

COMPUTATIONAL STUDY OF H-A-X (A = GROUP TWO ATOMS, X = F, Cl, Br) MOLECULES

C. YOHANNAN PANICKER^{*}, S. DEEPTHI, HEMA TRESA VARGHESE^a and Y. SHEENA MARY^a

Department of Physics, TKM College of Arts and Science, KOLLAM (Kerala) INDIA ^aDepartment of Physics, Fatima Mata National College, KOLLAM (Kerala) INDIA

ABSTRACT

Theoretical calculations at the HF and DFT levels of theory were performed on the H-A-X (A = group two atoms, X = F, Cl, Br) molecules. The vibrational wavenumbers, bond lengths, infrared intensities and Raman activities are reported. The study predicts that H-Be-X and H-Mg-X are stable while H-Ca-X is unstable.

Key words: HF, DFT calculations, Halides.

INTRODUCTION

Quantum chemical calculations and spectroscopic characterization of organic compounds, free radicals, radical anions etc. have found considerable amount of interest in recent years.^{1.4} Accurate and efficient calculation of spectroscopic constants for a wide range molecular systems employs readily available methods and basis sets.^{5,6} Experimental evidence seems to indicate that reactions of group 2 atoms with hydrogen halides may proceed via the formation of a stable complex. For example trajectory calculations on the Ca + HF reaction showed that a deep H-Ca-F potential energy well dominates the collision dynamics of the reaction.⁷ Subsequent work of Ca + DF also supports this mechanism.⁸ The simple atom exchange reaction Be + HF \rightarrow BeF + H involving the lightest group 2 element, beryllium has also been studied⁹⁻¹³ and these studies indicate that the reaction proceeds via a very deep potential well corresponding to stable, linear structure H-Be-F. The transition state is much bent and apparently facilitates the insertion of Be into HF in order to form the complex more easily. The infrared vibrational intensities and polar tensors of HFCO and DFCO are reported by Martins *et al.*¹⁴ using computational method. Kurita *et al.*¹⁵ reported the relationship between force constants and bond lengths for CX (X = C, Si, Ge, N, P, As,

^{*}Author for correspondence; E-mail: cyphyp@rediffmail.com

O, S, Se, F, Cl and Br) single and multiple bonds. The C-S barrier and vibrational analyses of (halocarbonyl) sulfenyl halides XCO-SX (X = F, Cl and Br) was reported by Badawi.¹⁶ The vibrational spectra of group IIB elements halides MX_2 and their dimers M_2X_4 (M = Zn (II), Cd (II) and Hg (II); X = F, Cl, Br and I) have been systematically investigated theoretically and the optimized geometries, calculated vaibrational frequencies are evaluated via comparison with experimental data.¹⁷ A scaled quantum mechanical force field for the sulfuryl halides SO₂X₂ (X = F, Cl, Br) was reported by Fernandez *et al.*¹⁸ Durig *et al.*¹⁹ reported the theoretical calculations on the structural parameters and vibrational spectra of some XNCS and XSCN (X = H, F, Cl, Br) molecules. Theoretical study of XPO (X = H, F, Cl, Br) molecules, structural and molecular properties are reported by Puzzarini.²⁰ Ab initio study of the ground and low lying excited electronic states of NiX₂ and FeX₂ (X = F, Cl, Br, I) molecules was reported by Sliznev et al.²¹ A scaled quantum mechanical force field for the sulfuryl halide, SO_2XF (X = Cl, Br) halides was reported by Fernandez and Varetti.²² NMR, infrared, solvation and theoretical investigation of the conformational isomerism in 1haloacetones (X = Cl, Br and I) was also reported.²³ In the present work, we perform abinitio calculations at the HF and B3LYP levels of theory to determine the optimized structure and harmonic vibrational frequencies of H-A-X molecules (A = group 2 atoms, X = halogens).

COMPUTATIONAL DETAILS

Calculations were carried out for the H-A-X molecules (A = group 2 atoms, X = halogens) using Gaussian03 program²⁴ on a personal computer at the HF and B3LYP levels of theory using the standard 6-311G(2df, 2pd) basis set, except for the bromine atom, where a 6-311G(df,pd) basis set was employed. Geometry optimizations followed by calculations of vibrational wave numbers were performed. The bond lengths and vibrational wave numbers (scaled) are given in Tables 1 and 2.

RESULTS AND DISCUSSION

The bond lengths calculated for H-Be-X (Table 1) indicate that the H-Be bond lengths are close in value. But Be-X bond length is in the increasing order Be-Br > Be-Cl > Be-F. The change in the H-Be bond length is almost negligible, where as the Be-X bond length increases with increasing size of the halide atom. Consequently, the high wave number, Be-H stretching value is relatively unaltered from molecule to molecule and the H-Be-X bending mode is also not much affected by the X atom. But the Be-X stretching wavenumber varies significantly, ranging from a value of 671, 787 and 1164 cm⁻¹ for X = Br, Cl, F at the DFT level. H-Ca-X and For H-Mg-X molecules show similar variations. For H-

Ca-X molecule, there is one imaginary frequency, which shows the unstable structure of this system. The studies predict that H-Be-X and H-Mg-X are very stable linear triatomic molecules where as H-Ca-X is unstable. The thermodynamic parameters, thermal energy E, specific heat capacity Cv and entropy S are given in Table 3.

H-Be –Halogen								
H-Be-Cl H-Be-F H-Be-Br								
HF	DFT	HF	DFT	HF	DFT			
Be-H	Be-H	Be-H	Be-H	Be-H	Be-H			
1.3214	1.318	1.3269	1.3226	1.3216	1.3187			
Be-Cl	Be-Cl	Be-F	Be-F	Be-Br	Be-Br			
1.8061	1.7978	1.3553	1.3654	1.9657	1.9518			

Table 1: Bond lengths

H-Ca-Halogen								
H-Ca-Cl H-Ca-F H-Ca-Br								
HF	DFT	HF	DFT	HF	DFT			
H-Ca	Н-Са	H-Ca	H-Ca	H-Ca	Н-Са			
2.0531	2.0182	2.0933	2.0674	2.0497	2.0196			
Ca-Cl	Ca-Cl	Ca-F	Ca-F	Ca-Br	Ca-Br			
2.5331	2.4964	1.9972	1.9683	2.6911	2.6473			

	H-Mg-Halogen								
H-M	[g-Cl	H-M	g-Br						
HF	DFT	HF	DFT	HF	DFT				
H-Mg	H-Mg	H-Mg	H-Mg	H-Mg	H-Mg				
1.6872	1.681	1.6914	1.6834	1.6912	1.6856				
Mg-Cl	Mg-Cl	Mg-F	Mg-F	Mg-Br	Mg-Br				
2.1951	2.1972	1.7394	1.7577	2.3517	2.3498				

916

	H-Be-F								
	HF			DFT					
Y	IR intensity	Raman activity	υ	IR intensity	Raman activity	Assignments			
509	289.98	0.57	524	228.13	0.64	δH-Be-F			
1120	90.54	4.06	1164	67.89	6.67	υBe-F			
2006	175.56	104.74	2113	129.86	101.84	υBe-H			

Table 2:	Calculated	wave	numbers
	Calculateu		numbers

	H-Be-Cl								
	HF			DFT					
Y	IR intensity	Raman activity	Y	IR intensity	Raman activity	Assignments			
496	208.49	0.00	515	166.36	0.02	δH-Be-Cl			
739	103.68	7.96	787	87.10	12.88	υBe-Cl			
2007	203.60	117.78	2118	159.28	116.49	υBe-H			

	H-Be-Br							
	HF			DFT				
Y	IR intensity	Raman activity	Y	IR intensity	Raman activity	Assignments		
475	195.04	0.02	492	157.27	0.13	δH-Be-Br		
627	86.77	8.19	671	70.74	14.41	υBe-Br		
2005	216.82	123.19	2115	170.96	123.03	υBe-H		

Cont...

	H-Mg-F							
	HF			DFT				
Y	IR intensity	Raman activity	Y	IR intensity	Raman activity	Assignments		
302	404.81	2.40	303	305.51	5.05	δH-Mg-F		
686	66.27	1.87	707	50.23	4.54	υMg-F		
1523	171.48	159.47	1604	120.14	192.76	υMg-H		

	H-Mg-Cl								
	HF			DFT					
Y	IR intensity	Raman activity	υ	IR intensity	Raman activity	Assignments			
292	332.97	1.83	300	251.52	3.97	δH-Mg-Cl			
433	61.91	5.98	453	53.80	11.77	vMg-Cl			
1533	206.83	201.88	1610	156.11	256.20	υMg-H			

	H-Mg-Br							
	HF			DFT				
Y	IR intensity	Raman activity	υ	IR intensity	Raman activity	Assignments		
286	320.00	4.09	294	241.59	6.43	δH-Mg-Br		
350	47.59	5.95	366	40.22	12.12	uMg-Br		
1520	231.35	195.86	1599	182.62	266.04	υMg-H		

Cont...

	H-Ca-F							
	HF			DFT				
Y	IR intensity	Raman activity	υ	IR intensity	Raman activity	Assignments		
-74	621.36	3.23	-179	550.22	7.84	δH-Ca-F		
525	142.83	0.83	568	136.38	4.24	υCa-F		
1148	357.77	152.77	1206	284.71	303.28	υCa-H		

	H-Ca-Cl								
	HF			DFT					
Y	IR intensity	Raman activity	υ	IR intensity	Raman activity	Assignments			
120	550.79	4.59	-81	490.87	8.07	δH-Ca-Cl			
307	81.29	0.97	330	89.17	3.25	vCa-Cl			
1195	451.17	151.09	1265	448.75	256.57	υCa-H			

H-Ca-Br							
HF				DFT			
υ	IR intensity	Raman activity	υ	IR intensity	Raman activity	Assignments	
110	534.22	11.78	-86	464.59	18.42	δH-Ca-Br	
243	50.37	1.61	263	53.89	4.51	υCa-Br	
1214	481.33	170.10	1279	477.80	286.07	υCa-H	

Cont...

H-Be –Halogen							
	H-Be-Cl		H-Be-F		H-Be-Br		
	HF	DFT	Hf	DFT	DFT	DFT	
Е	7.745	7.629	8.347	8.165	7.539	7.428	
Cv	7.835	7.935	7.336	7.473	8.156	8.256	
S	52.379	52.449	49.570	49.702	55.179	55.252	

Tab	le 3:	Thermod	lynamic	parameters
-----	-------	---------	---------	------------

H-Ca-Halogen							
	H-Ca-Cl		H-Ca-F		H-Ca-Br		
	HF	DFt	HF	DFT	HF	DFT	
Е	5.348	4.091	4.272	4.232	5.325	4.065	
Cv	10.525	6.698	6.180	6.191	10.673	6.825	
S	62.536	56.710	53.762	53.704	65.516	59.362	

H-Mg-Halogen							
	H-Mg_Cl		H-Mg-F		H-Mg-Br		
	HF	DFT	HF	DFT	HF	DFT	
Е	6.199	6.105	6.510	6.388	6.088	6.004	
Cv	9.529	9.624	8.909	9.060	9.759	9.846	
S	57.061	57.255	54.158	54.450	59.826	60.021	

ACKNOWLEDGEMENTS

C. Yohannan Panicker would like to thank the Kerala State Council for Science, Technology and Environment for financial support.

REFERENCES

- 1. S. Thorwirth, M. C. McCarthy, J. B. Dudek and P. Thaddeus, J. Chem. Phys., **122**, 184308 (2005).
- 2. S. G. Kukolich, C. Tanjaroon, M. C. McCarthy and P. Thaddeus, J. Chem. Phys., **119**, 4353 (2003).
- 3. A. C. Cheung, D. M. Rank, C. H. Tonwes and W. J. Welch, Nature, 221, 917 (1969).
- 4. M. J. Travers, W. Chen, S. E. Novik, J. M. Vrtilek, C. A. Gottlieb and P. Thaddeus, J. Mol. Spectrosc., **180**, 75 (1996).
- 5. D. J. DeFrees and A. D. McLean, J. Chem. Phys., 82, 333 (1985).
- 6. Y. Yamaguchi and H. F. Schaefer, J. Chem Phys., 73, 2310 (1980).
- R. L. Jaffe, Md. Puttengill, F. G. Mascarello and R. N. Zare, J. Chem. Phys., 86, 6150 (1987).
- R. Zhang, D. J. Rakestraw, K. G. McKrendrick and R. N. Zare, J. Chem. Phys., 89, 6283 (1988).
- 9. H. Schor, S. Chapman, S. Green and R. N. Zare, J. Chem. Phys., 69, 3790 (1978).
- 10. S. Chapman, J. Chem. Phys., 81, 262 (1984).
- 11. X. H. Liu and J. N. Murrell, J. Chem. Soc. Faraday Trans., 87, 435 (1991).
- 12. X. H. Liu, J. Chem. Soc. Farady Trans., 89, 2969 (1993).
- 13. X. H. Liu, J. Chem. Soc. Faraday Trans., 90, 249 (1994).
- 14. H. P. Martns, R. L. A. Haiduke and R. E. Bruns, Spectrochim. Acta, 60A, 2947 (2004).
- 15. E. Kurita, H. Matsuura and K. Ohno, Spectrochim. Acta, 60A, 3013 (2004).
- 16. H. M. Badawi, Spectrochim. Acta, 60A, 2573 (2004).
- 17. J. Zhao, Y. Zhang, Y. Kan and L. Zhu, Spectrochim. Acta, 60A, 679 (2004).
- 18. L. E. Fernandez, M. G. Veron, E. L. Varetti, Spectrochim. Acta, 60A, 405 (2004).

- 19. J. R. Durig, C. Zheng and H. Deeb, J. Mol. Struct., 784, 78 (2006).
- 20. C. Puzzarini, J. Mol. Struct., 238, 780 (2006).
- 21. V. V. Sliznev, N. Vogt and J. Vogt, J. Mol. Struct., 247, 780 (2006).
- 22. L. E. Fernandez and E. L.Varetti, Spectrochim. Acta, 62A, 221 (2005).
- 23. T. R. Doi, F. Yoshinaga, C. F. Tormena, R. Rittner and R. J. Abraham, Spectrochim. Acta, **61 A**, 2221 (2005).
- 24. M. J. Frisch, et al. Gaussian03, Revision C. 02, Gaussain Inc., Wallingford CT (2004).

Accepted : 05.03.2010