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ABSTRACT

This paper deals with the quasi-static coupled thermoelastic problems of
aninfinitely long rotating multilayered hollow cylinder. Laplacetransform
and finite difference methods are used to analyze problems. Using the
L aplace transform with respect to time, the general solutions of the govern-
ing equations are obtained in transform domain. The solution is obtained
by using the matrix similarity transformation and inverse Laplace trans-
form. Also presented are the numerically transient distributions of stress
and temperatureinthereal domain for the case of aninfinitely long rotating
hollow cylinder composed of three different materials. Moreover, the com-
putational procedures established in this article can solve the generalized
thermoelasticity problem for rotating multilayered hollow cylinder with
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INTRODUCTION

Durodolaand Attid" are apredictive assessment
of the stresses in and deformation of arotating disc
made of functionally graded non-homogeneous
orthotropic materias. Two methodsof analysis, namely,
thefinite-element method and direct numerica integra-
tion of governing differentia equationswereused. Lee
et a.[@ andyzethefreevibration and transient dynamic
responseof arotating multilayer annular plate. Layerwise
Zig-zag theory isapplied to therotating multilayer disk
problem. Kant et d.¥! analyzed thetransient response

of composite and sandwich plates based on aequiva
lent single-layer higher-order theory.

Chen et d.*9 presented anew numerica technique
hybrid numerica method for the problem of atransent
linear heat conduction system. They appliedtheLaplace
transform to removethetime-dependencefromthegov-
erning equation and boundary conditions, and solved the
transformed equationswith thefinitedement andfinite
differencemethod. Findly thetransformed temperature
wasinverted by numericd inverson of thelgplacetrans-
form. It proved that themethod could accurately deter-
minethegtablesolutionsa agpecifictime But thismethod
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hasbeen confined to onenodd solution at each specific
time. When applied to aproblem with many nodes, it
takesan excessveamount of computer time. Yang and
Chenl® discussed thetrans ent response of one-dimen-
sond quasi-static coupled thermoel asticity problemsof
aninfinitely long annular cylinder composed of two dif-
ferent materids. They gpplied thelgplacetransformwith
respect to time and used thefourier seriesand matrix
operationsto obtain thesolution.

In this paper, we consider the one-dimensional
quasi-stati c coupled thermoel astic problem of rotating
multilayered hollow cylinder. Laplacetransformsand
finite difference methods are used, which are quite ef-
fectiveand powerful for obtaining solutionsto awide
rangeof transient thermd stress.

FORMULATION
Thelayered cylindricd shell to beandyzedisshown

infigurel. Thetransent heat conduction equationfor
theithlayer indimensiona form canbewrittenas
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Eq
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Theequation of equilibriumfor acylinder dongthe
radial direction canbewritten as

Figurel: Physical mode and system or dinatesfor aMul-
tilayered hollow cylinder
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Thestress-displacement relationsare

« _(Ery oY Eever, U _
cri—(h).ar* (Eor, =B, (0-0)) )
= (B o) o v +(E0) 2 ~By (0-00) (4)

Let the boundary surfaceﬁ of composite cylinder
betractionfree and subjected to temperatures. Theini-
tial and boundary conditionsare

Case1l

U=U=0=0=0 at =0
o, (r',7)=0 ar =R,
0,-0,=f, ar =R,
o, (r',7)=0 ar =Ry
grﬁ= atr’ =Ry,
Case 2

U=U=0=0=0 att =0
o/ (1" %) =0 ar =R,
0,-0,=f, ar =R,
o, (r',t)=0 ar’ =Ry,

~k—=h(©-0,) ar =Ry

At theinterface between two adjacent layers, the
following matching conditionsmust be satisfied
Ui(r*ﬂ')= Ui+1(r*-T) =
Cti(r*"‘)=°ri+1(r*a‘5) r'=
di = Qi1 = i
6i (I’ T) H—l(r T)
i=12,..m-1

Thenon-dimensional variablesare defined asfol-

r =
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lows
_ K, Kk,

T=(0-0,)/0,=0/0, 2 =(pcv)i/(pcv)1

= kiﬁ K = Bo _ B: )
=) [ =By, [y
t=(5),0 JRE :

pC,"* ! r=r /Rl
u=U( B )1 /R _
pC, & =[ver Eo/E; +(1-vip)],

= (EaJE.), =0 [Baboye

2Qi =(Eaver)i/[ﬂf1(£/)i®0] 3Qi =[3ri/|3r1

E
1R =( :

voy Buckoye)
2R; =(?)i/[ﬂel(‘;pcrv)i@o]

o, =6, /(B1©)
o, =6, /(B1©)

3R; :Bei/Bel
3R; :Bei/Bel

h = (BB (g +vi00t,)

Gy =0y /(Bm@o) pPC B
= (0, + v 0)]; @

Ap2C w2
Er BI’
Subdtituting thenondimensiona quantitiesgivenin
equation (5) into the governing equations(1)-(4), the
governing equations and stress-displacement rel ations
havethefollowing nondimensiond form:

ki=[ Ii ©)

0 oOu, w; ,ou

9 B0, O w_0 o4 W ou
{la 6r2+r o ot ! ar(at)+ r (6t) ©
d°u e éu u oT T
SGou YU _,99 nl_ g

o2 raor 2 9 o 'r if )
ou u

c,=1Q; a—r"ZQi TsQiT (8
ou u

Gei=1Ria—r"2Rir*3RiT ©

Thenondimensiona boundary and interface condi-
tionscan bewritten as;

—= Py Paper
Boundary conditions

Case 1

o (r,t)=0 ar=r;
T,=f,/0, ar=r,
c (r,t)=0 atr=ry,
Z_-II,-=0 ar=rq
Case 2

o, (r,t)=0, ar=r,

T,=f,/0, ar=r,

G, (r,t)=0 ar =rg,
KT atr=rg,

2. Interfaceconditions

Ui (r,t) = Ui, (r,t) r=r

i+1
o (M, t)=o.(r,t) r=riq
Qi =Qj41 F=ria
Ti(r,t) =Ty (r,t) r="riy
i=12,..m-=1layer

Applying centra differenceinequations(6), (7), (8)
and (9), weobtainthefollowing discretized equations:

(Ari) rj 2Ari at
ou ou (10)
_w au; .\ (E)Hl_(g)j—l
ry ot 2Ar;
Ujg—2U;+Uj 1Uj—Uj, 1
2 +e| _fi _ZuJ
(Ar;) ry 24 r;
T .. =T T (11)
=giLj_l_hi _]_kir]_
2Ar; I
U ..—Uu.: u.
i+1” Vi1 j
(o} -=1Q' +2Q' SQ'T' 12
ri i 2Afi [ rj 1] ( )
U,,—U u;
j+1 -1 j
ci=1R; +,R; 3R T; 13
i i 2Ar, i r il (13)
where Ar=(r,,,-r)/(n-1) and nis number of grid point for each
layer.

TheLaplacetransform of afunction ®(t) and its
inversearedefined by
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. 0 (14),(15), weobtan thefollowing equationin matrix form
®(s) = L[®(1)] = [ e ¥ @(t)dt

i B, C T T T, ]
1 -Irm _ 1 (c+io = 1> _1
o)=L [‘I’(S)]‘z_,ﬂfc_iwe ®(s)ds A, B, C, T,
Taking the Laplacetransform for equations (10), R -] T (18)
(11), (12) and (13), weobtain thefollowing equations: An-1 Bn1 Cnas Th-1
L Ay By | | Tn |
g =TT 1T =T
' (Ar,)? ', 24 E, F, TwlTlac ]
(Tj,in +STj):&(uj,in +5Uj) D> I_Ez '.:2 . U'1 Gjl
' (14) S o . RN
Dno1 Encs Fner fluncs Gn-
ZA [(u]+l|n+su]+1) (uj 1|n+su] 1)] I DN EN 1 GN | ] EN |
- _ where
UJ+1_2uj+uj_l+e 1 Uj,—Uj, ¢ 1 g o
)? o 2A- T2 B, = —[14 3171 c 3Q1 bl 1
A _r' A = g} Camie S
T, -T_ T (15)
=g, J;Ar-ll_h.r—J Kir; __a b 1 B__ 2
| ] J (Arl)z rJ 2Ar| ] (Arl)z
Let thesurface of thecylindrical inner surface be a b1
stressfreeand subject to atime-dependent tempera-  C; =— 2+r_iﬂ E, =[1+ 3Q1] [— 12Q LY
ture. After taking Laplace transformation, the bound- (Ar)" 1y 24T QU 1@
ary conditionsintransformed domain become oo 1
Case 1 F =Dy = 17 24r,
o, (r,s)=0 ar=r
_r( _) ' Ay =[1+ 3Qm] [- m_y Pn Pm 1 e Wi
T, =f1(5)/0, ar=r N Qn (A m) e r 2Ar," ) r;
o, (r,9=0, ar=rg B, =—[1+ 3Qm]—1[ ] F= 1
aT _ a 1Qm” (Ar m) b2y
a_r_ F=Tou
Case 2 Ey =L+ 23y O 1y
1Qm e 1Qm Tk !
o, (r,9)=0, ar=r
T i G, =(1+ 22 1 T
Ti=11(9)/8 ar=n Q17 N 2Ar1 (A 1)
Gr (r,S) = 0, aI. r= rout 6 _ _[1+ 3Qm ]_1[( am b_m 1 )T ]
— N = > AT N+1
kL hT-T.), ar=r (16) 1Qm (Arp)” T 28
or e out m denotes the last layer, k the last point and i denotesith layer
Theinterface conditionsareasfollows: forj=23,...N-1
Ui (r,8) = U (r,s) r=ri, -|1 Ji T Ty l
Gi(r,8) =Gyiya(r, ) r =riyg PP T
_ _ i=1,2,...,m-1 (17) L : :
qi(r,s)=0ia(r,s) r=ri, I +
Ti(r9)=Tia(r,s) r=riy Hnot Inea Inea || T
Hy Iy 1 LIN i

Substituting equations (16),(17) into equations -
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L, M, u, vl vl
K, Ly M, uz Va2 Va2
S =l ] )
Knor Lnos My UN-1 _0 E
Ln  Ln un VN Un
where
Q 2 h :
l_g(__ )+ +-L Jl=_i
1Q1 1y Ay g 2Ar,
. 9
o 1T 2an
_2Q,, 2 €, 2 f g;
Ly= T A 22 Hi=5—
1Q1 rAry xf (Ary) ry 2Ar,
2 1 g 1
L - _=
(Ar;)? ") 2
Om -2 . f
N 2Ar,, J (Ar;)? rj2
3Qm €m 2 hml 1 e 1
In= (— )+ i< 2T
1Qmi m1 Ay Fm1 (Arj) T 2Ar;
2 _
") Yi=0
U =—kr Ln="75" 2O (—— 2 _fny 2 In
" 1Qm1 TmArm; "n%. (A"m)2 rr?]
V,=— T, Vy = LT
1 241, 1 VN 2Ar N+1

Equations (18) and (19) can berewritteninthefol-
lowingmatrix forms

1= J+ I = {6, )
[RIfT; +1Q1g, {={V}+{U} (21)

wherethe matrices[M], [N], [R] and [Q] arethe corresponding
matrix in equations (18) and (19).
Substituting equation (21) into (20), we have

{[7)-01 } {7 }= )

where

Mk{mleﬂﬂﬂ}ﬂm*W]

Fl={ N2+ PRI} INFE - gQrH v+ 01 } |
Sincethe(NxN) matrix[A] isanonsingular red ma:

(20)

(22)

=  Pyl] Peper

trix, thematrix[A] possessesaset of N linearly indepen-
dent el genvectors, hencethematrix [A] isdiagonaliz-
able Thereexigsanonsngular trangtion matrix [P]such
thet[ P {A][P]=diag[A], that is thematriced A] and diag
[A] aresmilar, wherethematrix diag [A] isdefined as

Ay

diaglal-| 7

(23)
8 N
where kj(j =1,2,...N) istheeigenvalue of matrix [A].
Subgtituting equation (23) into (22), weobtainthe
equation

VPP PL-dPT 00 [P) f PET I-[PI ) 24
Equation (24) can berewrittenas
{diagia] -] {7 = | (25)

where

EER
)P}

From equation (25), thefollowing solutionscan be
obtained immediately.

T *

(26)

]
boAj-s
By applying theinverse Laplacetransformto equation
(26), weget the solution T. After we haveobtained T,
then we can usefollowing equations (27) and (28) to
obtainthesolutionsT, and u

{ri}= Pl
=ty 1+ O~ [ [R] {1}

i=12,...N

(27)
(28)

NUMERICAL RESULTSAND DISCUSSIONS

Inthisstudy, we present somenumerical resultsof
thetemperaturedigtributioninarotatingmultilayered com-
posite hollow cylinder, and displacement and thermal
sressesunder temperatureand angular vel ocity changes.

Toillustratetheforegoing anaysis, we performed
numerical calculationsfor arotating cylinder under an
axisymmetric heating at theinner surface. For aninfi-
nitely long rotating multilayered cylinder, the geometry
and material quantities of the cylinder are shownin
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TABLE 1: Thegeometry and material congtants(R_ /R,=4.5,

h=200(watt/m2.k), ® =T 298K )
layer 1 layer 2 B g::z ;
titanium Al,O3
E,=Eo(N/m?) 108E9 390E9
k,=ko (watt/m.k) 20 6
Vyo=Voy 0.3 0.23
o, =a(1/K) 11E-6 8E-6 o,
p(kg/m’) 4 3.99
Cy( kJ/kg-K) 0.4 1.25
Caze 1
————— GCsae 2
“ TR S ERE I A N R T
. , 12 s
Figure4: Radial stressdistribution along radial direc-
T tion for angular velocity w=10
2 D\ ﬁl‘
A
I

1 T T ] — T
1 15 2 25

Figure2: Temperaturedistribution along radial direc-
tion for angular velocity w=10

ik ]

:
Figure3: Radial displacement distribution along radial
direction for angular velocity w=10

TABLE 1. Theinner and outer radiusof the cylinder
areassumed to be 1.0 and 4.5 respectively. Thecase 1
boundary conditions at inner and outer surfaces are
assumed to be 1 and adiabatic respectively. Thecase 2
boundary conditions at inner and outer surfaces are

Macromolecules
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15 2 zE 3 R 4+ as

Figure5: Circumferential stressalongradial direction
for angular velocity w=10

assumed to be 1 and convection respectively. Each layer
isassumed to have adifferent thickness (inthe case of
threelayers, Ah =1, Ah,=1, and Ah,=1.5). Figures 2-
5 show some numerical results of threelayered cylin-
dersfor angular velocity =10 at time step t=0.1, 5
and 10. Figures 6-11 show somenumerical results of
threelayered cylindersfor different angular velocity at
timestept=0.1, 1 and 10.

Figure 2 showsthetemperaturedistributionsalong
radial direction of angular velocity w=10at t=0.1, 5
and 10 for adiabatic and convection boundary condi-
tions. Figure 3 showsthevariation of displacement dong
theradid direction. Theresultsshow that whenthetime
step increases, the displacement distribution changes.
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= Al — —w=0
7 w=I0 1 w=10
p' p’ 0.002 —
2002 T T T o | ] E :
f “ ® “
(b) 0.00e 0.006
1)
2.002 | | |
0002 T T T T ) A
i E 2 2.5r a 38 4 45 r
Figure6: Radial displacement distribution along radial Figure7: Radial displacement distribution along radial
direction and outer boundary being adiabatic direction and outer boundary being convection
@

12 2 1 E] i s 45

= = v = 1z -
Figure8: Radial ressdistribution alongradial direction and outer boundary being adiabatic

Figure4 showsthethermd radia stressdistributionst  facesasshown infigure5. Figures 6 and 7 show the
along theradial directionfor different timestepand variationof displacement dongtheradia direction. The
boundary conditions. Fromthisfigure, wecanseewhere  results show that when theangular velocity increases,
themaximumradid stressmay occur. However thecir-  thedigplacement distribution changes. Figures8and 9
cumferential stresshasasignificant jumpat al inter-  show thetherma radia stressdistribution ot dongthe
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(a') 005
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c, 01

Figure9: Radial stressdistribution along radial direc-
tion and outer boundary being convection
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Figure10: Circumferential stressalongradial direction
and outer boundary being adiabatic

(b)

=10

G, 02

w
in
-

Figurel1l: Circumferential stressalongradial direction and outer boundary being convection

radid directionfor different angular vel ocity and bound-
ary conditions. Fromthisfigure, we can seewherethe
maximum radial stress may occur. However thecir-
cumferential stresshasasignificant jump at al inter-

Macromolecules ——

facesasshowninfigures10 and 11. Thediscontinuity
of thermal stresswasdueto thedifferencesin materid
properties such asthe coefficient of linear thermal ex-
pansion and Young’s modulus. Thetherma stressvar-
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iescharacteristically in each layer, especially for the
occurrenceof discontinuitiesat al interfacesasshown
inthefigures10 and 11.

CONCLUSIONS

Inthis paper, we discussed thethermoel astic tran-
Sent reponse of rotating multilayered hollow cylinder
whose outer surfaces are subjected to known adiabatic
and convection. The one-dimensional quasi-static
axisymmetric coupled thermoel astic problem of aninfi-
nitely long rotating hollow cylinder composed of
multilayersof different ceramic-metd materidswasdis-
cussed.

Inthecaseof rotating multilayered hollow cylinder,
the coupled term and angular velocity in generaized
thermod asticity formulation wasdiscussed. Fromthese
figures, it should be concluded that theangular vel ocity
effect behaves asaclear lagin both the displacement
and the stressdigtributionswith time. Thismeansthat
theangular vel ocity increases displacement rise, and
thethermal stressesare changed. It wasfound that the
drcumferential Sressalongradid directionismuchlarger
thanradial stress. Thenumerica resultswere obtained
which can be applied to mechanical partsin precision
measurement or design useful structurd applications.

Oneadvantage of hybrid numerical method isthat
the demands on computer memory arelessthan those
required when applying theiteration method. Thehy-
brid numerical method isof high efficiency and accu-
racy, and capableof diminating numerica diffusonand
oscillation effectively. Thispaper hasbeenusedto solve
the simple problems sel ected from applicationsin ro-
tating multilayered hollow cylinder. Similar behavior was
found for a more difficult example. The proposed
method may be easily extended to solveawiderange
of physica engineering problems.

NOTATION

density

specific heat

thermal conductivity

linear thermal expansion coefficient
Young’s modulus

Poisson’s ratio

reference temperature

<O_O

@< MmMme ~

o,T
U,u

*

VA
T,t

*

Gy
oY
c*0

(1]
[2]
(3]
(4]
51
6]

= Pyl Paper

dimensional and non-dimensional temperature
dimensional and non-dimensional radial component
of displacement

dimensional and non-dimensional radial coordinate
dimensional and non-dimensional time

dimensional radial stress

non-dimensional radial stress

dimensional circumferential stress

non-dimensional circumferential stress

heat flux intheradial direction

angular velocity
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