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ABSTRACT 
 
Hyper-Wiener index is an important topological index in theoretical chemistry. Physical
chemical properties of material are closely related to this index. Hexagonal Mobius graphs
are one type of molecular graphs embedded into the Mobius strip such that each face is a
hexagon. In this paper, we obtain the Hyper-Wiener index of the two classes of hexagonal
Mobius graphs. 
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 INTRODUCTION 
 
 The Hyper-Wiener index, as an extension of Wiener index, is an important topological index in 
Chemistry. It is used for the structure of molecule. There is a very close relation between the physical, 
chemical characteristics of many compounds and the topological structure of that. The Hyper-Wiener 
index is such a topological index and it has been widely used in Chemistry fields. 
 The graphs considered in this paper are simple and connected. The vertex and edge sets of G are 
denoted by V(G) and E(G), respectively. The Wiener index is defined as the sum of distances between 
all unordered pair of vertices of a graph G, i.e., 
 

( )W G = , 

 
 where  is the distance between u and v in G. 
 The Hyper-Wiener index WW is one of the recently distance-based graph invariants. That WW 
clearly encodes the compactness of a structure and the WW of G is define as: 
 

= . 

 
 Some conclusions for Hyper-Wiener index and Wiener index can refer to[1-5]. Pan[6] deduced the 
formula of Wiener number and Hyper-Wiener number of two types of polyomino systems. Tang[7] 
studied the Wiener indices of unicycles graphs. Firstly, it gave a formulation for calculating the Wiener 
index of an unicycles graphs according its struction. And then, in terms of this formulation, it 
characterized the graphs with the largest, the smallest, the second largest, the second smallest, the third 
largest and the third smallest Wiener indies among all the unicycles graphs. Xing et al.,[8] determined the 
n-vertex unicyclic graphs of cycle length r with the smallest and the largest Hyper-Wiener indices for 3

r n, and the n-vertex unicyclic graphs with the smallest, the second smallest, the largest and the 
second largest Hyper-Wiener indices for n 5. Yuan[9] learned the special class of unicyclic graph. Feng 
et al.,[10] determined the extremal bicyclic graphs with maximal and minimal hyper-Wiener index. 
Chen[11] investigated the properties of the Wiener index of unicyclic graphs, which are used to give a 
lower bound for the Wiener index of unicylic graphs of order 2β having perfect matching. Moreover, all 
extremal unicyclic graphs which attain the lower bound were characterized. Qi and Zhou[12] determined 
the minimum Hyper-Wiener index of unicylic graphs with given number of vertices and matching 
number, and characterized the extremal graphs. Feng and llic[13] presented sharp bounds for the Zagreb 
indices, Harary index and hyper-Wiener index of graphs with a given matching number, and we also 
completely determine the extremal graphs. Also, Du and Zhou[14] determined the minimum Wiener 
indices of trees and unicyclic graphs with given number of vertices and matching number respectively, 
and the extremal graphs are characterized. 
 Let G=(V, E) and H=(V’, E’) be two graphs. is a such graph, its vertex set is , there 
exist an edge between (a, x) an (b, y) if and only if one of following condition holds: (1) ab E and x=y; 
(2) a=b and xy E’. Let V(Pk)={0,1,…,k-1}. The hexagonal Mobius graph with length 2k and width 2 
denoted by  is defined as follows: deleting edges {(0, 2j+1) (1, 2j+1)|0 j k-1} from , 
then adding edges (1,0)(0,2k-1) and (0,0)(1,2k-1). The hexagonal Mobius graph with length 2k+1 and 
width 3 denoted by  is defined as follows: deleting edges {(0, 2j) (1, 2j)|0 j k} from , 
then adding edges (0,0)(2,2k), (1,0)(1,2k) and (2,0)(0,2k). 
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Figure 1 :  and  

 
 In this paper, we determine the Hyper-Wiener index of above two hexagonal Mobius graphs. 
 
Main results and proof 

 Theorem 1. = . 

 
 Proof. When k=1 and k=2,  and  are isomorphism to following graphs (see Figure 2.), 
respectively. By the definition of Hyper-wiener index and directly computing, we have =8 
and =70. 
 When k 3, the vertices of  have two orbits under its automorphism group, and all the 2k 
vertices with degree 2 in one orbit and all the 2k vertices with degree 3 in the other orbit.  

 

 
 

Figure 2 : The graphs isomorphism to  and , respectively. 
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  Taking any vertex v with degree 2, the sum of distance square from v to other vertex is 
calculated by (see left graph of Figure 3.) 

= . 

 
 •  Taking any vertex v with degree 3, the sum of distance square from v to other vertex is 
calculated by (see right graph of Figure 3.) 

 

= . 

 

 
 

Figure 3 : Distance computing by taking any vertex with degree 2 or 3 from respectively. 
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Figure 4 : The graph isomorphism to  and the structure of , respectively. 

 

 Theorem 2. = . 

 Proof. When k=1,  is isomorphism to left graph of Figure 4. By the definition of Hyper-
wiener index and directly computing, we have =102. When k=2, the structure of  is 
showed in right graph of Figure 4. We yield =465. 
 When k 3, the vertices of  have three orbits under its automorphism group, and all the 
vertices with degree 2 and degree in boundary in the first and second orbit respectively, and all the inner 
vertices with degree 3 in the third orbit. 

 

 
 

Figure 5 : Distance computing by taking any vertex from . 

 
  There are 2k+1 vertices with degree 3 in boundary. Taking any vertex v, the sum of distance 
square from v to other vertex is calculated by (see middle graph of Figure 5.) 
 

+ = . 

 
 There are 2k+1 vertices with degree 2 in boundary. Taking any vertex v, the sum of distance 
square from v to other vertex is calculated by (see left graph of Figure 5.) 
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+ = . 

 
  There are 2k+1 inner vertices with degree 3. Taking any vertex v, the sum of distance square 
from v to other vertex is calculated by (see right graph of Figure 5.) 

+ = . 

 
 Hence, we infer 
 

=  

 

= .  
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