

FULL PAPER

CHEMXPRESS 9(3), 273-277, (2016)

Effect of preparation methods on DeNOx efficiency of CeO₂/TiO₂ catalysts

ISSN(PRINT) : 2320 -1967 ISSN(ONLINE) : 2320 -1975

Tian Yan

School of energy and power engineering, Xi'an Jiaotong University, Xi'an 710049, (CHINA) E-mail: xjtutianyan@gmail.com

Abstract : The DeNO_x performance of catalysts is a key part in the selective catalytic reduction process. In this study, CeO_2/TiO_2 catalysts were prepared by the impregnation method and the sol-gel method, and the DeNO_x performance of the catalysts was tested on a self-built experimental system. The efficiency difference due to the two preparation methods was analyzed by X-ray diffraction technology and Brunauer-Emmett-Teller method. The experimental results showed that CeO_2/TiO_2 catalysts prepared by the sol-gel method had a larger surface area and the DeNO_y activity was

INTRODUCTION

The emission of nitrogen oxides during coal combustion is great harmful to the environment^[1-3]. As an important part of nitrogen oxides removal technology, selective catalytic reduction (SCR) has been adopted in many power plants^[4-6]. In SCR technology, the performance of the catalysts is the focus for researchers. Vanadium-titanium catalyst has received a lot of attention and been widely used in SCR technology, while the common method is to load V_2O_5 on TiO₂ and add different amounts of WO₃ or MoO₃^[7-10]. In addition, other metal oxides, such as Fe, Cu, Cr, and Mn, have been widely studied as active ingredients^[11-13]. Feng Gao et al. studied the reaction kinetics of Cu-SSZ-13 catalysts with various Cu loadings^[14]. The adhesion and surface characteristics of monolithic Cr-V/TiO₂/ cordierite catalysts were investigated for lowtemperature NH₃-SCR reactions by Hai-feng Huang et al.^[15].

Although the research for the effect of different

higher than the catalysts prepared by the impregnation method, when the temperature was below 350 °C. For $\text{CeO}_2/\text{TiO}_2$ catalysts prepared by the impregnation method, the crystal form of CeO_2 could be seen, when CeO_2 content was 10%. However, if CeO_2 content was more than 3%, the catalyst had relative high activity suitable for industrial application.

© Trade Science Inc.

Keywords: CEO,; TIO,; DENOXEFFICIENCY; SCR

loadings on SCR catalysts has been carried out for years, little work has been done to study the effect of preparation methods on the DeNOx efficiency. In this study, CeO_2/TiO_2 catalysts were prepared by the impregnation (IM) method and the sol-gel (SG) method, and different amounts of CeO₂ were loaded in TiO₂ to determine the optimal loading amount of active substance. The microstructure of the catalysts was investigated to explore the reasons for the differences of DeNOx performance by X-ray diffraction (XRD) technology and Brunauer-Emmett-Teller (BET) method.

EXPERIMENTAL SECTION

Experimental system

The experimental system is as shown in Figure 1. In the experiments, the mixed gas of NO, O_2 and N_2 was simulated flue gas, NH_3 was used as a reducing agent, wherein the NO content was 500 ppm, the same as NH_3 . O_2 content was about 4%, and N_2 was used

FULL PAPER

as the balance gas. There were three parts in the experimental system: the gas supply system, the reaction

system and the measurement system. The gas supply system provided simulated flue gas and reducing agent, and the gas flow was controlled by mass flow meter. The reaction system contained the reactor and temperature controller. As one-dimensional tube furnace, the reactor was made from quartz glass, filled with cotton insulation. The catalysts loaded in the reactor and were fixed by mullite asbestos in the position, in which a thermocouple was set to monitor temperature. The measurement system was mainly composed of flue gas analyzer (GASMET FTIR Dx4000), which was applied to record the concentration of NO and NH₃.

Catalyst preparation

The methods of catalyst preparation in the laboratory are mainly sol-gel method, precipitation method, ion exchange method and impregnation method. By Isometric impregnation method solution can just immerse all carrier particles to avoid the recovery steps of filtering and impregnating solution. In this work, CeO_2/TiO_2 catalysts was prepared by IM method. Preparation process of granular CeO_2/TiO_2 catalysts is shown in Figure 2.

Step-by-step SG preparation method is as follows: (1) Take appropriate amount of butyl titanate and

anhydrous ethanol (volume ratio is 4:1), then mix and stir fully to give a uniform and transparent light yellow solution, which is denoted by solution A.

- (2) Take a suitable amount of deionized water, ethanol, nitric acid (volume ratio is 1:1:0.2) and weigh a certain amount of cerium nitrate. Then mix the above solution, dissolve cerium nitrate and stir sufficiently to give a solution, which is denoted by solution B. And then different amounts of cerium nitrate can produce different CeO_2/TiO_2 catalysts supporting different amount of CeO_2 .
- (3) Place solution B in a water bath of magnetic stirrer and control a certain water bath temperature and stirring speed, at the same time drip the solution A through the burette slowly into the solution B to form a mixed solution that can hydrolyze. After dripping the solution A, stirring is continued for a period of time to give a pale yellow transparent sol and finally become wet gel.
- (4) Put wet gel in drying oven under 110 °C for 24 h, calcine in the muffle furnace for 5 h under 500 °C and fresh CeO₂/TiO₂ catalyst is prepared. Finally, the catalyst is milled to 40 to 60 mesh to test its DeNOx efficiency.

The catalysts was named Cex/Ti(IM) or Cex/Ti(SG) in this study, and x means the mass percentage of CeO₂ in the catalyst.

Figure 2 : Preparation process of granular CeO₂/TiO₂ catalysts by IM method

RESULTS AND DISCUSSION

DeNOx of CeO₂/TiO₂ catalysts

Figure 3 shows that DeNOx efficiency of CeO₂/ TiO₂ catalysts prepared by IM method versus temperature. As can be seen from the Figure 3, when CeO₂ content was between 0.5% and 2%, the DeNOx efficiency of CeO₂/TiO₂ catalysts was relatively low. When CeO₂ content was 5% and 10%, CeO₂/TiO₂ catalyst DeNOx efficiency was significantly high, and under 250 °C the DeNOx efficiency reached more than 93.4%. When CeO₂ content was 0.5%, in the temperature range of 200-300 °C the DeNOx efficiency was very low (between 9.7%-14.9%); under 350 °C and 400 °C the DeNOx efficiency was significantly increased to 48.1% and 98.9%. When CeO₂ content was 1%, the DeNOx efficiency had the same rules with Ce0.5/Ti (IM), the DeNOx efficiency increased slightly. Thus, the CeO₂/TiO₂ catalysts DeNOx efficiency had a great relationship with CeO₂ content.

Figure 4 shows that DeNOx efficiency of CeO₂/ TiO₂ catalysts prepared by SG method versus temperature. As can be seen from Figure 4, compared with Ce0.5/Ti-4 (IM), the DeNOx efficiency of CeO₂/ TiO₂ catalysts was generally low when CeO₂ content is 0.5% below 400 °C. But when the temperature is higher than 400 °C, the efficiency greatly improved, and the

Figure 3 : DeNOx efficiency of CeO₂/TiO₂ catalyst prepared by IM method

Figure 4 : DeNOx efficiency of CeO₂/TiO₂ catalyst prepared by SG method

FULL PAPER

FULL PAPER

efficiency is 82.1%. When CeO_2 content continued to increase, the catalyst activity under low temperature continued to grow, but the catalyst DeNOx efficiency from different CeO₂ content decreased in the temperature range of 350-450 °C and both efficiency remained above 76.2%.

Microscopic properties of catalysts

The catalysts with different cerium contents were prepared in the experiments, by IM method and SG method. The specific surface area, pore volume, and pore diameter were listed in detail in TABLE 1. We can find that by SG method Ce3/Ti(SG) has a higher specific surface area of 97.211m²/g, while Ce3/Ti(IM) has specific surface area of 74.520 m²/g.

catalyst	Specific surface area (m ² /g)	Pore volume (ml/g)	Pore diameter (nm)
Ce3/Ti(IM)	74.520	0.017	18.194
Ce3/Ti(SG)	97.211	0.027	19.237

Figure 5 shows that three kinds of XRD patterns of $CeO_2/TiO_2(IM)$ catalysts, of which CeO_2 accounted for 0.5%, 3% and 10%. As can be seen from the figure, if the CeO_2 content increased from 0.5% to 3%, the diffraction peak position on the XRD patterns did not change significantly. However, the intensity of the characteristic peak became slightly smaller, indicating in $CeO_2/TiO_2(IM)$ CeO₂ and TiO₂ were better together and TiO₂ grains of catalysts were smaller. All the catalysts only appeared anatase TiO₂ characteristic peaks, and no CeO₂ crystal phase, indicating that when

Figure 5 : XRD pattern of CeO₂/TiO₂ catalysts prepared by IM method

ChemXpress 9(3), 2016

CeO₂ content was less than 3%, cerium was well dispersed on the surface. There was CeO₂ characteristic diffraction peaks (2θ =28.555°, 33.082°) in Ce10/Ti-4 (IM), indicating CeO₂ grains appeared in the catalyst and CeO₂ loading exceeded the saturation value of CeO₂ in the TiO₂ surface. CeO₂ grain is not active for SCR reaction, so it should be avoided in the preparation process.

Figure 6 shows that three kinds of XRD patterns of $CeO_{2}/TiO_{2}(SG)$, of which CeO_{2} accounted for 0.5%, 3% and 10%. As can be seen from the figure, when CeO_2 content was 0.5%, we can observe obvious anatase TiO₂ characteristic peaks, rutile TiO₂ diffraction peaks ($2\theta=27.508^\circ$, 36.159°) and brookite TiO₂ characteristic peaks, indicating that when catalyst was prepared by SG method, the TiO₂ appeared more changing. When CeO_2 content was 3%, the peak shape of anatase TiO₂ became incomplete, broad and diffuse. When CeO_2 content increased to 10%, the peak shape was more broad and low, indicating that the electronic interaction between CeO₂ and TiO₂ strengthened, and CeO₂ was dissolved in TiO₂ with highly dispersed or amorphous state. Meanwhile, rutile TiO₂ peaks disappeared, but brookite TiO₂ still existed with lower intensity. All these indicated the increase of CeO₂ content suppressed the transformation from anatase TiO₂ to rutile TiO₂.

Figure 6 : XRD pattern of CeO₂/TiO₂ catalysts prepared by SG method

CONCLUSIONS

The specific surface area is an key factor that affected the DeNOx efficiency. The catalysts based on

 CeO_2/TiO_2 made by SG method have greater specific surface area. XRD shows that the rutile and broolnte type of TiO₂ appeared in the catalysts prepared by SG method and the crystal form of CeO₂ did not show up. The crystal form of CeO₂ appeared as the concentration of CeO₂ was 10% in the catalysts prepared by IM method. It demonstrated that CeO₂ was not well dispersed on the surface of the carrier.

The CeO₂/TiO₂ catalysts prepared by IM method have relatively high DeNOx efficiency when the concentration of CeO₂ was 3% and that activity will not decline within a temperature range of 350-400 °C. The DeNOx efficiency of CeO₂/TiO₂ catalysts prepared by SG method turned out a litthle higher than that prepared by IM method when the temperature was below 350 °C.

REFERENCES

- J.S.Gaffney, N.A.Marley; Atmos.Environ, 43(1), 23-36 (2009).
- [2] K.Skalska, J.S.Miller, S.Ledakowicz; Sci.Total Environ, 408(19), 3976-3989 (2010).
- [3] M.T.Izquierdo, B.Rubio, C.Mayoral, J.M.Andres; Fuel, 82(2), 147-151 (2003).

FULL PAPER

- [4] I.Malpartida, O.Marie, P.Bazin, M.Daturi, X.Jeandel; Appl.Catal.B, 113, 52-60 (2012).
- [5] W.D.Fan, Z.C.Lin, Y.Y.Li, Y.Li; Energy Fuels, 24(3), 1573-1583 (2010).
- [6] P.Forzatti, L.Lietti; Catal. Today, 155(1-2), 131-139 (2010).
- [7] S.T.Choo, Y.G.Lee, I.S.Nam, S.W.Ham, J.B.Lee; Appl.Catal A, 200(1–2), 177-188 (2000).
- [8] J.Arfaoui, L.K.Boudali, A.Ghorbel, G.Delahay; Catal. Today, 142(3-4), 234-238 (2009).
- [9] M.Kobayashi, K.Miyoshi; Appl.Catal.B, 72(3–4), 253-261 (2007).
- [10] K.Bourikas, C.Fountzoula, C.Kordulis; Langmuir, 20(24), 10663-10669 (2004).
- [11] A.Sultana, M.Haneda, T.Fujitani, H.Hamada; Catal.Lett., 114(1-2), 96-102 (2007).
- [12] M.Kobayashi, R.Kuma, A.Morita; Catal.Lett., 112(1-2), 37-44 (2006).
- [13] G.Busca, L.Lietti, G.Ramis, F.Berti; Appl.Catal.B, 18(1-2), 1-36 (1998).
- [14] F.Gao, E.D.Walter, E.M.Karp, J.Y.Luo, R.G.Tonkyn, J.H.Kwak, J.Szanyi, C.H.Peden; J.Catal., 300, 20-29 (2013).
- [15] H.F.Huang, L.L.Jin, H.F.Lu, H.Yu, Y.J.Chen; Catal.Commun., 34(5), 1-4 (2013).