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ABSTRACT KEYWORDS
Under the premise of arange of reasonable conditions and assumptions, Competitive swimming;
this study establishes athletes’ energy transformation model and optimal Strategy;

Optimal control;
Control model.

control model for short-distanceitem in competitive swimming and conducts
model parameters estimation and fitting combines with actual datato find
the optimal solution. Thenthisarticle discussesthe most optimal allocation
of the athletes’ physical strength and speed and points out that athlete
should adopt the three-phase game strategy in competition. Specifically,
thefirst phaseisto accel erate with maximum thrust and reach the maximum
speed at time; the second phase is maintaining uniform motion until at
time, when ideally physical output is completed; the last phase is to
decelerate and sprint. With this strategy the game can be completed inthe
shortest possible time, which provides theoretical support for technical

training of the athletes and coaches.

INTRODUCTION

With the increasing perfection of researches on
swimming theoriesand techniquesand scientificalness
of training methodsin the competitiveswimming devel -
opment at present, elite athletesfrom various countries
generally increasestheir competitivelevel andthe out-
comeof gameoften only liesbetween afineline. Mod-
ern swimmingismorethan the competition of athletes’
physica strength, speed and skills, but the competition
resultislargely related to therace strategy, the nature
of whichisamathematical programming problem. The
application of modern mathematics research methods
in competitive sports began in the 1970s, when an
Americanmahemaician, T.B. Kdler, built amathemaiti-
ca model in 1973, for thetraining of middleand long
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distance athletesand achievessignificant results. At the
sametime, Aiur combined thediscusthrow sport with
the theory of mathematics, mechanicsand computer
scienceand improved the throwing techni ques.
Optimal control theory isdevel oped after World
War 11 based on the concept of the state space. Inthe
1960s, with therapid devel opment of digital computer
technol ogy and spacetechnol ogy, optimal control theory
began to take shape asan important branch of science,
driven by the dynamic optimization theory. To thede-
velopment today, it hasmaderemarkableachievements
inmany fie ds, such assystemsengineering, Spacetech-
nology and economic management. Optimal control
theory isto maintain thetarget operated in accordance
withits characteristic under particular admissible con-
trol conditions and to reach the optimal valuefor the
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target. The mathematica natureof thistheory isafunc-
tional extremal problem, i.e. thevariational problem
under aset of constraints.

M odern competitive sport isnot just asport, but a
game of comprehensive strength of physiology, psy-
chology, mechanicsand mathematics. Swimming, asa
water exercise, isalow energy conversion efficiency
item affected by many factorssuch asphysica distribu-
tion, peed distribution and propul S on optimization, with
only about 10% of the athlete’sstigmaconvertedtothe
forward thrust. Therefore, reasonable allocation of
physical and impetus becomesacritical issue. Inthis
study, how to maximizeathlete’sphysica strength play
and achieve good gradesin competitiveswimmingis
anayzed onthebasisof optima control theory, aming
at to provide new theoretical support for theoptimiza-
tion of athletic performance and promote swimming
skillstoanew levd.

ENERGY CONVERSION MODEL IN
SWIMMING

Competitiveswimmingisanimportant iteminmod-
ern sports, which a so representsacountry’scompre-
hensivestrength of sportsproject. Therearemainly two
research directionsin order toimprovetheathl etic per-
formance: oneisthetechnicd level, includingincreasing
technology content, improving training methodsand
swimming technica movement and excavating thepo-
tential of athletes; body; the other isthetactical level,
i.e. toreasonably useavariety of strategiesand maxi-
mizether advantagesintofull play avoiding their wesk-
ness. This paper, mainly based on thetactical level,
combinestheoptimal control theory withsnvimmingand
discusses how to play afixed distancein the shortest
possibletimeby rational alocation of limited physical
strength. Establishamathematical modd and obtainthe
optima solution, and themathematical model consists
of two parts:

1) Kinetic model

Swimming can be gpproximately seen asthemove-
ment only inthehorizonta direction, and accordingto
Newton’slawsof motion:

1

V(1) = F (1) AV2 (1) @

Wherein, F (t)meansthrustin horizonta direction, mis

theathlete’smass, C, isthedrag coefficient, a stands
for the projected areafor the athlete’sbody, p isthe
density of water, v/ istheforward speed and the maxi-
mum vaueof itishypothesized asqQ , then r(t) canbe
normaizedasu(t):

u(t)=%t) 0<u(t)<1 2

Through theregressionandysisof a , ¢ andm, it
isfoundthat generdly thereisastrong re aionshipamong
them. And soindicatethat:

a:—pCdA b= Q

2m m
Theabovetwo equations are substituted into for-
mula(1), and thekinetic modd canbesmplified as:

V(t)=-aVv?(t)+buf(t) ©)
2) Energy conver sion model

Competitive swimming can be seen asan item of
how to all ocatethe human energy (1) at themost rea-
sonableway inafixed distance. Thechanging of physi-
cal strength can be described as:

E(t)=K-P-N-R (4)
Wherein k isthe energy generated power, pisthepro-
pulsion power at the horizontd direction, N isthenon-
propulsion power, i.e. the consumed power by there-
sistance of water, Riswasting power intheform of
heat. Asthe energy generated from anaerobic metabo-
lism occupiesthevast mgjority of thetotal energyin
short-distance swimming competitions, itisassumedin
thisstudy that the energy generation inthematchisto-
tally from anaerobic metabolism and non-propul sion
power and heat consumption are both ignored®. Be-
sides, thisstudy supposesthat al energy consumedis
on the propulsion at the horizontal direction. Asare-
ault, formula(4) canbesimplified as:

E(t)=-b-u(t) v (1) ®

ESTABLISHMENT OFOPTIMAL CONTROL
MODEL

The pursued goal of swimming competitionsisto
swim aprescribed distancein the shortest possibletime.
For the convenience of further research, itisequally
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regarded as anissue of how torationally allocate the
physical strength and speed in the case of fixestime
and energy to achievethefarthest svimming distance®.
Assuming that athleteshavethe samegtarting and turn-
ing-back techniquesand all set out in backstroke mode,
i.e. theinitia velocity iszero, thentheoptima mode for
thisproblemis:

Steady nonlinear system equation of state x - 1,
namdy.

\Y% —aV?(t)+bu(t)
X:[E}f:{—b»uoyvm) } ©)
Determination of propulsonu(t): 0<u(t)<1,when
thesystem startsfromtheorigind stae:

X(t)\,:0=xo=[céj
Andfinishesattime:, ,and E(t,)>0

Andwith performance s[u()]- ! -va indexreaches
theminimumvalue.

MODEL SOLUTION

Judging fromthenonlinearity of function at theright
hand of the state equation asformula(6), the general
method of determining theoptima solution of such func-
tion does not exist currently!?. But there must be an
optimal solution for swimming competition fromthe
practical point of view. Based on Lagrange’stheorem,
the above performanceindexes can betrand ated into:

I[u]=-pE(t, )+ [ [-V+2T (t)(f-X) et )
Informula(7): (t)=[4(t).4(t)] iSassociation state

vector, g isanon-negative constant and SE(t, ) = 0.
Congtruct Hamilton function:

H(X,Z,U)=-V+2T- f ==V +7,(-aV? +bu) + 4, (-buV) )]
Supposes(x (t,))=-4E(t,), substituteit into formula

(7), then:

I[uO]=S(X(t, )+ [} (H(X. Zu)-2X)ak 9)
Accordingto thelToatpSrua minimum principle,

theassociation sateequationis:

i = L N 2aAV + 2,bu
oV

oH (10)

A, = - =0
o0E

Transversdity conditions:
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Whenu(t)=u'(t), H reachestheminimumvaue:
H (x‘(t),I(t),u’(t)):om(itﬂlH (X7 (1), 2 (t),u(t)) (11)
And p isaconstant ontheoptima curve, namely:
H (X" (1), 2 (1),u" (1) = H (X" (t,). 2 (1),u" (1)) =const (12
AS(n)isgiven, 4,(t)=-4, 4 =1+2a1V - pbu, then
H(X,2,u)=-V -aiV?+(4+pV)bu (13)
When other conditionsremain unchanged, u (t) is
theoptima solutionof H :
L4, +8V<0

u (t)=40,4,+pvV >0
X, 4h+pV =0

When 4, + gV =0, theoptima solution cannot be deter-
mined only by the above conditions. Inthis case, the
optimal solutionmay bearbitrary valueunder o<’ (t)<1.

Whenthetimeintervd, (t.t,) <[ oy, |, lengthisnon-
zero, andit satisfies 4 + pv =0, thisoptimization prob-
lemissingular; otherwisenormal. Whenitissingular,
thederivationof 4, + gV = 0canbe:

(14)

1-3apV2 =0 te(ty,) (15)
When g >0,

V(t)= Sa%ﬂ te(tt,) (16)
u(t)z% te(tt) 17

It canbeseenthat when 4> 0, Singular Situation may
appear; when s -0, generally normal circumstances
occurs. Thefollowingisadiscussonof different g Stu-
ations.

1) When g =0, theoptimal solutionisv -, indicating
that athlete should swim in the maximum propul -
sionandthespeedis.

exp(rt)-1

V= exgért;+lve te [O’tf }

Wherein r = 2./ab , v, =/b/a, ad theenergy at finish-

ingmomentis

(18)

exp(rt)-1
exp(rt)+1

dt=E, ~b[ "V exp(rt)—1

ty
E -bV,
°+I° ¢ “exp(rt)+1

dt>0 (19)
Theresult of theintegral isthe maximum forward
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distanceat agivenfinishingtimet, . Full speed ahead
with aspeed of u ={1} for arbitrary initial energy E,
and moment whendl energy iscompletely consumedis
recorded asT_.if t; <T_, obviously {1} istheoptimal
solution; but if t, >T,, it showsthereis still energy

unconsumed at |ast moment t, and obviouslyis {1} no

longer theoptimal solution, indicatingthat itisableto

advancefurther away.

2) When g0, bothnormal solutionsand singular so-
lutionsexigt. It can be determined that norma solu-
tionsare: (1,0}, {1010}, {1,000} ..., and singular
solutions are: {1u,0}, {Lu,.0},...wherein
u, =13p.

As can be seen from the above analysis, normal
feasible solution and singular feasible solution arenei-
ther uniqueanditisvery difficult to determinethe opti-
mal solution besidesthat E,.t,,a,b areal unknown pa
rameters. Theforward propulsion of swimming athletes
inswimming processshould not befrequently changing
according to actual situations. Therefore, thisarticle
selectsonly thefirst few of thenormal and singular so-
Iutionsasfeasible solutionsand worksout therd atively
optima solutionamong them.

MODEL PARAMETERSAND DETERMINA-
TION OF OPTIMAL SOLUTION

The parametersof thismodel iscal cul ated based
onthe50M, 100M and 200M freestylechampionrace

resultson the 27th Olympic Games, and a=0.32(m*),
b=1.79(N/Kg). Onthisbasis, conduct parameter fitting
process of theimportant parameter g, . Supposing that

the championship achievements of 50M, 100M and
200M are T,,=21.98s, T,-4830s and T,,=105.35s re-

spectively, theoptimal solutionwhen t, =7, is {1} and
subgtitute T, = 21.98s intothefollowing formula

[ S
It can be acquired that:

V,=Jha=237(ms)  b=aV’=17(N/Kg) r=2J/ab=-152(ys)
E, >89.9(J/Kg)
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Similarly, when T, = 48.30s, thenthereis g <awq kg,
and it can be calculated that E; =176 J/kg) by fittingin
least square method.

Withthe above parameters, themaximum distances
correspondingto t, = 48.30sand t, =105.35s are 107.55M
and 202.01M respectively. Theoretically speaking, it
showsthat 100M and 200M champion athletes should
achievebetter resultsand thereis<till room for growth.

Usingthat aboveresult of &, , it can bedetermined
that critical momentis, - 42.23s and corresponding maxi-
mum distanceis b, =932 M. When ¢, >T =223, the
optimal solutionis y,.0.. AS100M, for example, when
t, =4830s, {1u,,0}iSthe optimal solution and the corre-
sponding propulsionfunctionis:

Lte[ot ]
U =Jute[tt |
Ote[t;t, ]

Ve ocity digributionfunctionis

(21)

2.37exp(L52t)—2.37
exp(1.52t)+1

V=iV te[t o |

v, .
03, (t-t)+1" [t]

,Ie[O,tl]

(22)

_ 2.37exp(152t,) - 2.37
© exp(152t,)+1

In formula (22): V. and

u, =0.18v7.
Theoptima velocity curveisshownin Figurel.

2

2.0-

&!{t}

Figurel: Optimal velocity curvewhent, = 48.30s

It can be seen from the optimal solution ..o that
theentiretimeinterva canbedividedintothree phases.
inthefirst phase, accel erate with the greatest impetus
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and vel ocity changesfrom 0 to the maximum with a
timeperiod of 2.54s; the second phaseisuniform mo-
tion with fixed thrust, the standardized thrust is0.92
and thetimereaching theoptimal segmentationis47.61s
whentheathlete’s physical energy iscompletely con-
sumed; thethird phaseisthedecd erated coasting phase
until theend, i.e. sprint stage.

The performance of athletesintheactual gameis
basicaly inlinewiththis process. Just from the point of
view of human contral, it isdifficult to achieve optimal
control of thrust and thus accurately grasp thetrue op-

timal moment. Besides, sinceparameter fittingof E, in
thisarticleonly refersto three setsof performance data
as50M, 100M, and 200M, theresult iswith certain

limitations. Therefore, further research should takea
larger sampledatato do parameter fitting. Thusthemore

accuratethefittingresult of E, is, theobtained optimal
vauewill bemuch closer totheactud Situation.

CONCLUSIONS

Thisarticlebuildsathletes’ energy transformation
modd and optima control mode of short-distanceitem
incompetitive swimming and explorestheoptimd dlo-
cation plan of athletes’ physical strength and speed by
meansof parameter estimation andfittinginthemode!.
It issuggested that athletes should accel erate with a
maximum thrust after starting off and reach the maxi-
mum velocity a time. Thenmaintain uniformmotion af-
ter that moment until time, when physicd energy iscom-
pletely consumedintheided Stuations. Afterwards, the
last phaseisdecel erated sprint, meaning to finish the
raceintheshortest possibletime. Inaddition, asthis
articleaimsat short-distanceitem, dueto theincrease
of the proportion of aerobic metabolismfor long-dis-
tance item, just with appropriate adjustments of the
model parameters, thismodd can till beused. Inthis
Study, combination of swimming and optimizationtheory
providesnew ideasfor thestudy on swimming strategy
and theconclusionsfrom thisresearch hasgreat Sgnifi-
cancefor svimmingtraining and tactical arrangements.
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