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ABSTRACT 

An effective pair potential for the modified Lennard-Jones (LJ) (12-6) model with embedded 

point dipole and linear quadrupole is expressed in the LJ (12-6) form. This theory is employed to estimate 

the thermal conductivity λ of the modified LJ (12-6) fluid with µ* = µ/(εσ3
) = 2 and Q* = Q/(εσ5

) = 2 for 

different range of damping factor K. The thermal conductivity decreases due to the polar moments. This 

deviation decreases with the increase of damping factor K. 

Key words: Modified Lennard – Jones fluid, Thermal conductivity, Damping factor 

INTRODUCTION 

The study of thermal conductivity of fluid is of great interest because of their wide 

spread application in many technological process. Aim of the present work is to develop a 

theory for estimating the thermal conductivity of polar fluid consisting of modified Lennard-

Jones (LJ) (12-6) spheres with embedded point dipole and linear quadrupoles. This model is 

of great theoretical interest in studying the effect of the dispersive forces on the phase 

equilibria of polar fluid 1. In one of the theoretical method to deal with the problem of real or 

model fluids, the reference system is often represented by the LJ(12-6) potential and the 

effective pair potential is expressed in the LJ(12-6) potential form 2. 

The transport properties (TPs) of the effective LJ(12-6) fluid may be estimated 

through the evolution of the TP's of the hard sphere (HS) fluid with the properly chosen hard 

sphere diameter2. The effective diameter hard sphere theory (EDHST) is an important 
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method for studying the TPs of dense real fluids in terms of the HS fluid. Karki and Sinha 3 

have employed the EDHST for estimating the TP's of the molecular fluid. 

In the present work, we extend this approach to study the thermal conductivity of the 

effective LJ (12-6) fluid, when the reference potential is the modified LJ (12-6) potential. 

Basic theory  

We consider a molecular fluid (of linear axially symmetric molecules), whose 

molecules interact via pair potential of the form 

                                       u(rω1ω2) = uo (r) + ua (rω1ω2)  …(1) 

where r = |r1- r2| and ωi represents the orientation coordinates (θi φi) of molecule i. 

Here u0(r) is the spherically symmetric central potential and ua is the angle dependent 

electrostatic potential. For the central potential, we take the modified LJ(12-6) potential 1. 

                                      u0 (r) = 4∈ [(σ/r)12 – K (σ/r)6 ]  …(2) 

where ∈ and σ are, respectively, the well depth and molecular diameter and K the 

modified  parameter (varying between 0 and 1). For angle-dependent part, we take 

                                              ua = uµµ + uµQ + uQQ  …(3) 

where uµµ , uµQ and uQQ are contributions due to dipole-dipole, dipole-quadrupole 

and quadrupole-quadrupoles respectively. These are given by 2 - 

uµµ = (µ2/r3) [sinθ1 sinθ2 cosφ – 2cosθ1 cosθ2]  …(4a) 

uµQ = (3µQ/2r4) [cosθ1 (3cos2θ2–1) –2sinθ1 sinθ2 cosθ2 cosφ]  …(4b) 

uQQ = (3Q2/4r5) [1–5(cos2θ1 + cos2θ2) –15cos2θ1 cos2θ2                                                                         

+ 2 (sinθ1 sinθ2 cosφ – 4 cosθ1 cosθ2)
2]  …(4c) 

where θ1, θ2 and φ = φ1 – φ2 are the Euler angles, µ and Q are, respectively, the 

dipole moment and quadrupole moment of the molecule. 

The partition function QN in this case is defined as 5 - 

QN = (N! Λ3N q-N ) –1 ∫ … ∫  exp [– β ∑
i< j 

u(xi, xj)
N

i=1
∏ dxi  …(5) 



2486 M. K. Sinha et al.: Estimation of Thermal…. 

where Λ is the thermal wavelength and q the rotational partition function of a single 

molecule and the vector xi = (riωi) represents both the position of the centre of mass and 

orientation of molecule i. Here dxi = (4π)-1dridωi and β = (kT)-1 (k being the Boltzmann 

constant and T absolute temperature). Using Eq. (1) in Eq. (5), we  write the partition 

function in the form 

QN =  ( N! Λ3N q-N ) –1 ∫ … ∫  exp [– β  ∑
i< j

Ψ(rij) ] 
N

i=1
∏

 

dri  …(6) 

where Ψ(rij) is the orientation-independent 'preaveraged' potential. This 

effective pair potential can be expressed in the LJ(12-6) potential form - 

Ψ(r) =  4∈T [(σT/r)12 – (σT/r)6 ] …(7) 

Where 

σ̂ (K, T*) = σT (K, T*) / σ = F-1/6 …(8a) 

∈̂ (K, T*) = ∈T (K, T*) / ∈ =  [1 + (b/T*
2
) + (c/T*

3
)] F2  …(8b) 

and  F = [K + (a/T*) ]/ [1 + (b/T*
2
) + (c/T*

3
)] …(8c) 

Thus, the polar fluid in the presence of the 'modified' LJ (12-6) potential can be 

expressed as the LJ(12-6) potential. In the following sections, we apply this theory to 

estimate the thermal conductivity of the modified polar LJ (12-6) fluid. 

Thermal conductivity of polar fluid 

We assume that the structure of a dense fluid is very similar to that of a hard sphere 

(HS) fluid and attractive forces play a minor role in the dense fluid behaviour. The polar 

fluid can be expressed in terms of HS fluid with properly chosen effective hard sphere 

diameter de. The HS fluid can be handled with the revised Enskog theory (RET) of van 

Beijeren and Ernst5 to predict the thermal conductivity λ, which is expressed as - 

λ = [gHS (de)] –1[1+(6/5) (4ηgHS(de)) + 0.7575 (4ηgHS (de))2] λ 0  …(9) 

where 

                                      λ0 = (75k/64 π de2) (πk T/m)1/2  …(10) 



Int. J. Chem. Sci.: 7(4), 2009 2487 

η = (πρde
3
/6) is the packing fraction and g

HS
(de) is the equilibrium radial distribution 

function (RDF) of the HS fluid at the contact. Here, ρ is the number density and m is the 

mass of a particle. 

In order to obtain the effective hard sphere diameter de, we divide the effective 

LJ(12-6) potential Ψ(r) according to the Weeks-Chandler-Andersen (WCA) scheme6 and 

following the method of Verlet and Weis7. Thus, the expression for de is given as - 

de = dB [ 1 + Aδ ]  …(11) 

where 

dB = σT[1.068 + 0.383 TT*  ] / [1 + 0.4293 TT*  ]  …(12) 

δ = [210.31 + 404.6 / TT*  ]-1 …(13) 

A = [1 – 4.25 ηω + 1.363 η ω
2  – 0.8757 η ω

3  ] / (1 – ηω)2  …(14) 

with    ηω = η – η2 / 16 

Knowing the packing fraction η, the RDF gHS(de) of the HS fluid is given by8 - 

gHS(de) =  (1 – η / 2) / (1 – η )3  …(15) 
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Fig. 1: Thermal conductivity λλλλ*
 
for the modified LJ (12-6) model with embedded point 

dipole and linear quadrupole as a function of K for ρρρρ*
 
= 0.6 at T*

 
= 3.0. Here –– 

represents µµµµ*
 
= 2.0, Q* = 0.0, - - - - µµµµ*

 
= 0.0, Q* = 2.0 and xxx denotes the LJ (12-6) model 
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CONCLUSION 

We calculate the shear viscosity ξ and thermal conductivity λ for the modified LJ 

(12-6) fluid with embedded point dipole (µ*
2 

=2) and linear quadrupole (Q*
2
 = 2) for 

different values of damping factor K. The values of ξ* = ξσ2 / (m∈)1/2 and λ* = λσ2/k 

(m∈)1/2 for the modified LJ (12-6) fluid with (i) µ*
 
= 2.00, Q*

 
= 0.0 and (ii) µ*

 
= 0.0, Q*

 
= 

2.0 are compared with the modified LJ(12-6) fluid in Figs. 1 for ρ*
 
= 0.6 at T*

 
= 3.0. 

Thermal conductivity decreases due to the polar moments. The deviation decreases with the 

increase of K. 

The effective pair potential for the modified LJ (12-6) fluid with the embedded point 

dipole and linear quadrupole is expressed in the LJ (12-6) potential form simply by replacing 

σ → σT (K,T*) and ∈ → ∈T (K, T*). 
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