Volume 10 Issue 8

An Indian Journal

FULL PAPER BTAIJ, 10(8), 2014 [2755-2761]

Civil building ventilation problem analysis

Chuanping Feng Maoming Polytechnic, Maoming 525000, Guangdong, (CHINA)

ABSTRACT

With emergence and development of air conditioner technology, Chinese air conditioner technology has been further optimized in energy conservation and environmental protection aspects, so usage of air conditioner appears in every corner of modern buildings, some buildings even install integral central air conditioner, there are partial civil buildings install space to locate air conditioner for every users so as to keep standardized specification of whole floors. But excessive relying on air conditioner in view of energy and air, it not only causes wastes, but also leads to destroy natural environment in some aspects, so building ventilation problem should be further promoted. The paper firstly analyzes specified ventilation seasons or air conditioner seasons' building ventilation problems, and carries on fuzzy comprehensive evaluation on Chinese civil building's building ventilation problem from energy consumption aspect, improving residents' comfort level, spatial arrangement and building techniques aspect.

KEYWORDS

Building ventilation; Fuzzy comprehensive evaluation; Civil building.

© Trade Science Inc.

INTRODUCTION

By TABLE 1 and TABLE 2, the paper states civil building, office building and store building three main buildings' dehumidification main coefficients by ventilation ways and different functions' spaces required ventilation ways.

TABLE 1	: Building	dehumidification	coefficient
---------	------------	------------------	-------------

Computation parameter	Civil	Office	Store
	building	building	building
Dehumidification coefficient $g \ / \ h$	102	102	176

Type of building	Type of room	Average ventilation rate
Circil berilding	Ordinary building	17
Civil building	Detached building	15
Store building	General stores	12
	Regular office	19
	Top-level office	15
Office building	Meeting room	20
	File room	10
	Corridor	6

 TABLE 2 : Ventilation rate

By TABLE 3, it is clear that different seasons have different requirements in ventilation, according to different seasons, local direction and wind speed have great differences, so take comprehensive consideration of ventilation seasons time, it mainly considers the seasons ventilation problems and analyzes civil building ventilation designing.

Building energy conservation seasons	Starting date	Ending date	Consecutive days
V	1.1	5.23	143
Ventilation seasons	10.5	12.31	88
Dehumidification	5.24	6.20	28
seasons	9.18	10.4	17
Air conditioner seasons	6.21	9.17	89

TABLE 3 : Different seasons to ventilation

FUZZY EVALUATION MODEL ESTABLISHMENTS

Fuzzy comprehensive evaluation model

Fuzzy comprehensive evaluation model fits for fuzzy computation that multiple factors are uncertain, the paper utilizes fuzzy comprehensive evaluation, and it gets following process: At first, the paper establishes factor set U:

 $U = \begin{pmatrix} U_1 & U_2 & \cdots & U_k \end{pmatrix}$

Secondly, establish factor set V (evaluation set),

The paper establishes evaluation matrix fuzzy mapping from U to V, obtained fuzzy relation as following matrix show:

Chuanping Feng

$$R = \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ r_{21} & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & & \vdots \\ r_{m1} & r_{m2} & \cdots & r_{mn} \end{bmatrix}$$

The paper establishes weight set, $A = (a_1, a_2, \dots, a_n)$, it meets conditions:

$$\sum_{i=1}^{n} a_i = 1 \quad a_i \ge 0$$

Fuzzy relation R every line will reflect the line influence factors to object judgment degree, meanwhile, R every column will reflect the column influence factors to object judgment degree.

$$\sum_{i=1}^{n} r_{ij} \qquad j = 1, 2, 3, \cdots, m$$

Secondly the paper carries on following computation according to fuzzy comprehensive evaluation:

$$B = A \cdot R$$

= $(a_1, a_2, a_3, \dots, a_n) \cdot \begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ r_{21} & r_{22} & \cdots & r_{2n} \\ \vdots & \vdots & & \vdots \\ r_{m1} & r_{m2} & \cdots & r_{mn} \end{bmatrix}$
= $(b_1, b_2, b_3, \dots, b_n)$

In V, fuzzy combination is evaluation set B. To sum up, actually fuzzy comprehensive evaluation obtained multimode system simple change model is as Figure 1 shows:

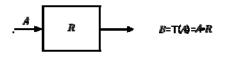


Figure 1 : Simple change model

According to Figure 1 marked contents, it gets fuzzy comprehensive evaluation change model, and can establish corresponding every factor grade evaluation transformation function, evaluation factors u1, u2, u3, u4, u5 membership functions can be expressed as following formula (1), (2), (3) shows:

$$u_{v1}(u_1) = \begin{cases} 0.5(1 + \frac{u_i - k_1}{u_i - k_2}), & u_i \ge k_1 \\ 0.5(1 - \frac{k_1 - u_i}{k_1 - k_2}), & k_2 \le u_i < k_1 \\ 0 & , & u_i < k_2 \end{cases}$$
(1)

(3)

$$u_{v2}(u_{1}) = \begin{cases} 0.5(1 - \frac{u_{i} - k_{1}}{u_{i} - k_{2}}), & u_{i} \ge k_{1} \\ 0.5(1 + \frac{k_{1} - u_{i}}{k_{1} - k_{2}}), & k_{2} \le u_{i} < k_{1} \\ 0.5(1 - \frac{u_{i} - k_{3}}{k_{2} - k_{3}}), & k_{3} \le u_{i} < k_{2} \\ 0.5(1 - \frac{k_{3} - u_{i}}{k_{2} - u_{i}}), & u_{i} < k_{3} \end{cases}$$

$$(2)$$

$$u_{v1}(u_1) = \begin{cases} 0, & u_i \ge k_2 \\ 0.5(1 - \frac{k_1 - u_i}{k_2 - k_3}), & k_3 \le u_i < k_2 \\ 0.5(1 + \frac{k_3 - u_i}{k_2 - u_i}), & u_i < k_3 \end{cases}$$

ſ

Combine with fuzzy evaluation model to evaluate civil building ventilation problem

By above model principle, it establishes factor set U, from which $U = (U_1 \ U_2 \ U_3 \ U_4)$. Among them, energy consumption aspect U_1 , improving residents comfort level U_2 , spatial arrangement U_3 , building techniques U_4 , it gets TABLE 4. The paper establishes small factors sets in four important factor sets.

TABLE 4 : Civil building ventilat	on problem evaluation indicator system

Energy consumption aspect U_1	Improving residents comfort level U_2	Spatial arrangement $U_{_3}$	Building techniques $U_4^{}$
Air conditioner usage amount u_{11}	Ventilation efficiency u_{21}	Conform to building mechanics u_{31}	Ventilation designing cost u_{41}
Improvement of air index u_{12}	Ventilation quality u_{22}	Indoors spatial arrangement \mathcal{U}_{32}	Installation techniques u_{42}
Clearstory or ventilator utilization		Ventilation lighting requirements	New pattern technical development
<i>u</i> ₁₃	Summer ventilation efficiency \mathcal{U}_{23}	<i>u</i> ₃₃	u_{43}
Reduction of electricity consumption	Building ventilation and lighting set		
u_{14}	<i>u</i> ₂₄	Overall situation arrangement \mathcal{U}_{34}	
Change of ventilation facilities \mathcal{U}_{15}			

By TABLE 4 listed factors, it gets evaluation set.

$$U_{1} = \{u_{11}, u_{12}, u_{13}, u_{14}\}$$
$$U_{2} = \{u_{21}, u_{22}, u_{23}, u_{24}, u_{25}\}$$
$$U_{3} = \{u_{31}, u_{32}, u_{33}\}$$
$$U_{4} = \{u_{41}, u_{42}, u_{43}, u_{44}\}$$

By collecting data and analyzing, it gets four factors importance degree ranking statistics as TABLE 5 shows.

TABLE 5: Four factors importance degree ranking statistics

Classification	Rank 1	Rank 2	Rank 3	Rank 4
Energy consumption aspect U_1	23	7	3	0
Improving residents comfort level ${old U}_2$	0	0	15	18
Spatial arrangement U_3	0	9	13	12
Building techniques U_4	3	21	9	0

By TABLE 2 sorting, it gets energy consumption aspect U_1 , improving residents comfort level U_2 , spatial arrangement U_3 , building techniques U_4 four aspects ranking matrix.

 $U_{2} = \{23, 7, 3, 0\}$ $U_{2} = \{0, 9, 15, 18\}$ $U_{3} = \{0, 9, 13, 12\}$ $U_{4} = \{3, 21, 9, 0\}$

Obtained weighted vector from rank 1 to rank 2

$$\beta = \{\beta_1, \beta_2, \beta_3, \beta_4\} = \{0.4, 0.3, 0.2, 0.1\}$$

According to following process, it gets

 $U_i^* = U_i \cdot \beta^T$ $U_1^* = 14, U_2^* = 9.4, U_3^* = 4, U_4^* = 5.6$

The paper takes normalization processing, and gets:

$$U_1^* = 0.35, U_2^* = 0.3, U_3^* = 0.2, U_4^* = 0.15$$

 $\bar{A} = (0.35 \ 0.3 \ 0.2 \ 0.15)$

The paper establishes remarks membership, as TABLE 6 show.

 TABLE 6 : Remarks membership

Evolution way		Set scor	es interv	al
Evaluation way	0-60	60-80	80-90	90-100
Very good	0	0	0.05	0.95
Good	0	0.05	0.9	0.05
Normal	0.05	0.9	0.05	0
Bad	0.95	0.05	0	0

The paper gets TABLE 7 through obtained evaluation on Chinese civil building ventilation problem in energy consumption aspect U_1 , improving residents comfort level U_2 , spatial arrangement U_3 , building techniques U_4 four aspects each indicator.

Each layer indicator	Evaluation value	Each layer indicator	Evaluation value
Relative air conditioner usage amount u_{11}	Good	Conform to building mechanics u_{31}	Good
Improvement of air index u_{12}	Normal	Indoors spatial arrangement u_{32}	Good
Clearstory or ventilator utilization u_{13}	Normal	Ventilation lighting requirements u_{33}	Good
Reduction of electricity consumption u_{14}	Normal	Overall situation arrangement u_{34}	Normal
Change of ventilation facilities u_{15}	Normal	Ventilation designing cost u_{41}	Good
Ventilation efficiency u_{21}	Very good	Installation techniques u_{42}	Normal
Ventilation quality u_{22}	Very good	New pattern technical development u_{43}	Normal
Summer ventilation efficiency u_{23}	Good		
Building ventilation and lighting set u_{24}	Good		

TABLE 7 : Chinese civil building ventilation problem each item indicator obtained evaluation value

By above model, it gets single layer indicator weight factor fuzzy set is:

$$\begin{split} &U_1^* = \left\{ U_{11}, U_{12}, U_{13}, U_{14}, U_{15} \right\} = \left\{ 0.25\ 0.24\ 0.21\ 0.14\ 0.16 \right\} \\ &U_2^* = \left\{ U_{21}, U_{22}, U_{23}, U_{24} \right\} = \left\{ 0.53\ 0.11\ 0.24\ 0.14 \right\} \\ &U_1^* = \left\{ U_{31}, U_{32}, U_{33}, U_{34} \right\} = \left\{ 0.42\ 0.28\ 0.1\ 0.2 \right\} \\ &U_1^* = \left\{ U_{41}, U_{42}, U_{43} \right\} = \left\{ 0.3\ 0.39\ 0.31 \right\} \end{split}$$

The paper relies on TABLE 5 evaluation, combines with TABLE 3 remarks membership, it gets energy consumption aspect U_1 , improving residents comfort level U_2 , spatial arrangement U_3 , building techniques U_4 each aspect evaluation set:

Energy consumption aspect $U_1 = \begin{pmatrix} 0 & 0 & 0.05 & 0.95 \\ 0 & 0 & 0.05 & 0.95 & 0.05 \\ 0 & 0.05 & 0.95 & 0.05 \\ 0 & 0.05 & 0.95 & 0.05 \\ 0 & 0.05 & 0.95 & 0.05 \\ \end{pmatrix}$ Improving residents comfort level $U_2 = \begin{pmatrix} 0 & 0 & 0.05 & 0.95 \\ 0 & 0 & 0.05 & 0.95 \\ 0 & 0 & 0.05 & 0.95 \\ 0 & 0.05 & 0.9 & 0.05 \\ 0 & 0.05 & 0.9 & 0.05 \\ 0 & 0.05 & 0.9 & 0.05 \\ 0 & 0.05 & 0.9 & 0.05 \\ 0 & 0.05 & 0.9 & 0.05 \\ 0 & 0.05 & 0.9 & 0.05 \\ 0 & 0.05 & 0.9 & 0.05 \\ 0 & 0.05 & 0.9 & 0.05 \\ 0 & 0.05 & 0.9 & 0.05 \\ 0 & 0.05 & 0.9 & 0.05 \\ \end{pmatrix}$ Building techniques $U_4 = \begin{pmatrix} 0 & 0 & 0.05 & 0.95 \\ 0 & 0.05 & 0.9 & 0.05 \\ 0 & 0.05 & 0.9 & 0.05 \\ 0 & 0.05 & 0.9 & 0.05 \\ 0 & 0.05 & 0.9 & 0.05 \\ 0 & 0.05 & 0.9 & 0.05 \\ \end{pmatrix}$ Carry on following computation on above evaluation set:

$$B_i = A_i \cdot R_i$$

Make normalization processing with obtained B_i , it gets fuzzy evaluation matrix.

$$\bar{B} = \begin{pmatrix} B_1 \\ B_2 \\ B_3 \\ B_4 \end{pmatrix} = \begin{pmatrix} 0.07 & 0.26 & 0.13 & 0.42 \\ 0 & 0.15 & 0.76 & 0.54 \\ 0.14 & 0.24 & 0.21 & 0.17 \\ 0.14 & 0.2 & 0.3 & 0.36 \end{pmatrix}$$

It gets comprehensive evaluation value:

 $Z = U^* \cdot B = (0.24 \quad 0.33 \quad 0.28 \quad 0.15)$

CONCLUSION

By fuzzy comprehensive evaluation value, it can get that 0.33 maximum value located remark is good, which shows that in energy consumption aspect, improving residents' comfort level, spatial arrangement and building techniques aspect as well as other aspects develop well, but due to 0.28 gets closer to 0.33, it shows civil building ventilation problem development is not smooth, it needs to make further improvements in designing and constructing aspects, and better implements high quality ventilation.

REFERENCES

- [1] Han Cheng-Hui, Liu Wen-Sheng; Application of fuzzy comprehensive evaluation method in mining area underground water quality evaluation [J]. Journal of mining safety and environmental protection, **05**, (**2004**).
- [2] Yu Hao, Liu Zhi-Bing, Wang Zhao-Jun; Grey clustering analysis method-based mine water quality evaluation [J]. Journal of Liaoning engineering technology university, **S1**, (2003).
- [3] Gu Zhao-Jun, Pan Ying, Pan Ming-Jie; Application and existing problems of Nemerow index method in the evaluation of underground water quality [J]. Journal of environmental protection science, **01**, (**2002**).
- [4] Ni Shen-Hai, Bai Yu-Hui; Application of BP neural network model in underground water quality evaluation [J]. Journal of system engineering theory and practice, **8**, (2000).
- [5] Wang Xiao-Ping, Su Yang-Ping; Application of fuzzy comprehensive evaluation method in the discussion on several issues in the underground water quality evaluation [J]. Journal of Henan geological, **03**, (**1992**).
- [6] Zhang Jin-Ping, Li An-Gui; Natural ventilation research application status and problems discussion [J]. Journal of heating ventilation and air conditioning, **35(8)**, 32-38 (**2005**).
- [7] Li Zheng-Rong, Wang Jing-Jing, Huang Ji-Hong; Application discussion on natural ventilation technology in modern urban architecture [J]. Journal of Shanghai energy conservation, 5, (2005).
- [8] Deng Qiao-Lin;High-rise residential architecture with the atrium space natural ventilation characteristics research [D]. Hunan university doctoral dissertation, **12**, (2006).
- [9] Zhu Wei, Di Yu-Hui, Wang Wan-Jiang, Li An-Gui; Indoors environment and the natural ventilation [J]. Building science and engineering Journal, 23(1), 3 (2006).
- [10] Yang Jian-Kun, Zhang Xu, Liu Dong etc. Atrium building thermal environment numerical simulation under the effects of natural ventilation [J]. Journal of heating ventilation and air conditioning, **35**(5), 26-29 (**2005**).