
This paper deals with the quasi-static coupled thermoelastic problems of
an infinitely long rotating multilayered hollow cylinder. Laplace transform
and finite difference methods are used to analyze problems. Using the
Laplace transform with respect to time, the general solutions of the govern-
ing equations are obtained in transform domain. The solution is obtained
by using the matrix similarity transformation and inverse Laplace trans-
form. Also presented are the numerically transient distributions of stress
and temperature in the real domain for the case of an infinitely long rotating
hollow cylinder composed of three different materials. Moreover, the com-
putational procedures established in this article can solve the generalized
thermoelasticity problem for rotating multilayered hollow cylinder with
orthotropic material properties.
  2007 Trade Science Inc. - INDIA
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INTRODUCTION

Durodola and Attia[1] are a predictive assessment
of the stresses in and deformation of a rotating disc
made of functionally graded non-homogeneous
orthotropic materials. Two methods of analysis, namely,
the finite-element method and direct numerical integra-
tion of governing differential equations were used. Lee
et al.[2] analyze the free vibration and transient dynamic
response of a rotating multilayer annular plate. Layerwise
zig-zag theory is applied to the rotating multilayer disk
problem. Kant et al.[3] analyzed the transient response

of composite and sandwich plates based on a equiva-
lent single-layer higher-order theory.

Chen et al.[4,5] presented a new numerical technique
hybrid numerical method for the problem of a transient
linear heat conduction system. They applied the Laplace
transform to remove the time-dependence from the gov-
erning equation and boundary conditions, and solved the
transformed equations with the finite element and finite
difference method. Finally the transformed temperature
was inverted by numerical inversion of the laplace trans-
form. It proved that the method could accurately deter-
mine the stable solutions at a specific time. But this method
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has been confined to one nodal solution at each specific
time. When applied to a problem with many nodes, it
takes an excessive amount of computer time. Yang and
Chen[6] discussed the transient response of one-dimen-
sional quasi-static coupled thermoelasticity problems of
an infinitely long annular cylinder composed of two dif-
ferent materials. They applied the laplace transform with
respect to time and used the fourier series and matrix
operations to obtain the solution.

In this paper, we consider the one-dimensional
quasi-static coupled thermoelastic problem of rotating
multilayered hollow cylinder. Laplace transforms and
finite difference methods are used, which are quite ef-
fective and powerful for obtaining solutions to a wide
range of transient thermal stress.

FORMULATION

The layered cylindrical shell to be analyzed is shown
in figure 1. The transient heat conduction equation for
the ith layer in dimensional form can be written as
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The equation of equilibrium for a cylinder along the
radial direction can be written as
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The stress-displacement relations are
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Let the boundary surfaces of composite cylinder
be traction free and subjected to temperatures. The ini-
tial and boundary conditions are
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At the interface between two adjacent layers, the
following matching conditions must be satisfied
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The non-dimensional variables are defined as fol-

Figure 1 : Physical model and system ordinates for a Mul-
tilayered hollow cylinder
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Substituting the nondimensional quantities given in
equation (5) into the governing equations (1)-(4), the
governing equations and stress-displacement relations
have the following nondimensional form:
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The nondimensional boundary and interface condi-
tions can be written as:

Boundary conditions

Case 1
0)t,r(r  at 1rr 

011 fT  at 1rr 

0)t,r(r  at outrr 

0
r
T





at outrr 

Case 2

0)t,r(r  , at 1rr 

011 fT  at 1rr 

0)t,r(r  at outrr 

)TT(h
r

T
k 



 at outrr 

2. Interface conditions
)t,r(u)t,r(u 1ii  1irr 

)t,r()t,r( 1irir  1irr 

1ii qq  1irr 

)t,r(T)t,r(T 1ii  1irr 

layer1m,...,2,1i 

Applying central difference in equations (6), (7), (8)
and (9), we obtain the following discretized equations:
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)/(-1) and n is number of grid point for each

layer.

The Laplace transform of a function (t) and its
inverse are defined by
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Taking the Laplace transform for equations (10),
(11), (12) and (13), we obtain the following equations:
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Let the surface of the cylindrical inner surface be
stress free and subject to a time-dependent tempera-
ture. After taking Laplace transformation, the bound-
ary conditions in transformed domain become
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The interface conditions are as follows:

1i1ii

1i1ii

1i1irir

1i1ii

rr)s,r(T)s,r(T

rr)s,r(q)s,r(q

rr)s,r()s,r(

rr)s,r(u)s,r(u

















i=1,2,�,m-1  (17)

Substituting equations (16),(17) into equations

(14),(15), we obtain the following equation in matrix form

  













































































N

1N

1

1

NN

1N1N1N

222

11

T

T

T

T

Is

BA

CBA

CBA

CB

 (18)







































































N

1N

1

1

N

1N

1

1

NN

1N1N1N

222

11

G

G

G

G

u

u

u

u

ED

FED

FED

FE

s 

where

]
)r(

a
[]

Q

Q
1[B

2
1

11

11

13
1




 ]
r2

1

r

b

)r(

a
[]

Q

Q
1[C

11

1
2

1

11

11

13
1









ij

i
2

i

i
j r2

1
r

b

)r(

a
A





     2

i

i
j

)r(

a2
B




ij

i
2

i

i
j r2

1
r

b

)r(

a
C





      ]

r

w

Q

Q

r
1

[]
Q

Q
1[E

1

1

11

12

1

1

11

13
1 



0DF N1 
i

j r2
1

D




]
r2

1

r

b

r

b

)r(

a
[]

Q

Q
1[A

mk

m

k

m
2

m

m1

m1

m3
N









j

i
j r

w
E 

]
)r(

a2
[]

Q

Q
1[B

2
m

m1

m1

m3
N






i
j r2

1
F




]
r
1

Q

Q

r

w
[]

Q

Q
1[E

km1

m2

k

m1

m1

m3
N 


0G j 

]T)
)r(

a

r2
1

r

b
[(]

Q

Q
1[G 12

1

1

11

11

11

13
1









]T)
r2

1
r

b

)r(

a
[(]

Q

Q
1[G 1N

mk

m
2

m

m1

m1

m3
N 









m denotes the last layer, k the last point and i denotes ith layer
for j=2,3,�,N-1

















































N

1N

1

1

NN

1N1N1N

22

11

T

T

T

T

lH

JlH

lH

Jl





Z.Y.Lee et al. 123MMAIJ, 3(3) October 2007

Full Paper

An Indian Journal
MacromoleculesMacromolecules































































































N

2

1

N

2

1

N

1N

2

1

NN

1N1N1N

212

21

U

V

V

V

0

V

V

u

u

u

u

LL

MLK

MLK

ML



 (19)

where

1

1

11

1

11

13
1 r

h
)

r
2

r

e
(

Q

Q
I 




i

i
1 r2

g
J




j

i
j r

h
I 

i

i
j r2

g
J




2
1

1
2

1
2
1

1

1111

12
1

r

f

)r(

2
)

r

e

rr
2

(
Q

Q
L 







i

i
j r2

g
H




2
j

1
)r(

2
M




ij

i
2

j
j r2

1
r
e

)r(

1
K







mi

m
N r2

g
H


 2

j

i
2

i
j

r

f

)r(

2
L 




1m

1m

m1m

m

1m1

m3
N r

h
)

r
2

r

e
(

Q

Q
I 




ij

i
2

j
j r2

1
r
e

)r(

1
M







2
m

N
)r(

2
K


          0Vj 

jij rkU       2
m

m
2

m
2
m

m

1mm1m1

m2
N

r

f

)r(

2
)

r

e

rr
2

(
Q

Q
L 









1
1

1
1 T

r2
g

V


 1N
m

1m
N T

r2

g
V 




Equations (18) and (19) can be rewritten in the fol-
lowing matrix forms

        jjj GuNsT]I[sM  (20)

       UVu]Q[T]R[ jj  (21)

where the matrices [M], [N], [R] and [Q] are the corresponding
matrix in equations (18) and (19).

Substituting equation (21) into (20), we have

        jj FTIsA  (22)

where

            

              ]U[]V[]Q[sNRQNF

MNRQNA

11111
j

1111









Since the(NN) matrix[A] is a nonsingular real ma-

trix, the matrix[A] possesses a set of N linearly indepen-
dent eigenvectors, hence the matrix [A] is diagonaliz-
able. There exists a nonsingular transition matrix [P]such
that[P]-1[A][P]=diag [A], that is, the matrices[A] and diag
[A] are similar, where the matrix diag [A] is defined as

 


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



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
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N

2

1

Adiag


(23)

where 
j
(j=1,2,�N) is the eigenvalue of matrix [A].

Substituting equation (23) into (22), we obtain the
equation

                    j1
j

111 FPTPPIPsPAP 
 (24)

Equation (24) can be rewritten as

     *
j

*
j FT  Is - diag[A]  (25)

where

     j1
j TPT 


     j1
j FPF 


From equation (25), the following solutions can be
obtained immediately.

N,...,2,1j
s

F
T

j

j
j 






 (26)

By applying the inverse Laplace transform to equation
(26), we get the solution T

j
. After we have obtained T

j
,

then we can use following equations (27) and (28) to
obtain the solutions T

j
 and u

j

     jj TPT (27)

         j11
j TRQ]U[]V[]Q[u 

 (28)

NUMERICAL RESULTS AND DISCUSSIONS

In this study, we present some numerical results of
the temperature distribution in a rotating multilayered com-
posite hollow cylinder, and displacement and thermal
stresses under temperature and angular velocity changes.

To illustrate the foregoing analysis, we performed
numerical calculations for a rotating cylinder under an
axisymmetric heating at the inner surface. For an infi-
nitely long rotating multilayered cylinder, the geometry
and material quantities of the cylinder are shown in
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TABLE 1. The inner and outer radius of the cylinder
are assumed to be 1.0 and 4.5 respectively. The case 1
boundary conditions at inner and outer surfaces are
assumed to be 1 and adiabatic respectively. The case 2
boundary conditions at inner and outer surfaces are

assumed to be 1 and convection respectively. Each layer
is assumed to have a different thickness (in the case of
three layers, h

1
=1, h

2
=1, and h

3
=1.5). Figures 2-

5 show some numerical results of three layered cylin-
ders for angular velocity =10 at time step t=0.1, 5
and 10. Figures 6-11 show some numerical results of
three layered cylinders for different angular velocity at
time step t=0.1, 1 and 10.

Figure 2 shows the temperature distributions along
radial direction of angular velocity w=10 at t=0.1, 5
and 10 for adiabatic and convection boundary condi-
tions. Figure 3 shows the variation of displacement along
the radial direction. The results show that when the time
step increases, the displacement distribution changes.

TABLE 1 : The geometry and material constants (R
out

/R
1
=4.5,

h=200(watt/m2.k), 
0
=T298K)

 
layer 1 

titanium 
layer 2 
Al2O3 

E=E(N/m2) 108E9 390E9 
k=k (watt/m.k) 20 6 
= 0.3 0.23 
=(1/K) 11E-6 8E-6 
(kg/m3) 4 3.99 

C( kJ/kg-K) 0.4 1.25 

Figure 2 : Temperature distribution along radial direc-
tion for angular velocity w=10

Figure 3 : Radial displacement distribution along radial
direction for angular velocity w=10

Figure 4 : Radial stress distribution along radial direc-
tion for angular velocity w=10

Figure 5 : Circumferential stress along radial direction
for angular velocity w=10
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Figure 6 : Radial displacement distribution along radial
direction and outer boundary being adiabatic

Figure 4 shows the thermal radial stress distribution 
along the radial direction for different time step and
boundary conditions. From this figure, we can see where
the maximum radial stress may occur. However the cir-
cumferential stress has a significant jump at all inter-

(a)

(b)

(a)

faces as shown in figure 5. Figures 6 and 7 show the
variation of displacement along the radial direction. The
results show that when the angular velocity increases,
the displacement distribution changes. Figures 8 and 9
show the thermal radial stress distribution  along the

(b)

Figure 7 : Radial displacement distribution along radial
direction and outer boundary being convection

(b)(a)

Figure 8 : Radial stress distribution along radial direction and outer boundary being adiabatic
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radial direction for different angular velocity and bound-
ary conditions. From this figure, we can see where the
maximum radial stress may occur. However the cir-
cumferential stress has a significant jump at all inter-

faces as shown in figures 10 and 11. The discontinuity
of thermal stress was due to the differences in material
properties such as the coefficient of linear thermal ex-
pansion and Young�s modulus. The thermal stress var-

Figure 9 : Radial stress distribution along radial direc-
tion and outer boundary being convection

(a)

(b)

Figure 10 : Circumferential stress along radial direction
and outer boundary being adiabatic
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Figure 11 : Circumferential stress along radial direction and outer boundary being convection
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ies characteristically in each layer, especially for the
occurrence of discontinuities at all interfaces as shown
in the figures 10 and 11.

CONCLUSIONS

In this paper, we discussed the thermoelastic tran-
sient response of rotating multilayered hollow cylinder
whose outer surfaces are subjected to known adiabatic
and convection. The one-dimensional quasi-static
axisymmetric coupled thermoelastic problem of an infi-
nitely long rotating hollow cylinder composed of
multilayers of different ceramic-metal materials was dis-
cussed.

In the case of rotating multilayered hollow cylinder,
the coupled term and angular velocity in generalized
thermoelasticity formulation was discussed. From these
figures, it should be concluded that the angular velocity
effect behaves as a clear lag in both the displacement
and the stress distributions with time. This means that
the angular velocity increases displacement rise, and
the thermal stresses are changed. It was found that the
circumferential stress along radial direction is much larger
than radial stress. The numerical results were obtained
which can be applied to mechanical parts in precision
measurement or design useful structural applications.

One advantage of hybrid numerical method is that
the demands on computer memory are less than those
required when applying the iteration method. The hy-
brid numerical method is of high efficiency and accu-
racy, and capable of eliminating numerical diffusion and
oscillation effectively. This paper has been used to solve
the simple problems selected from applications in ro-
tating multilayered hollow cylinder. Similar behavior was
found for a more difficult example. The proposed
method may be easily extended to solve a wide range
of physical engineering problems.

NOTATION

 density
C

v
specific heat

k thermal conductivity
 linear thermal expansion coefficient
E Young�s modulus
 Poisson�s ratio


0
reference temperature

,T dimensional and non-dimensional temperature
U, dimensional and non-dimensional radial component

of displacement
*,r dimensional and non-dimensional radial coordinate
,t dimensional and non-dimensional time
* dimensional radial stress
 non-dimensional radial stress
* dimensional circumferential stress
 non-dimensional circumferential stress
q heat flux in the radial direction
w angular velocity

REFERENCES

[1] J.F.Durodola, O.Attia; Composites Science and
Technology, 60, 987 (2000).

[2] D.Lee, A.M.Waas, B.H.Karnopp; Computer and
structures, 66, 313 (1998).

[3] T.Kant, C.P.Arora, J.H.Varaiya; Composite struc-
tures, 22, 109 (1992).

[4] C.K.Chen, H.T.Chen; Numerical Heat Transfer,
14, 343 (1998).

[5] C.K.Chen, H.T.Chen, T.M.Chen; Comp.Methods
Appl.Mech.Eng., 63, 83 (1987).

[6] C.K.Chen, Y.C.Yang; J.Eng.Sci., 24, 569 (1986).


