

Crystal structure of new coordinated calcium-cesium benzene-1,3,5-tricarboxylate complex

Naga Raju Narayanam ${ }^{1}$, Balakrishna Kurra ${ }^{1}$, Christopher E.Anson ${ }^{2}$, Saratchandra Babu Mukkamala ${ }^{1 *}$
${ }^{1}$ Department of Chemistry, GITAM Institute of Science, GITAM University, Rushikonda Campus, Visakhapatnam- 530 045, Andhra Pradesh, (INDIA)
${ }^{2}$ Institute of Inorganic Chemistry, Karlsruhe Institute of Technology, Karlsruhe, (GERMNAY)
E-mail:mscbabu@yahoo.com
Received: 10 ${ }^{\text {th }}$ September, 2010 ; Accepted: $20^{\text {th }}$ September, 2010

ABSTRACT

A new two dimensional coordination polymer of calcium-cesium benzene-1,3,5-tricarboxylate (BTC) was obtained from aqueous solution. Structure was composed of zigzag chains constructed with Ca^{2+} and Cs^{+}ions with BTC. $\left[\mathrm{CaCs}(\mathrm{BTC})\left(\mathrm{OH}_{2}\right)_{9}\right]$ crystallizes in monoclinic space group P $121 / \mathrm{c} 1$ with $\mathrm{a}=7.105(6) \AA, \mathrm{b}=22.405(20) \AA, \mathrm{c}=$ 12.032(0) $\AA, \mathrm{V}=1911.9$ (30) \AA^{3}. © 2010 Trade Science Inc. - INDIA

INTRODUCTION

Supramolecular framework structures of metal-organic coordination compounds have potential applications as absorbents, ion exchangers, protonic conductors and catalysts ${ }^{[1-4]}$. Open frame work structures of Benzene-1,3,5-tricarboxylic acid (BTC) with alkaline earth metal ions ${ }^{[5]}$ were reported earlier. BTC with three fold symmetry makes it a very attractive choice for obtaining a $(6,3)$ type structure, the frame work of a kagome lattice ${ }^{[6-8]}$. Controlled co-ordination networks of BTC with transition metal ions such as $\mathrm{Mn}^{2+}, \mathrm{Co}^{2+}$, $\mathrm{Ni}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Cd}^{2+}$ etc., were synthesized through hydro-

(a)

(b)

Scheme 1 : Benzene-1,3,5-tricarboxylate molecules (a) unidentate and (b) bidentate
thermal technique ${ }^{[9-11]}$. Some of the guest molecules such as $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{C}_{12} \mathrm{H}_{10}$ etc., are selectively absorbed into compounds, $\mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Ni}(\mathrm{CN})_{4} \cdot \mathrm{G}(\mathrm{G}=$ guests $), \mathrm{Zn}_{2}(\mathrm{BTC})$ $\mathrm{NO}_{3} \cdot\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)_{5} \cdot \mathrm{H}_{2} \mathrm{O}^{[12-14]}$. In a similar way $\mathrm{Ca}-\mathrm{BTC}$ complex also allowing Cs^{+}ions into their coordination sphere as counter cations. In general carboxylate groups from Benzene-1,3,5-tricarboxylate molecules exhibits two kinds of bonding modes such as unidentate (a) and bidentate (b) (Scheme 1).

EXPERIMENTAL

All chemicals used for synthesis were purchased from Aldrich, Fluka, Merck and Lancaster chemicals and used without further purification. 1.0 mmol benzene-1,3,5-tricarboxylic acid (0.210 g) and 3.0 mmol CsOH. $\mathrm{H}_{2} \mathrm{O}(0.504 \mathrm{~g})$ were taken in 10 ml of distilled water and stirred for few minutes. 0.5 mmol $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.074 \mathrm{~g})$ was added to the above mixed solution and stirred again for few minutes. Needleshaped colourless crystals of $\left[\mathrm{CaCs}(\mathrm{BTC})\left(\mathrm{OH}_{2}\right)_{9}\right]$

Snort Commonnication

Figure 1: Complex [Ca $\left.\mathrm{Cs}(\mathrm{BTC})\left(\mathrm{OH}_{2}\right)_{9}\right]$ (view along with c axis)

Figure 2: Complex [Ca Cs (BTC) $\left.\left(\mathrm{OH}_{2}\right)_{9}\right]$ (view along with a axis)

Figure 3: The coordination of Ca^{2+} and Cs^{+}by BTC carboxylate groups in bidentate fashion
were observed after one hour. After mixing the ben-zene-1,3,5-tricarboxylic acid and $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in the presence of $\mathrm{CsOH} . \mathrm{H}_{2} \mathrm{O}$ according to the above procedure, the solution was heated hydrothermally at

TABLE 1 : Crystal data for $\left[\mathrm{CaCs}(\mathrm{BTC})\left(\mathrm{OH}_{2}\right)_{9}\right]$

Formula	$\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{CaCsO}_{15}$
Formula weight	542.24
Crystal system	monoclinic
Space group	P 1 21/c
$a(\AA)$	7.1045(6)
$b(\AA)$	22.4047(20)
$c(\AA)$	12.0314(10)
$\alpha{ }^{\circ}$)	90
$\beta\left({ }^{\circ}\right)$	93.27(0)
$\gamma\left({ }^{\circ}\right)$	90
Cell volume (\AA^{3})	1911.97(30)
$\mathrm{D}_{\mathrm{Cal}}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.877
Z	
Diffractometer $\mu\left(\mathrm{Mo}^{-\mathrm{K}_{\alpha}}\right)\left(\mathrm{mm}^{-1}\right)$	SMART Apex
T(K)	200
Data measured	9159
Unique data	4130
$\mathrm{R}_{\text {inst }}$	0.0274
wR_{2}	0.1816
S (all data)	1.056
Parameters/restraints	283/17
Peak/hole	+3.94/1.15

TABLE 2 : Selected bond lengths and angles for $[\mathrm{CaCs}(\mathrm{BTC})$ $\left.\left(\mathrm{OH}_{2}\right)_{9}\right]$

Distance	$[\AA]$	Angles	[deg]
Ca1-O1	2.481(2)	Ca1-Cs1-Ca1	103.05°
$\mathrm{Ca1-O2}$	2.460 (2)	Cs1-Ca1-Cs1	103.05°
Ca1-O7(w)	2.378(1)	$\mathrm{Ca1-07-Cs1}$	105.22°
Ca1-O8(w)	2.422(1)	$\mathrm{Ca1-O8-Cs1}$	98.46°
Ca1-O9(w)	2.390 (1)	Ca1-O9-Cs1	100.66°
$\mathrm{Ca1-O10}(\mathrm{w})$	3.340(1)	Ca1-O10-Cs1	102.03°
Ca1-O11(w)	2.362(1)	Ca1-O11-Cs1	$96.53{ }^{\circ}$
Cs1-O3	3.220 (3)		
Cs1-O4	3.321(2)		
Cs1- O12(w)	3.172(2)		
Cs1-O13(w)	3.532(3)		
Cs1-O14(w)	3.439(2)		

$180^{\circ} \mathrm{C}$ for 24 hrs under autogenous pressure. Similar needle shaped colourless crystals of [CaCs (BTC) $\left(\mathrm{OH}_{2}\right)_{9}$] were found in the autoclave. Yield: $0.086 \mathrm{~g}, 31.72 \%$. Elemental analysis calculated for $\mathrm{C}_{9} \mathrm{H}_{21} \mathrm{CaCsO}_{15}$ (542.24): C 19.94, H 3.90. Found: C

Snopit
 Comonumoication

 SUMMARY

 SUMMARY}
20.86, H 3.42. IR, v/cm ${ }^{-1}: 3424 \mathrm{br}, 1614 \mathrm{~s}$, 1554 m , $1433 \mathrm{~m}, 1369 \mathrm{~m}, 1104 \mathrm{~s}, 763 \mathrm{~s}, 732 \mathrm{~m}, 521 \mathrm{~s}$. The infrared spectra were measured using the KBr disk method on a Perkin Elmer 'spectrum one FTIR' system.

Crystal structure determination

Data were measured on SMART Apex diffractomer using graphite- monochromated $\mathrm{Mo}-\mathrm{Ka}$ radiation ($\lambda=$ $0.71073 \mathrm{~A}^{\circ}$). The structures were solved by direct methods and refined by full-matrix least-squares against F^{2} for all data, using the SHELXTL software ${ }^{[15]}$. Crystal data and details of the data collection and structural refinement are summarized in TABLE 1.

RESULTS AND DISCUSSION

Figure 1 shows the single X-ray crystal structure of $\left[\mathrm{CaCs}(\mathrm{BTC})\left(\mathrm{OH}_{2}\right)_{9}\right]$. The absorption bands of the asymmetric and symmetric vibrations of BTC appear at $1554 \mathrm{~cm}^{-1}$ and $1433 \mathrm{~cm}^{-1}$ in the IR spectrum of the compound. The broad band at $3424 \mathrm{~cm}^{-1}$ and the sharp band at $1614 \mathrm{~cm}^{-1}$ are an indicative of the presence of water in the metal coordination sphere. Two dimensional networks were constructed from Ca (II) with Benzene-1,3,5-tricarboxylate (BTC) in presence of CsOH . A single crystal analysis performed on the compound $\left[\mathrm{CaCs}(\mathrm{BTC})\left(\mathrm{OH}_{2}\right)_{9}\right]$ shows that the structure is composed of zig-zag chains constructed with Ca^{2+} and Cs^{+}ions with BTC as shown in figure 2. The carboxylate unit (O 1 and O 2) of BTC bind with $\mathrm{Ca} 2+$ ion in a bidentate fashion. Similarly, the second carboxylate unit bind with Cs^{+}ion in bidentate manner (Figure 3). Third carboxylate group was not involved in the bonding. Ca^{2+} ions exhibits 7 -fold coordination and binds with five water ligands (O7, O8, O9, O10, O11) in addition to BTC carboxylate group. Selected bond lengths and angles of $\left[\mathrm{CaCs}(\mathrm{BTC})\left(\mathrm{OH}_{2}\right)_{9}\right]$ are presented in TABLE 2. The layers are held together by carboxylate units in the structure to yield a tightly held 2-D solid structure.

This study demonstrates that multidentate linker, BTC when polymerized with Ca^{2+}, produced two dimensional zigzag frameworks in presence of Cs^{+}.

ACKNOWLEDGEMENTS

The financial support from GITAM University is gratefully acknowledged.

REFERENCES

[1] M.J. Platers, R.A.Howie, A.J.Roberts; Chem.Comm., 893 (1997).
[2] O.M.Yoghi, G.Li, H.Li; Nature, 378, 703 (1995).
[3] O.M.Yoghi, H.Li; J.Am.Chem.Soc., 117, 10401 (1995).
[4] V.Soghomonian, Q.Chen, R.C.Haushalter, J.Zubieta; Angew.Chem.Int.Ed.Engl., 34, 223 (1995).
[5] M.J.Plater, A.J.Roberts, J.Marr, E.E.Lachowski, R.A.Howie; J.Chem.Soc., Dalton Trans, 797 (1998).
[6] W.Zhang, S.Bruda, C.P.Landee, J.L.Parent, M.M.Turnbull; Inorganic Chimica Acta, 342, 193 (2003).
[7] A.F.Wells; Three-Dimensional nets and polyhedra, Wiley-Interscience, New York, (1977).
[8] S.R.Batten, R.Robson; Angew.Chem.Int.Ed.Engl., 37, 1460 (1998).
[9] O.M.Yaghi, H.Li, T.L.Groy; J.Am.Chem.Soc., 118, 9096 (1996).
[10] O.M.Yaghi, C.E.Davis, G.Li, H.Li; J.Am.Chem. Soc., 119, 2861 (1997).
[11] F.A.A.Paz, A.D.Bond, Y.Z.Khimyak, J.Klinowski; New J.Chem., 26, 381 (2002).
[12] K.R.Dunbar, R.A.Heintz; Prog.Inorg.Chem., 45, 283 (1997).
[13] T.Iwamoto, T.Miyoshi, Y.Sasaki; Acta Crystallogr.B, 30, 292 (1974).
[14] M.Eddaoudi, H.Li, O.M.Yaghi; J.Am.Chem.Soc., 122, 139 (2000).
[15] G.M.Sheldrick; SHELXTL 5.1, Bruker AXS Inc., 630, Enterprise Lane, Madison, WI 53719-1173, USA, (1997).

