 \mathrm{KCl}}_{\left(\mathrm{M}=\mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}), \mathrm{Cd}(\mathrm{II}), \mathrm{AH}=\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOH}\right)}
\end{gathered}
$$

The products have been purified by crystallization and have been fully characterized by means of elemental analysis, IR, NMR Spectroscopies and other physico-chemical measurements. All products were soluble in DMF and DMSO while insoluble in water. The observed molar conductance values in DMF in $10^{-3} \mathrm{M}$ solution lies in the 20.80-32.50 Ω^{-1} $\mathrm{cm}^{2} \mathrm{~mol}^{-1}$ range indicated their non-electrolytic nature ${ }^{9}$.

Magnetic moment and electronic spectra

The magnetic moments obtained at room temperature for complexes are listed in Table 1.

The cobalt (II) complex shows magnetic moment of 4.72 BM indicating spin free octahedral structure ${ }^{10}$. The ligand field bands are observed at $8770 \mathrm{~cm}^{-1}\left({ }^{4} \mathrm{~T}_{1} \mathrm{~g}(\mathrm{~F}) \rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{~g}(\mathrm{~F})\right.$, $\left.\mathrm{v}_{1}\right), 18185 \mathrm{~cm}^{-1}\left({ }^{4} \mathrm{~T}_{1} \mathrm{~g}(\mathrm{~F}) \rightarrow{ }^{4} \mathrm{~T}_{2} \mathrm{gF}, \mathrm{v}_{2}\right)$ and at $21880 \mathrm{~cm}^{-1}\left({ }^{4} \mathrm{~T}_{1} \mathrm{~g}(\mathrm{~F}) \rightarrow{ }^{4} \mathrm{~T}_{1} \mathrm{~g}(\mathrm{P}), \mathrm{v}_{3}\right)$. The ligand field Parameters like $\mathrm{Dq}=941 \mathrm{~cm}^{-1}, \mathrm{~B}=917.00 \mathrm{~cm}^{-1}, \mathrm{~B}_{35}=0.94$ and $\mathrm{V}_{2} / \mathrm{V}_{1}=2.07$ also suggest octahedral stereochemistry for the complex ${ }^{10}$. The Nickel (II) complex shows magnetic moment of 3.15 BM and electronic spectrum exhibit four ligand field bands at $35715 \mathrm{~cm}^{-1}$ (CT band), $9400 \mathrm{~cm}^{-1}\left({ }^{3} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{3} \mathrm{~T}_{2} \mathrm{~g}, \mathrm{~V}_{1}\right), 16500 \mathrm{~cm}^{-1}\left({ }^{3} \mathrm{~A}_{2} \mathrm{~g} \rightarrow{ }^{3} \mathrm{~T}_{1} \mathrm{~g}(\mathrm{~F}), \mathrm{V}_{2}\right)$ and
$25100 \mathrm{~cm}^{-1}\left({ }^{3} \mathrm{~A}_{2} g \rightarrow{ }^{3} \mathrm{~T}_{1} g(P), \mathrm{V}_{3}\right)$ in a distorted octahedral symmetry field ${ }^{11}$. The ligand field parameters like $\mathrm{Dq}=940 \mathrm{~cm}^{-1}, \mathrm{~B}=806 \mathrm{~cm}^{-1}, \mathrm{~B}_{35}=0.78$ and $\mathrm{V}_{2} / \mathrm{V}_{1}=1.75$ also confirm the octahedral geometry for the complex ${ }^{12}$. The $\mathrm{Cu}(\mathrm{II})$ complex exhibits magnetic moments of 1.67 BM and one broad band with maxima at $14540 \mathrm{~cm}^{-1}\left({ }^{2} \mathrm{Eg} \rightarrow{ }^{2} \mathrm{~T}_{2} \mathrm{~g}\right)$ support a distorted octahedral configuration of complex ${ }^{13}$. The ruthenium(II) complex is diamagnetic indicating spin pairing in $\mathrm{Ru}^{2+}\left(\mathrm{d}^{6}\right)$ having normal octahedral structure with ground state $1 \mathrm{~A}_{1} \mathrm{~g}$ and two spin allowed transitions ${ }^{1} \mathrm{~A}_{1} \mathrm{~g} \rightarrow{ }^{1} \mathrm{~T}_{1} \mathrm{~g}$ and $1 \mathrm{~A}_{1} \mathrm{~g} \rightarrow{ }^{1} \mathrm{~T}_{2} \mathrm{~g}$ are expected. These transitions are observed at $19230 \mathrm{~cm}^{-1}\left({ }^{1} \mathrm{~A}_{1} \mathrm{~g} \rightarrow{ }^{1} \mathrm{~T}_{1} \mathrm{~g}\right)$ and $149970 \mathrm{~cm}^{-1}\left({ }^{1} \mathrm{~A}_{1} \mathrm{~g} \rightarrow{ }^{1} \mathrm{~T}_{2} \mathrm{~g}\right)$ are agreement with previous literature ${ }^{14-16}$. The other band at $25974 \mathrm{~cm}^{-1}$ assigned to $\mathrm{T}_{2} \mathrm{~g} \rightarrow \pi^{*}$ transition.

IR Spectra

A comparison of IR Spectra of anthranilic acid, triphenyl phosphine and complexes indicate the formation of Metal-O and Metal-N and Metal-P bonds. Anthranilic acid acts as mononegative bidentate. The $v_{\text {asyam }}\left(\mathrm{NH}_{2}\right)$ and $v_{\text {sym }}\left(\mathrm{NH}_{2}\right)$ in free anthranilic acid are observed at $3400 \mathrm{~cm}^{-1}$ and $3300 \mathrm{~cm}^{-1}$ red shift to lower frequency $35-40 \mathrm{~cm}^{-1}$ and $40-45 \mathrm{~cm}^{-1}$, respectively indicating formation of Metal-N bond. This is also corroborated by the presence of new bands in the range of $520-535 \mathrm{~cm}^{-1}$ due to metal- N stretching mode. The bands at $1700 \mathrm{~cm}^{-1}$ and $1560 \mathrm{~cm}^{-1}$ in the spectrum of anthranilic acid assigned to $v_{\text {asym }}(\mathrm{COO})$ and $v_{\text {sym }}(C O O)$ suffered a major change to lower frequency and observed at $1620-1630 \mathrm{~cm}^{-1}$ and $1405-1415 \mathrm{~cm}^{-1}$ respectively in complexes suggest the presence of monodetate carboxylate group ${ }^{17,18}$. The formation of metal oxygen bond is further Supported by non-ligand, new bands around $430-510 \mathrm{~cm}^{-1}$ due to metal-O stretching mode.

Triphenyl phosphine exhibits large number of bands in far-IR Spectrum ${ }^{19,20}$. The new band around $416-420 \mathrm{~cm}^{-1}$ is assigned to $v \mathrm{M}-\mathrm{P}$ mode of coordinated triphenyl phosphine.

${ }^{1}$ H NMR Spectra

The free anthranilic acid exhibits signals at $\delta 7.72-6.52$ (multiplet) PPM, $\delta 8.4$ PPM and $\delta 3.6$ PPM due to phenyl protons, amino protons and protons of -OH group, respectively. The amino protons signals are low field shifted on compexation and the integrated intensties of the signals agree with the assigned octahedral structure (I) of complexes. The phenyl protons signals are slightly low field shifted and the -OH proton signals are not present in complexes indicating deprotonation. The signals found at $\delta 8.70-$ 8.10 PPM as broad multiplet in complexes are due to aromatic protons of coordinated $\mathrm{P} \phi_{3}$ molecules ${ }^{21}$ and the integrated intensitives agree well with the formulation of complexes.

Table 2: Major IR and ${ }^{1} \mathrm{H}$ NMR spectral data of ligand and complexes

Compds.	IR (cm^{-1})				${ }^{1} \mathrm{H}$ NMR ((PPPM)			Aromatic P ϕ_{3} protons
	$\begin{gathered} \hline v_{\text {asym }} \\ \mathrm{NH}_{2} / v_{\text {sym }} \\ \left(\mathrm{NH}_{2}\right) \\ \hline \end{gathered}$	$\begin{aligned} & v_{\text {asym }}(\mathrm{COO}) / \\ & v_{\text {sym }}(\mathrm{COO}) \end{aligned}$	$\begin{aligned} & \text { U M-N/ } \\ & \text { (UM-O) } \end{aligned}$	$\stackrel{v}{\mathbf{M - P}}$	Amino proton	Phenyl proton	Protons of -OH gr.	
Anthranilic Acid (AH)	$\begin{gathered} 3400 \mathrm{~S} \\ (3300 \mathrm{~S}) \end{gathered}$	$\begin{gathered} 1710 \mathrm{~S} \\ (1560 \mathrm{~ms}) \end{gathered}$	(-)	(-)	8.40	7.72-6.52 (multiplet)	3.6	(-)
$\begin{gathered} \mathrm{Ru}(\mathrm{II}) \\ (\mathrm{S} . \mathrm{No.} 1) \end{gathered}$	$\begin{aligned} & 3360 \mathrm{~S} \\ & 3270 \mathrm{~S} \end{aligned}$	$\begin{gathered} 1685 \mathrm{~S} \\ (1475 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 560 \mathrm{~m} \\ (510 \mathrm{w}) \end{gathered}$	420 w	8.30	7.72-6.52	-	8.70
$\begin{gathered} \mathrm{Cu}(\mathrm{II}) \\ (\mathrm{S} . \mathrm{No.} 2) \end{gathered}$	$\begin{gathered} 3355 \mathrm{~S} \\ 3265 \mathrm{M} \end{gathered}$	$\begin{gathered} 1691 \text { S } \\ (1477 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 550 \mathrm{~m} \\ (510 \mathrm{w}) \end{gathered}$	425 w	8.32	7.70-6.8	-	8.10
$\begin{gathered} \mathrm{Co}(\mathrm{II}) \\ \text { (S. No. 3) } \end{gathered}$	$\begin{aligned} & 3314 \mathrm{~S} \\ & 3220 \mathrm{~S} \end{aligned}$	$\begin{gathered} 1695 \text { S } \\ (1485 \mathrm{~m}) \end{gathered}$	$\begin{aligned} & 520 \mathrm{w} \\ & 505 \mathrm{w} \end{aligned}$	415 w	8.31	7.72-6.80	-	8.68
$\begin{gathered} \mathrm{Ni}(\mathrm{II}) \\ (\mathrm{S} . \mathrm{No.} 4) \end{gathered}$	$\begin{aligned} & 3350 \mathrm{~S} \\ & 3250 \mathrm{~S} \end{aligned}$	$\begin{gathered} 1690 \mathrm{~S} \\ (1475 \mathrm{~S}) \end{gathered}$	$\begin{gathered} 525 \mathrm{w} \\ (510 \mathrm{w}) \end{gathered}$	410 w	8.32	7.78-6.85	-	8.15
$\begin{gathered} \mathrm{Zn}(\mathrm{II}) \\ \text { (S. No. 5) } \end{gathered}$	$\begin{aligned} & 3325 \text { S } \\ & 3126 \text { S } \end{aligned}$	$\begin{gathered} 1680 \mathrm{~S} \\ (1472 \mathrm{~S}) \end{gathered}$	$\begin{gathered} 532 \mathrm{w} \\ (510 \mathrm{w}) \end{gathered}$	415 w	8.31	7.72-6.82	-	8.55
$\begin{gathered} \mathrm{Cd}(\mathrm{II}) \\ \text { (S. No. 6) } \end{gathered}$	$\begin{aligned} & 3370 \mathrm{~S} \\ & 3265 \mathrm{~S} \end{aligned}$	$\begin{gathered} 1685 \text { S } \\ (1470 \mathrm{~m}) \end{gathered}$	$\begin{gathered} 515 \mathrm{w} \\ (450 \mathrm{w}) \end{gathered}$	420 w	8.34	7.76-7.10	-	8.25

Thus, on the basis of above observations the octahedral structure (I) is tentatively assigned for all six- coordinated complexes.

Octahedral Structure of $\left[\mathrm{MA}_{2}\left(\mathrm{P}_{3}\right)_{2}\right]$
$(\mathrm{M}=\mathrm{Ru}(\mathrm{II}), \mathrm{Co}(\mathrm{II}), \mathrm{Ni}(\mathrm{II}), \mathrm{Zn}(\mathrm{II}) \& \mathrm{Cd}(\mathrm{II}), \mathrm{AH}=$ Anthranilic acid $)$

(Structure 1)

REFERENCES

1. N. Raman, J. Joseph, S. Muthy Kumar, S. Sugatha and K. Sahayaraj, J. Biopesticides, 1(2), 206 (2008).
2. Taghreed, H. Al-Noor, Khalid F. Ali, Amer J. Jarad and Aliea S. Kindeel, Chem and Materials Res., 3(3), 126 (2013).
3. Abd EI wahed, S. M. Metwally, M. M. EI Gamel and S. M. Abd. EL Haleem, Bull. Korean Chem. Soc., 22(7), 663 (2001).
4. A. F. Borowski and D. J. Cole- Hamilton, Polyhedron, 12, 1757 (1993).
5. Taghreed H. Al-Noor, Ibtisam Dawood and Ibtihaj K. Malih, Int. J. Sci. Technol., 7(3), 32 (2012).
6. N. Raman, J. Joseph and K. Rajasekaram, Polish J. Chem., 81, 149 (2007).
7. Rita Roy, K. Subrata Panchanan and Prag S. Roy, Transition Met. Chem., 12, 137 (1987).
8. T. A. Stephensen and G. Wilkinson, J. Inorg. Nucl. Chem., 28, 945 (1966).
9. W. J. Geary, Coord. Chem. Rev., 7(1), 81 (1971).
10. A. B. P. Lever, Coord. Chem. Rev., 3, 119 (1963).
11. Liwang Jiwen Cai, Zon-Wang MaO, Xiao-long Feng and Jim-Wang Hyang, Trans. Met. Chem., 29, 418 (2004).
12. H. Bipin B. Mahapatra and A. K. Sarangi, J. Indian Chem. Soc., 86, 559 (2009).
13. S. Yamada, Coord Chem. Rev., 1, 415 (1966).
14. R. N. Pandey, K. Shahi and P. Pandey, J. Ultra Chem., 7(3), 321 (2011).
15. T. Singh and J. P. Singh, J. Indian Chem. Soc., 69, 158 (1992).
16. R. N. Pandey and K. V. Gautam, J. Ultra Chem., 7(1), 9 (2011).
17. N. F. Curtis, J. Chem. Soc., 4, 1579 (1968).
18. B. Mahapatra, P. K. Bhoi, S. K. Kar and S. R. Prasad, J. Indian Chem. Soc., 72, 399 (1995).
19. K. Shobatake, C. Postmus, J. R. Ferraro and K. Nakamoto, Appl. Spectro Sc. 23, 12 (1969).
20. D. H. Brown, A. Mohamad and D. W. A. Sharp, Spectrochim, Acta., 21, 663 (1965).
21. M. Chandra, A. N. Sahay, D. S. Pandey, M. C. Purerta and P. Valerga, J. Organometallic Chem., 648, 39 (2002).

[^0]: *Author for correspondence; E-mail: rameshwarnath.pandey@yahoo.com, dr_rranjan@yahoo.com; Mob.: 09931886399,09431201187

