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ABSTRACT 

In this paper we have studied the filamentation of laser beams in plasmas where both collisional and thermal-
conduction losses are present simultaneously. A uniform intensity laser beam propagating through collisional plasma is 
unstable to transverse perturbations, and breaks up into filaments. An optimum value of q⊥ of the perturbation is required for 
a maximum growth rate. A uniform plane wave does not cause redistribution of the carriers. However, as a result of 
perturbation in the intensity distribution along the wave, electrons do become redistributed. It is noted that the spatial growth 
rate is a monotonically increasing and saturating function of the incident intensity of the beam. 
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INTRODUCTION  

It has been shown in recent years that a high amplitude electromagnetic beam propagating in plasma 
is unstable to small-amplitude perturbations1-3. This instability causes the breaking of the beam into 
filaments and is known as filamentation instability1-15. On the time scale t > τh (which is more relevant to 
laser – plasma interactions), where τh is the heating time of electrons, the nonlinearity arises through 
nonuniform heating and redistribution of electrons4. The understanding of filamentation of laser light may be 
important to the success of laser fusion. In the long scale length plasmas envisioned for reactor targets, local 
intensity hot spots caused by self-focusing or laser light filamentation can drive the plasma above parametric 
instability thresholds. These instabilities tend to be saturated by the creation of super thermal electrons5. The 
hot electrons can penetrate deeply into the pellet, heating the interior, making high compressions difficult. 
Directly driven targets require very uniform driving pressures. Filamentation could spoil this uniformity, 
making large compressions difficult. The laser light absorption, penetration, and conversion to X rays could 
also be affected by self-focusing and filamentation. The earlier investigations of filamentation of laser beams 
on a long time scale are restricted to large-scale perturbations where the thermal conduction effects may be 
neglected6,7. But in the cases of real interest one is much more concerned about the growth of small-scale 
perturbations where thermal conduction could play a dominant role in determining the energy dissipation of 
electrons. The relative size of perturbations depends on the ratio mi/m, since beam radius ro is generally of 
the same order as electron mean free path λm. In this paper, we have studied the filamentation of laser beams 
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in plasmas where both collisional and thermal-conduction losses are present simultaneously. The variation 
of maximum growth rate with the intensity of the main beam has been investigated.  

EXPERIMENTAL 

Growth rate  

Let us consider the propagation of a plane uniform laser beam in collisional plasma along the z-axis,  
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and ω, ωpo, c, -e, m and no are the frequency of the main beam, the unperturbed plasma frequency of the 
medium, the velocity of the medium, the velocity of light, the electron charge, the electron mass and the 
unperturbed concentration of the plasma respectively. In the presence of the field (1), the electrons acquire 
drift velocity in accordance with the momentum balance equation. 
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where ν is the electron collision frequency. Expressing the variation of vr as exp [-i(ωt-kz)], we 
obtain, in the limit 22
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Besides this, the electrons absorb energy absorb energy from the wave at the rate of -e E
r

. vr . Whose 
time average is - 
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In the steady state the rate of energy gain must balance with the rate of energy loss through collisions 
and thermal conduction. Hence  
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where  
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δ = 2 m/mi is the fraction of excess energy lost per electron-ion energy exchange collision, Te is the 

nonlinear field – dependent electron temperature and υth = ( )2
1

/2 mTo  is the electron thermal speed. For 
22 / thoei vrν < (δν)-1 thermal conduction is important, and we solve the energy-balance equation in the 

perturbation approximation. For a beam of finite extent we express - 
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Te = To + ΔTe 

where ΔTe << To . Then Eq. (7) can be recast as - 
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Now we perturb the beam by a perturbation - 

 A1 (x,z) exp [–i(ωt–kz)] ...(10) 

where A1 (x,z) is not necessarily a slowing varying function of space variables. The total electric 
vector of the laser may now be written as - 
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where Ao is the amplitude in the absence of fluctuations (polarized in the y direction) and A1 is the 
amplitude of the fluctuations, which is a spatially slowly varying function. The combined effect of these two 
fields is to heat the electrons and exert a pressure-gradient force, causing redistribution of plasma via 
ambipolar diffusion. The nonlinear field-dependent electron temperature Te in the steady state may be 
obtained by solving Eq. (9) only the x dependence of A1 is known. Taking A1 ∝ eiq.x with q||<<q⊥, where q = 
q⊥+q|| is the scale length of the perturbation (the subscripts || and ⊥ referring to components parallel and 
perpendicular to the z direction), Te may be written as - 
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As a result of non-uniformity in heating, the plasma is redistributed so that - 
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Using Eq. (12), (13) and (15) in (14), the modified electron density may be written as - 
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The dielectric constant of the plasma may be written as -  
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Substituting for E from Eq. (11) into the wave equation, using ∇. (∈E) = 0 and linearizing in A1, we 
obtain the following equation for A1:  
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Expressing A1 = A 1r + iA1i and separating real and imaginary parts, we have  
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Taking A1r and A1i to be proportional to exp [i(q⊥x+q||z)], Eq. (22) straight away yields the 
dispersion relation 
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Instability occurs when,  
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The growth rate of the perturbation is - 
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The condition for maximum growth rate, ∂q||/∂q⊥=0, gives the optimum value of q⊥ as - 
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and the maximum growth rate becomes - 
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The spatial separation of striations of order (qopt)-1, from (26), is given by - 
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where λ = 2π/k is the wavelength of the laser beam. The growth length Rg ≡ 1
max
−Γ can be written as - 
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The perturbation will not continue to grow indefinitely, as implied by linearized theory, but will 
saturate with nonlinearity for higher values of 2

0Aα . The following parameters have been chosen for 
calculating the growth rates for uniform laser beams: ω = 2 × 1015 rad s-1 (Nd: YAG laser, λ = 1.06 μm), 

22 /ωω po = 0.5, T0 = 100 eV, νei = 1013 s-1, νth = 6 × 108 cm s-1 and α 2
0A = 1. For these parameters the 

optimum size (of order 1−
optq ) of a perturbation turns out to be about 20 μm. The result is displayed in Fig. 1, 

that shows the variation of the maximum growth rate of filamentation instability inside a collisional plasma 
with α 222

0 /ωω poforA = 5. It is interesting to note from the figure that the growth rate is a monotonically 

increasing and saturating function of the incident intensity of the beam. 
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Fig. 1: Dependence of Γmax on α 2
0A for 22

0/ωω p = 0.5 

CONCLUSION 

A plane uniform laser beam of high intensity is seen to be unstable for small-scale fluctuations, i.e., 
it must break up into filaments in course of its propagation. The growth rate increases with decreasing scale 
length of perturbation and is seen to be a saturating function of power density of the beam. The growth rate 
increases with α 2

0A , saturates owing to the fact that nonlinearity increases in the plasma with increasing 

α 2
0A , and is a saturating function for large power density of the incident beam. 
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