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ABSTRACT 
 
Aiming at the shortest emergency rescue completion time and the maximum mean full-
load ratio of transportation, a newly multi-objective model of emergency supplies
scheduling for single demand point is proposed. Through the analysis of the diversity, the
finiteness, the maximum load and the maximum capacity of transportation, the suggested
model is more comprehensive and realistic. In order to solve this model, a constrained
multi-objective particle swarm optimization algorithm fused with multiple constraint
handling techniques (CMOPSO-MCHT) is presented, in which integral iteration, non-
negative solution space limitation and hyper-plane constraints are constructed to update
the velocity of each particle, a dynamic threshold constraint dominance rule is put forward
to update the individual best location of each particle and a method of objective function
modification is applied to update the global best location of the swarm. The results of
numerical experiment show that the set of Pareto optimal solutions obtained by
CMOPSO-MCHT has a much better convergence and spread. 
 

KEYWORDS 
 
Single demand point; Emergency supplies; Scheduling; Constrained multi-objective
optimization; Particle swarm optimization. 
 



BTAIJ, 10(9) 2014  Yong Lin et al.  3857 

 

INTRODUCTION 
 
 According to the reviews provided by refs.[1], many emergency supplies scheduling models for 
single demand point have been proposed, and also can be specifically divided into two classes in 
accordance with the type of emergency supplies. On the one hand, some previous studies only focused 
on one type of emergency supplies. Han et al.[2] studied a multi-objective optimization model to 
optimize the timing, economy and reliability objective by use of the fuzzy optimization theory, and then 
adopted ideal point method to solve the proposed model. Liu et al.[3] considered the transport-power as a 
new constraint condition, and established an emergency resource dispatching model with two alternative 
objective functions, one that minimizes starting time for rescue activity and another that minimizes the 
number of supply points. On the other hand, another stream of research devoted to multi-type of 
emergency supplies. Zhang et al.[4] addressed an emergency supplies scheduling model in which the 
objective is weighted by lost and cost, and then proposed an adaptively mutate genetic algorithm to 
generate solutions. 
 Although emergency supplies scheduling for single demand point is clearly receiving increased 
attention in the literature, the existing models exhibit two drawbacks. First, most of the existing models 
didn’t take into account the constraints of transport-power. Even if Liu et al.[3] considered the constraints 
of transport-power, they don’t pay attention to the diversity and the finiteness of transportation. Second, 
although many objective functions were considered in the existing models, existing research didn’t take 
the full-load ratio of transportation as an optimization objective. 
 To overcome above drawbacks, this paper takes the diversity, the finiteness, the maximum load 
and the maximum capacity of transportation into consideration, and then develops a newly constrained 
multi-objective nonlinear integer programming model of emergency supplies scheduling for single 
demand point. 
 Note that the model of this paper is an important part of constrained multi-objective optimization 
problem (CMOP). Even though many evolutionary algorithms and constraint handling techniques which 
can be applied to solve CMOP have been proposed in recent years[5], the existing algorithms are 
inapplicable for our model. Two reasons are the following. First, our model requires that solutions 
should be non-negative integer, however the available algorithms are put forward on the basis of 
condition that solutions is not only real number but also bounded[6]. Second, our model has equality 
constraints, but the available algorithms can’t deal with equality constraints very well[7]. Furthermore, 
there exists no benchmark function previously used in literatures involving equality constraints for 
constrained multi-objective optimization algorithms[8]. 
 The remainder of this paper is organized as follows. Section 2 gives a description of the 
emergency supplies scheduling problem for single demand point. Notations and mathematical 
formulation of this model are presented in Section 3. The CMOPSO-MCHT algorithm is discussed in 
Section 4. An illustrative example is provided in Section 5. Finally, conclusion and consideration for 
future work are presented in Section 6. 
 

PROBLEM DESCRIPTION 
 
 The problem of emergency supplies scheduling for single demand point can be described as 
follows. There are multiple supply points and only one demand point in the two-level supply-demand 
network. Many types of emergency supplies are stored and many types of transportation are possessed at 
each supply point. At a certain time, when some types of emergency supplies are applied for, crisis 
manager considers both the loading time and transportation time to determine the quantities of 
emergency supplies transported by each type of transportation at each supply point. Crisis manager 
hopes to fulfill the requirements of the demand point as far as possible, meanwhile, to minimize 
emergency rescue completion time and maximize mean full-load ratio of transportation. Several 
assumptions are given as follows. 1) All reserves of emergency supplies at supply points are assumed to 
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be sufficient to meet the demand. 2) Only one trip between supply points and demand point is permitted, 
transportations among supply points are not considered. 3) Only loading time and transportation time 
between supply points and demand point are taken into account, regardless of the unloading time at 
demand point. 
 

MODELING 
 
Notations 
 { }IiiSP ,,2,1 L== : set of supply point numbers, and I is the total number of supply point; 

{ }MmmSA ,,2,1 L== : set of emergency supplies types, and M is the total number of emergency 

supplies types; { }KkkSV ,,2,1 L== : set of transportation types, and K is the total number of 
transportation types. 
 iS : supply point i ;O : demand point; mb : amount of the emergency supplies m demanded atO ;

imsup : amount of emergency supplies type m reserved at iS ; ikt : estimated time required for transporting 
emergency supplies from iS toO by transportation type k ; ikav : amount of transportation type k possessed 
at iS ; mq : unit weight of emergency supplies m ; mv : unit volume of emergency supplies m ; mt : unit 
loading time of emergency supplies m ; kQ : maximum load of transportation type k ; kV : maximum 
capacity of transportation type k ; 
 imkx : decision variable, amount of emergency supplies m transported from iS toO by 
transportation type k ; ikδ : equal to one if any type of emergency supplies is transported by 
transportation type k from iS toO , and 0 otherwise; ikη : variable synthesized by imkx , amount of 
transportation type k actually used at iS . 
 
Formulation 
 According to above preliminaries, the emergency supplies scheduling model for single demand 
point can therefore be stated as follows: 
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 There are two objective functions in this model. The objective function (1) aims at the shortest 
emergency rescue completion time, and the objective function (2) maximizes the mean full-load ratio of 
transportation. Eq. (3) calculates the amount of transportation type k actually used at iS . ⎡ ⎤ is a rounding 
mode to round towards positive infinity. The constraints (4) ensures that demand pointO receives the 
requested amount of each emergency supplies m , which are equality constraints. The constraints (5) 
guarantee that the total amount of a given emergency supplies m delivered from iS does not exceed its 
reserves. The constraints (6) indicate that the amount of transportation type k actually used at iS should be 
less than or equal to the amount of transportation type k possessed at iS . The constraints (7) require that 
the decision variables must be non-negative integer. 
 

THE PROPOSED ALGORITHM 
 
 To solve the above constrained multi-objective optimization model, particle swarm optimization 
(PSO) is adopted for the basic evolutionary framework of our proposed algorithm. Moreover, three 
strategies are presented to deal with different constraints appeared in this model. First, integral iteration, 
non-negative solution space limitation and hyper-plane constraints are put forward to update the velocity 
of each particle, which meets the requirements of non-negative integer constraints and equality 
constraints. Second, a dynamic threshold constraint dominance rule is proposed to update the personal 
best location of each particle. Finally, a method of objective function modification[9] is adopted for 
updating the global best location of the swarm. The last two strategies serve as inequality constraints, 
and maintain the diversity of Pareto optimal solutions by use of infeasible solutions. 
 
Individual encoding 
 ),,,( 21 NXXXX L= denotes particle swarm. ),,,( 21 qDqqq XXXX L= denotes the location of 
particle q . where D is the total dimension of particle, Dd ,,2,1 L= . N is the swarm size, Nq ,,2,1 L= .

qX is encoded in non-negative integer according to the sequence of supply point, and each supply point 
can be expressed by Eq. (9). The relationship between d and kmi ,, is given by Eq. (10). 
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Strategies for updating the velocity of each particle 
 
A standard PSO algorithm can be described as Eq. (11) and Eq. (12). 
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 Where s is iteration index; sc1 and sc2 are cognitive and social parameters respectively, dynamically 
update by Eq. (13) in our proposed algorithm, maxc and minc are initial maximum and minimum value 

respectively; sw is the inertia weight, dynamically updates by Eq. (14) in our proposed algorithm;T is 
the maximal iteration time, Ts ,,2,1 L= ; 1r and 2r are two random real numbers uniformly distributed in 

the range ]1,0[ ; s
qV and s

qXP denote the velocity and the personal best location of particle q in the ths

iteration respectively. s
qXG represents the global best location of the swarm in the ths iteration. 
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(1) Integral iteration 
 According to 1r and 2r appeared in Eq. (11), PSO is mainly dedicated to continuous problems. In 
order to ensure that each candidate solution encoded in qX is an integer, the velocity of each particle 

should be updated to an integer uniformly distributed in the range ],[ upperlower VV . lowerV and upperV are given 

in Eq. (15) and Eq. (16) respectively. 
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 (2) Non-negative solution space limitation 
 According to Eq. (12), the location of particle 1+s

qX can’t be fixed in non-negative solution space, 
so the lower and upper bounds for updating velocity must be adjusted. Detailed adjustment strategies are 
listed in TABLE 1. C denotes the conditions of adjustment, and S denotes the operations of adjustment. 

 
TABLE 1 : Adjustment strategies for upper and lower bounds of the velocity updating interval 
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 (3) Hyper-plane constraints 
Equality constraints (4) can be expressed as Eq. (17) by the location of a particle. 
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According to Eq. (12), Eq. (17) and Eq. (19), in order to ensure that the updated location 1+s

qdX  

satisfies the equality constraints, 1+s
qdV must be content with the hyper-plane constraints given by Eq. 

(20). 
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Strategies for updating the personal best location of each particle 
 When PSO is applied to solve CMOP, constraint dominance rule must be used to update the 
personal best location of each particle. Though a widely used rule has been proposed[10], this rule may 
give rise to evolutionary stagnation in the iterative process. Actually, the updated location 1+s

qX is 

probably infeasible because of the inequality constraints (5) and (6), as result, s
qXP can’t be updated by 

use of this rule. To make full use of infeasible solutions, a dynamic threshold constraint dominance rule 
is presented. 
 Dynamic threshold sβ is formally defined as follows. 
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Where 0β is the initial constraint violation tolerance. 
 According to the definition of constraint violation[8], the constraint violations of 1+s

qX and s
qXP can 

be denoted as )( 1+s
qXQ and )( s

qXPQ respectively. In addition, 1+s
qF and s

qFP are denoted as the objective 

function values of 1+s
qX and s

qXP respectively. If Eq. (22) holds, the personal best location of particle q is 

updated as 11 ++ = s
q
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Strategies for updating the global best location of the swam 
 In our proposed algorithm, all Pareto optimal solutions searched in iterations are preserved in an 
external repository, which is denoted asGF . The global best location of the swarm is selected randomly 
inGF when the velocity of each particle will be updated.GF is updated via the following three steps. 
1) UniteGF with the updated particle swarm 1+sX to be a population denoted as Pop , and set ∅=GF . 

2) Modify the objective function value of each particle in Pop by use of the constraint handling 
technique proposed in refs.[9]. 
3) Select the particle that can’t be dominated by other particles in Pop intoGF according to modified 
objective function values. 
 Before modifying the objective function values, each objective function value of each particle 
must be normalized. In detail, the objective function value of the particle q in Pop is normalized as 
follows. 
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 Where )(
~

qr Xf is the normalized thr -objective value of particle qX ; )( qr Xf is the primary 

objective value of particle qX ; min
rf and max

rf are the minimum and maximum values of each objective 
function in Pop respectively; r is the number of objective function, 2,1=r in our algorithm. 
 After normalization, each objective function value of each particle in Pop is modified in 
accordance with the following three conditions. 
1) If all particles in Pop are feasible solutions, the objective function values of all particle need not to be 
modified. 
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2) If all particles in Pop are infeasible solutions, each objective function value of each particle is 
modified to its constraint violation. 
3) If feasible and infeasible solutions exist in Pop simultaneously, each objective function value of 
particle qX is modified by Eq. (24). 
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 Where )(' qr Xf is the modified thr -objective value of particle qX ; )( qXQ is the constraint 

violation of particle qX ;α is the ratio of the number of feasible solutions in Pop to the swarm size of
Pop . 
 
Implementation steps 
 Step1: Initialize parameters N ,T , maxc , minc and 0β . Generate an initial particle swarm 1X of N

particles in feasible region (Section 4.1). Set 1=s , 0=s
qV and s

q
s

q XXP = for Nq ,,2,1 L= . Calculate the 
objective function values and the constraint violations of all particles. Select the Pareto optimal solutions 
from 1X to external repository F . Set FGF = . 

 Step2: update sw , sc1 and sc2 . Carry out the following operations for s
qX according to the order

Nq ,,2,1 L= . 
1) Select a particle fromGF as the global best location of s

qX . 

2) Compute 1+s
qV and 1+s

qX  (Section 4.2). Calculate the objective function values and the constraint 

violations of 1+s
qX . 

Step3: Unite 1+sX to F . Update F according to dominance relation. UpdateGF  (Section 4.4). 

Step4: Update personal best location of s
qX according to the order Nq ,,2,1 L=  (Section 4.3). 

Step5: If Ts < , set 1+= ss , return Step2. Otherwise, end the algorithm and output F . 
 

NUMERICAL EXPERIMENT 
 
Experimental settings 
 An experiment is used to test the validity of this model and algorithm mentioned above, which 
assumes that there are four supply points ( 1S ~ 4S ), two types of transportation (truck and helicopter), 
four types of emergency supplies (tent, quilt, clothes and food) demanded atO . Parameters required in 
this model are given as follows. 
 As mentioned above (Section 1), the existing algorithms are inapplicable for this model, so there 
are no available comparative algorithms. However, to validate the performance of the proposed 
algorithm (hereinafter referred to as CMOPSO-MCHT), this paper embeds Section 4.2 into two 
outstanding algorithms to form two comparative algorithms. The first selected algorithm is the modified 
constrained multi-objective particle swarm optimization algorithm[11] (hereinafter referred to as M-
CMOPSO). The second algorithm is the barebones multi-objective particle swarm optimizer[12] 
(hereinafter referred to as BB-MOPSO). 
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 Public parameters for three algorithms: 200=N , 1000=T , 5.1max =c , 5.0min =c . Private 
parameter for CMOPSO-MCHT: 5.00 =β . No private parameters for M-CMOPSO. Private parameters 
for BB-MOPSO: 1001 =N , 1002 =N . 
 
Performance metrics 
 Two performance metrics are selected to evaluate the performance of three algorithms. One is 
the two sets coverage (TSC), Another is the spacing (SP). 
•TSC: Suppose A and B be two approximations to the Pareto front of a CMOP, ),( BATSC gives the 
percentage of the solutions in B that are dominated by at least one solution in A , i.e., 
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 It may be noted that it is not necessary that ),(1),( ABTSCBATSC −= . Moreover, if

1),( =BATSC , then all solutions in B are dominated by some solutions in A , and if 0),( =BATSC , then 
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no solution in B is dominated by a solution in A . Generally, TSC measures the extent of convergence to 
a known set of Pareto optimal solutions. 
•SP is a value measuring the spread (distribution) of obtained solutions. The smaller the SP is, the more 
equidistant the solutions spaces. The formula is presented as follows. 
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 Where h is the total number of Pareto optimal solutions; p is the number of objective functions;

gc is the distance of neighboring solutions. 
 
Results analysis 
 Figure 1 shows the typical Pareto front (PF) obtained by above three algorithms. From Figure 1, 
although three algorithms all can achieve some Pareto optimal solutions in total iterations, the 
performance of the three algorithms is greatly different. 
•By comparing three curves of PF in Figure 1, we can conclude that the Pareto optimal solutions 
obtained by CMOPSO-MCHT can absolutely dominate those obtained by the other two algorithms. In 
another word, the extent of convergence for CMOPSO-MCHT is much better. 
•By observing the distribution of Pareto optimal solutions obtained by three algorithms (three 
independent graph in Figure 1), we can know that the Pareto optimal solutions obtained by CMOPSO-
MCHT and BB-MOPSO distributes more uniformly, those acquired by M-CMOPSO has the worst 
distribution. 
 

 
 

Figure 1 : Typical Pareto front obtained by three algorithms 
 

 TABLE 2 presents the statistics of performance metrics of the final solutions obtained by each 
algorithm based on 50 independent runs. These statistics include mean and standard deviation values of 
TSC and SP. From the perspective of TSC, this table reveals that average 72% solutions obtained by M-
CMOPSO are dominated by solutions achieved by CMOPSO-MCHT in each solving process. 
Moreover, this data of BB-MOPSO is as high as 87%. On the contrary, few solutions obtained by 
CMOPSO-MCHT are dominated by those obtained by M-CMOPSO and BB-MOPSO. These statistical 
results also indicate that CMOPSO-MCHT has a much better convergence. From the perspective of SP, 
the smallest mean and standard deviation value of SP for CMOPSO-MCHT illustrate that CMOPSO-
MCHT has a much better spread and stability. 
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TABLE 2 : Statistical results of the performance metrics found by three algorithms based on 50 independent runs 

 

 
TSC  SP  

CMOPSO-MCHT M-CMOPSO BB-MOPSO 
CMOPSO-MCHT — 0.72±0.29 0.87±0.18 0.013±0.009 
M-CMOPSO 0.13±0.23 — 0.59±0.30 0.022±0.014 
BB-MOPSO 0.055±0.14 0.28±0.28 — 0.017±0.013 

 
CONCLUSIONS 

 
 In this paper, a constrained multi-objective nonlinear integer programming model is proposed to 
achieve the scheduling of emergency supplies for single demand point. The distinguishing feature of this 
model is to consider the loading time of emergency supplies, different types of transportation and to 
encompass mean full-load ratio of transportation as an objective. In addition, a constrained multi-
objective particle swarm optimization algorithm fused with multiple constraint handling techniques 
(CMOPSO-MCHT) is developed. The performance of this algorithm is analyzed and its efficiency is 
investigated. We find that, in general, CMOPSO-MCHT can not only resolve this model effectively, but 
also provide much better Pareto optimal solutions. 
 We suggest two directions for future work. The first is to put forward a much better algorithm to 
solve this model, and test our model and algorithm on much more experiments. The second is to 
introduce the robust approach to investigate the uncertainty including uncertain demand and uncertain 
transportation time, and then develop more realistic scheduling model. 
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