

Órganic CHEMISTRY

Trade Science Inc.

An Indian Journal

Full Paper

OCAIJ, 6(1), 2010 [66-69]

Synthesis, spectral and microbial studies of 3-{4-[2-methyl-4-(4methoxybenzylidene)-5-oxo-imidazol- 1-yl]phenyl}-2-(substituted phenyl)-1,3-thiazolidin- 4-one

P.S.Patel^{1*}, R.A.Shah¹, D.K.Trivedi¹, P.J.Vyas² ¹Department of Chemistry, Sheth L.H.Science College, MANSA - 382845, (INDIA) ²Department of Chemistry, Sheth M.N.Science College, PATAN - 384265, (INDIA) E-mail : pspatel_mansa@yahoo.co.in; vyaspiyushj@yahoo.com *Received: 21st January, 2010 ; Accepted: 31st January, 2010*

ABSTRACT

3-{4-[2-methyl-4-(4-methoxybenzylidene)-5-oxo-imidazol-1-yl]phenyl}-2-(substituted phenyl)-1,3-thiazolidin- 4-one have been prepared by the refluxation for 8 hours of 4-(4-methoxybenzylidene)-1-{4-[(stitutedbenzylidene)amino]phenyl}-2-methyl-imidazol-5-one with thioglycolic acid and anhydrous zinc chloride in presence of ethanol. the intermidiate 4-(4methoxybenzylidene)-1-{4-[(stitutedbenzylidene) amino]phenyl}-2-methylimidazol-5-one synthesized by the condensation of 1-(4-aminophenyl)-4-(4-methoxybenzylidene)-2-methyl-imidazol-5-one with various aldehydes. © 2010 Trade Science Inc. - INDIA

KEYWORDS

Stitutedbenzylidene; Benzaldehyde; Recrystallization; Oxazolone.

INTRODUCTION

Numerous reports have appeared in literature, which highlight the chemistry and uses of 4-thiazolidinones derivatives. F.C.Brown reviewed the chemistry of 4-thiazolidinones in depth in 1961^[1]. The chemistry and importance of 4-thiozolidinone have been reviewed in depth by Newkome^[2] and Singh^[3].

4-Thiazolidinone and its derivatives are known to possess a variety of Physiological properties viz. analgesic, local^[4] and spiral^[5] anesthetic, CNS stimulant^[6], hypnotics^[7], antibacterial^[8], antifungal^[9], antitubercular^[10], anticancer and anti-HIV^[11].

From the literature, we found that several 4thiazolidinones are known to display antimicrobial and therapeutic activies. Literature survey reveals scant mention of the above compounds with antimicrobial properties and hence more and more derivatives are worth tested for the possible medicinal applications. So we have decieded to synthesis3-{4-[2-methyl-4-(4methoxybenzy lidene)-5-oxo-imidazol-1-yl]phenyl}-2-(substituted phenyl)-1,3-thiazolidin- 4-one.

EXPERIMENTAL

Melting points were taken in open capillary tube and were uncorrected. IR spectra (KBr) were recorded on I.R. Spectrophotometer of Buck scientific Model No. 500 and instrument used for NMR Spectroscopy was DUL ¹³C-1, 300 MHz and tetramethyl silane used as internal standard. Solvent used were CDCl₃ and DMSO. Purity of the compounds were checked by TLC on silica- G plates. Anti microbial activities were tested by Cup-Borer method.

Full Paper

Preparation of 4-(4-methoxybenzylidene)-2-methyl-1,3-oxazol-5-one (P-1)

In a 500ml conical flask equipped with a reflux condenser a mixture of 4-methoxy benzaldehyde (50.394g, 0.37M), acetyl glycine (29g, 0.25M), acetic anhydride (63.5g, 0.62M) and anhydrous sodium acetate (15g, 0.183M) was placed and heated on an

electric hot plate with constant shaking. As soon as the mixture has liquefied completely, transfer the flask to a water bath and heat for 2 hours. Then add 100 ml of ethanol slowly to the contents of the flask, allow the mixture to stand overnight, filter the crystalline product with solution, wash with 25ml of ice-cold alcohol and then finaly wash with 25ml of boiling water, dry at 100°C. The yield of almost pure oxazolone was 78 %, m.p.193°C.

Found: C(66.32%) H(5.09%) N(6.42%), Calcd. for $C_{12}H_{11}NO_3$: C(66.35%) H(5.10%) N(6.45%).

Preparation of 1-(4-aminophenyl)-4-(4-methoxy benzylidene)-2-methyl-imidazol-5-one (P-2)

In a 250ml conical flask (equipped with a reflux condenser) a mixture of 4-(4-methoxybenzylidene)-2-methyl-1,3-oxazol-5-one (21.722g, 0.1M), benzene-1,4-diamine (10.81g, 0.1M), 25ml pyridine and about one pellet of KOH was placed and was heated on sand bath for 7-8hours. The mixture was then poured in ice. The precipitates were collected, washed with 10% HCl and re-crystallized from ethanol. The yield of the product was 72 % and the product melts at 184°C.

Found: C(70.32%) H(5.55%) N(13.64%), Calcd. for $C_{18}H_{17}N_3O_2$: C(70.34%) H(5.58%) N(13.67%).

IR (KBr); (cm⁻¹): 3360 (>N-H), 3095 (= CH-), 2910 (-CH Stretch), 1720 (>C = O imidazolone), 1605 (>C = N-), 1505 (>C = C<), 1375 (-CH₃ bend), 1250 (C-O), 1150(C-N).

Preparation of 4-(4-methoxybenzylidene)-1-{4-[(substitutedbenzylidene) amino] phenyl}-2-methyl-imidazol-5-one (P-3)

In a 250ml flask (equipped with reflux condenser) a mixture of 1-(4-aminophenyl)-4-(4-methoxybenzylidene)-2-methyl-imidazol-5-one (3.073g 0.01M), substituted benzaldehyde (0.01M) and absolute alcohol (30ml) were placed and 1 to 2 drops of hydrochloric acid was added and then, the mixture was heated on water bath for 6 hours and then cooled and the precipitates were filtered off and re-crystallized from absolute alcohol.

IR (KBr); (**P-3c**) (cm⁻¹): 3095 (= CH-), 2930 (-CH Stretch), 1690 (>C = O imidazolone), 1610 (>C = N-), 1500 (>C = C<), 1420 (-CH₃ bend), 1250 (C-O), 1150 (C-N).

Full Paper

 TABLE 1 : Physical constant of 3-{4-[2-methyl-4-(4-methoxybenzylidene)-5-oxo-imidazol- 1-yl]phenyl}- 2-(substituted phenyl)-1,3-thiazolidin- 4-one

No.	Sub. No.	R	Mole. For.	Mole.Wt. (g/m)	Yield(%)	M.P.°C-	Carbon(%)		Hydrogen(%)		Nitrogen(%)	
							Found	Required	Found	Required	Found	Required
1	P-4a	4-Cl	C ₂₇ H ₂₂ ClN ₃ O ₃ S	503.99988	58	208	64.32	64.34	4.38	4.40	8.31	8.34
2	P-4b	2-Cl	$C_{27}H_{22}ClN_3O_3S$	503.99988	54	218	64.31	64.34	4.39	4.40	8.32	8.34
3	P-4c	3-OCH ₃ , 4-OCH ₃	$C_{29}H_{27}N_3O_5S$	529.60678	60	230	65.75	65.77	5.11	5.14	7.91	7.93
4	P-4d	Н	$C_{27}H_{23}N_3O_3S$	469.55482	58	240	69.04	69.06	4.92	4.94	8.92	8.95
5	P-4e	2-OH	$C_{27}H_{23}N_3O_4S$	485.55422	55	149	66.76	66.79	4.75	4.77	8.16	8.65
6	P-4f	3-OCH ₃ , 4-OH	$C_{28}H_{25}N_3O_5S$	515.5802	62	185	65.21	65.23	4.86	4.89	8.12	8.15
7	P-4g	4-OH	$C_{27}H_{23}N_3O_4S$	485.5542	54	181	66.76	66.79	4.75	4.77	8.62	8.65
8	P-4h	4-N(CH ₃) ₂	$C_{29}H_{28}N_4O_3S$	512.62262	59	205	67.92	67.95	5.50	5.51	10.91	10.93
9	P-4i	4-OCH ₃	$C_{28}H_{25}N_{3}O_{4}S$	499.580	56	203	67.30	67.32	5.01	5.04	8.40	8.41
10	P-4j	3-NO ₂	$C_{27}H_{22}N_4O_5S$	514.55238	52	132	63.01	63.02	4.31	4.31	10.86	10.89

TABLE 2: Antimicrobial activities of 3-{4-[2-methyl-4-(4-methoxybenzylidene)-5-oxo-imidazol- 1-yl]phenyl}-2-(substitute
phenyl)-1,3-thiazolidin- 4-one

Sr. No	Comp. No	D	Zone of inhibitions in mm				
SI. INU.	Comp. No.	ĸ	E.coli	S. aureus	C. albicans		
1	P-4a	- 4-Cl	17	18	20		
2	P-4b	- 2-Cl	16	14	18		
3	P-4c	- 3-OCH ₃ , -4-OCH ₃	NA	16	16		
4	P-4d	H	15	14	15		
5	P-4e	- 2-OH	16	15	16		
6	P-4f	- 3-ОСН ₃ , -4-ОН	18	18	17		
7	P-4g	- 4-OH	15	16	15		
8	P-4h	- 4-N(CH ₃) ₂	14	15	16		
9	P-4i	- 4-OCH ₃	15	14	15		
10	P-4j	- 3- NO ₂	13	14	14		
11	Penicillin	-	18	20	-		
12	Kanamycine	-	19	24	-		
13	Baycor 25 w.p	-	-	-	24		
14	Amphotericine	-	-	-	21		

NMR: (**P-3j**): 2.490, singlate (3H) (-CH₃), 3.416, singlate (3H) (-OCH₃), 5.783, singlate (1H) (= CH-vinylic), 5.857, singlate (1H) (-Ar-CH = N-), 7.062-7.917, multiplate (12H) (Ar-H).

Preparation of 3-{4-[2-methyl-4-(4-methoxybenzylidene)-5-oxo-imidazol-1-yl] phenyl} -2-(substituted phenyl)-1,3-thiazolidin- 4-one (P-4)

A solution of compound 4-(4-methoxybenzylidene)-1-{4-[(substituted benzylidene) amino] phenyl}-2-methyl-imidazol-5-one (0.01M), thiogly- colic acid (0.92g, 0.01M) and anhydrous zinc chloride (2g) in absolute ethanol (60 ml) was refluxed for 8 hours,

An Indian Journal

Organic CHEMISTRY

concentrated, cooled and poured into crushed ice, and then filtered. The product obtained was purified by recrystallization from acetone.

IR (KBr); (**P-4f**): (cm⁻¹): 3300 (-OH), 3090 (= CH-), 2930 (-CH), 1710 (>C = O imidazolone), 1600 (>C = N-), 1500(>C = C<), 1470 (-CH₂ bend.), 1350 (-CH₃ bend), 1250 (C-O-), 1150 (C-N), 700 (C-S-C Stretch.).

NMR: (**P-4h**): 1.162, singlate (2H) (>CH₂), 1.810, singlate (6H) (-N(CH₃)₂), 2.490, singlate (3H) (-CH₃), 2.530, triplet (1H) (>CH-N<), 3.440, singlate (3H) (-OCH₃), 5.717, singlate (1H) (= CH-vinylic), 7.001-7.435, multiplate (12H) (Ar-H).

ACKNOWLEDGEMENTS

The authors are thankful to the Sheth L.H.Science College, Mansa for providing research facilities. One of the author Pankaj S.Patel is thankful to UGC. Ganeshkhind, Pune, for Teacher Research Fellowship.

- REFERENCES
- [1] F.C.Brow; Chem.Rev., 61, 463 (1961).
- [2] G.Newkome, A.Nayak; Advance in Heterocyclic Chemistry, 25, 83 (1979).
- [3] S.Singh, S.Parmar, R.Raman; Chem.Rev., 81, 175 (1981).
- [4] H.D.Trautman, L.M.Longe; J.Am.Chem.Soc., 70, 3436 (1948).
- [5] A.R.Surray; J.Am.Chem.Soc., 71, 3354 (1949).
- [6] G.French; Chem.Abstr., 65, 4439 (1966).
- [7] W.J.Doran, H.A.Sholen; J.Org.Chem., 3, 193 (1938).
- [8] B.Sayed Bayoumy; Acta Pol.Pharma.(Poland), 13, 48 (1991).
- [9] S.K.Srivastav, S.D.Srivastav; Indian J.Chem.B., 39, 104 (2000).
- [10] H.Oza, D.Joshi, H.Parekh; Indian J.Chem.B., 37, 822 (1998).
- [11] B.R.Shah, N.C.Desai, P.B.Trivedi; Indian J.Heterocycl.Chem., 2(4), 249 (1993).

