

MASS, IR AND EPR SPECTRAL CHARACTERISATION OF Cd (II) PHOSPHAZENIDE

NEETU SINGH and S. P. S. JADON*

Department of Chemistry, S. V. College, ALIGARH - 202001 (U.P.) INDIA

ABSTRACT

Complex of Cd (II) with hexahydro-cyclotriphosphazene (HHCTP) was synthesized, and studied with the help of Mass, IR and EPR spectra, assigning its molecular formula as $(N_3P_3H_4)_5$ -Cd having pentadentated coordinated linkage and trigonal-bipyramidal geometry.

Key words: Cadmium (II), Phosphazenide, Mass, IR, EPR.

INTRODUCTION

Various complexes and adducts of (NPCl₂)₃ with metals have been reported¹⁻⁸, but a few complexes of (NPH₂)₃ with metals have been synthesized⁹⁻¹². The investigations of reaction product of (HHCTP) with Cd (II) chloride are being reported herewith.

EXPERIMENTAL

(NPCl₂)₃ was prepared by refluxing NH₄Cl and PCl₅ in chlorobenzene at the 150°C for 6 to 12 h by using AnalaR grade chemicals. (NPH₂)₃ was prepared by the reduction of (NPCl₂)₅ with Na/C₂H₅OH as reported¹³. The complex of (NPH₂)₃ with CdCl₂ was prepared by refluxing both in equimolar ratio (1 : 1) in DMF for 6 to 8 h. White coloured mass obtained was separated, washed with DMF, ethanol and ether, dried and stored in vacuum desiccator over fused CaCl₂.

The complex was analysed qualitatively and quantitatively by well known methods¹⁴. EPR and Mass spectra were recorded subsequently on varians X-E-4 band (4-8K Gausss) and Jeol Sx-102 (FAB) spectrometers. IR spectrum was recorded on Shimadzu 8201, PC (4000-400 cm⁻¹) FTIR spectrophotometer.

-

^{*}Author for correspondence; E-mail: sps jadon@yahoo.co.in

RESULT AND DISCUSSION

In the complex, N and P were tested as NH_4^+ and PO_4^{3-} ion and found positive while test for Cl^- ion was found negative. The analytical data, % found, N-26.02, P-57.62, H-2.47, Cd-13.87 and molecular weight 807.46 gm/mol formulated the complex as $(N_3P_3H_4)_5$ -Cd, which is supported by the prominent mass at m/z 807.5, 767, 782 and 789 appearing in its mass spectrum (Fig. 1) according to the $(N_3P_3H_4)_5$ -Cd, $(N_3P_3H_2)_4$ -Cd- $N_3P_2H_2$ (M+1), $(N_3P_3H_2)_4$ -Cd- $N_2P_3H_2$ (M - 1) and $(N_3P_3H_4)_4$ -Cd- $N_2P_3H_2$ (M - 2), fragments, respectively.

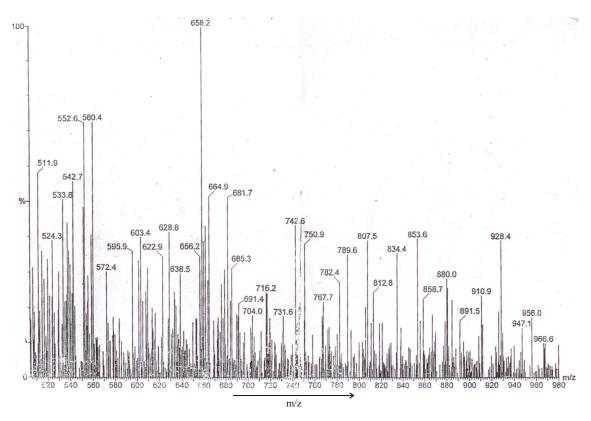


Fig. 1: Mass spectrum of Hg (N₃P₃H₄)₅-Cd

The other mass lines in its mass pattern may be explained by FAB fragmentation process as –

The formation of this complex is supported by its IR spectrum (Fig. 2) having the vibrations at 555-1380, 1442-1853 and 2340-3778 cm⁻¹. Subsequently for the H-P-N \rightarrow M, H-P-N, H-P=N bands, suggesting pentadentated coordinated linkage of P_3N_3 ring to Cd^{2+} ion.

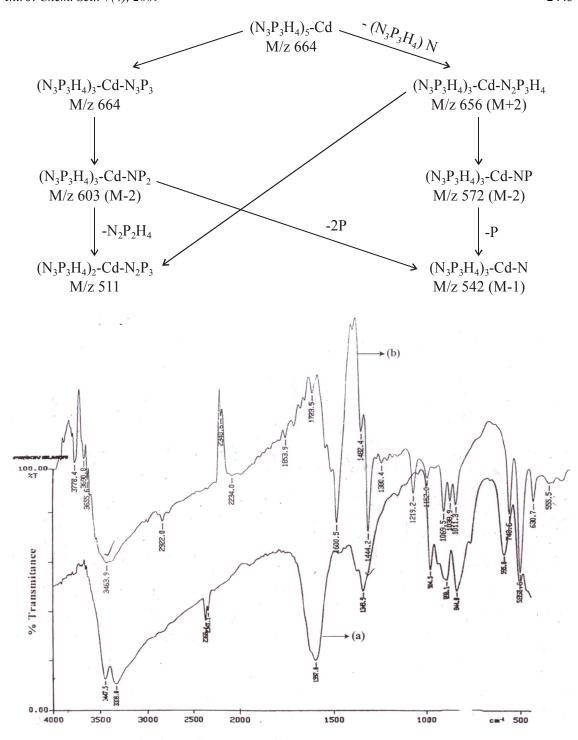
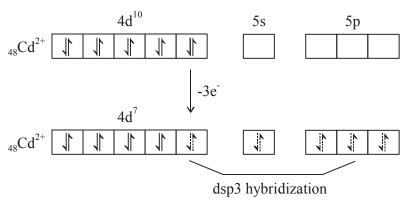



Fig. 2: IR Spectrum of ligand (a) and complex (b)

This view is also supported by the appearance of signals in its EPR spectra at both; RT and LNT (Fig. 3); thus, showing the paramagnetic character of the complex, while the complexes of Cd (II) generally exhibit diamagnetic nature. The paramagnetic character is confirmed by the magnetic momentum μ_{eff} 1.1461 B. M. (R. T.), 1.370 B. M. (L. N.T.) and magnetic susceptibility χ_A 5.844 x 10⁻⁴ esu at R. T. and 1.1973 x 10⁻³ esu at L. N. T. according to one unpaired electron in Cd²⁺ ion. The value of g = 1 1.3515 < 2 indicates the presence of vacant shell in Cd atom to form the coordinate linkage with P₃N₃ ring.

The presence of unpaired electron on Cd^{2+} ion may be due to loss of three electrons to reduce phosphorus atoms $P(V) \rightarrow P(III)$ state of N_3P_3 ring as -

Trigonal bipyramidal geometrical complex is formed through dsp³ hybridization. The presence of one unpaired electron on Cd²⁺ ion expound mono-nuclear complex ruling out any other geometry except trigonal bipyramid¹⁵. The structure of the complex may be represented as Fig. 4.

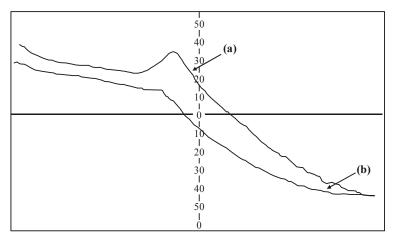


Fig. 3: EPR Spectra of complex at (a) RT and (b) LNT

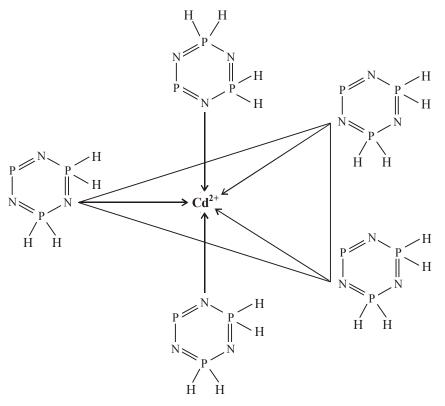


Fig. 4: Structure of (N₃P₃H₄)₅-Cd

ACKNOWLEDGEMENT

The authors express their thanks to the Director, SAIF, CDRI, Lucknow and I. I. T., Chennai for providing instrumental facilities.

REFERENCES

- 1. H. R. Allcock, C. A. Crane, C. T. Morrissey, J. M. Nelson, S. D. Reeves, C. D. Honeyman and J. Manners, Macro Molecule, **29**, 7740 (1996).
- 2. Imma Bosch, G. V. Angel and V. Janme, Org. Chem., 16, 5638-48 (1996).
- 3. Mchali A. Killer and S. S. Castondy, Anal. Chem., 68, 3489-92 (1996).
- 4. B. V. Karyn and H. R. Allcock, Inorg. Chem., **35**, 6337-38 (1996).
- 5. J. F. Richard and H. R. Allcock, Org. Chem., 13, 2123-2132 (1997).

- 6. G. Bosschor, A. Meetsma and J. C. V. D. Grampel, J. Chem. Soc. Dalton Trans., 1667-73 (1997).
- 7. A. V. Anil, J. E. Robert, L. Kirchmeier and J. M. Shreeve, Inorg. Chem., 2730-45 (1997).
- 8. F. P. C. Alonco and G. Rubiales, J. Inorg. Chem., **62**, 1146-1154 (1997).
- 9. V. Chandrashekhar et al., Org. Chem., 37, 6192-6198 (1998).
- 10. S. P. S. Jadon, Asian J. Chem., 15, 151 (2003),
- 11. S. P. S. Jadon, Asian J. Chem., 17, 1312 (2005).
- 12. N. Jain and S. P. S. Jadon, Asian J. Chem., 18, 730 (2006).
- 13. A. I. Vogel, A Text Book of Quantitative Inorganic Analysis, E. L. B. S. Publisher New Delhi (1968).
- 14. J. Emsley and P. B. Udy, J. Chem. Soc., 3005 (1970).
- 15. F. A. Cotton, Advanced Inorganic Chemistry, Wiley Eastern Ltd. New Delhi, (1972) p. 515.

Accepted: 28.07.2009