Chaos Theory and at Math Paul TE Cusack

Versatile writer and researcher McGill University, Canada
*Corresponding author: Paul TE Cusack, Versatile writer and researcher McGill University, Canada; Email:St
michael@hotmail.com
Received date: September 29, 2021; Accepted date: October 12, 2021; Published date:October 20, 2021

Abstract

This paper involves calculations involving Chaos Theory, Entropy, Order and Disorder. Economic and physical system involve making order from disorder, or chaos.

Keywords: Chaos Theory; Entrop; Oder; Disorder; AT Math

Introduction

In this paper, we consider chaos in light of entropy. Chaos is involved in thigs from physics and the arrangement of the universe to economics.
$X_{t+1}=k x(1-\mathrm{x})$
growth rate, $\mathrm{k}=(-7)$
$1-(1 / k)=[1+1 /(-7)]$
$x=t=1 / 2$
$x_{t+1}=(-7)(1 / 2)(1-1 / 2)=-7 / 4=-1.75 \mathrm{rads}=100.267^{\circ}$
But,
$s=E \times t=|E||t| \sin \theta$
$1 / s=1 /(4 / 3)=0.75$ critical
$1 / s=1 / t=E$
Since, $s=t$
$E=1 / \sin \theta=1 / \sin 100.267^{\circ}=101.627=1 / 0.984$
Put, $t=0.984$

Fair Coin Equation

$t^{2}-t-1=E$
$(0.984)^{2}-(0.984)-1=101.576$

Citation: Paul TE Cusack, Chaos Theory and at Math, J Phys Astron.2021;9(6):225
©2021 Trade Science Inc.
$\mathrm{k}>3=$ chaotic
$\mathrm{k}=(-7)$

$$
\begin{aligned}
& t^{2}-t-1=101.576 \\
& \mathrm{t}=1.064 \quad \mathrm{E}=0.94 \\
& \mathrm{t}=-0.964 \quad \mathrm{E}=-0.863 \\
& t^{2}-t-1=E=1 \\
& t^{2}-t-2=0 \\
& \mathrm{t}=-1 ; 2 \\
& 2=-7(x)(1-x) \\
& 2=7\left(x-x^{2}\right) \\
& 2 / 7=x-x^{2} \\
& x^{2}-x-2 / 7=0 \\
& x=t=1.0345 ; 0.2319 \\
& 1 / 1.0345=0.9666 \\
& 1 /(-2319)=-4.312 \\
& M=\operatorname{Ln} t=\operatorname{Ln} 23.19=3.143 \sim \pi \\
& E^{2}+E-2=t \\
& (1 / .2319)^{2}+(1 / .2319)-2=4.312^{2}-4.312-2=1.616 \sim 1.618 \Rightarrow G M P \\
& t^{2}-t-1=E \\
& (1.618)^{2}-1.6718-1=0=E \\
& t^{2}-t-1=E
\end{aligned}
$$

$$
(0.2319)^{2}-(0.2319)-1=117.8 \sim \sum v=\text { Sum of the frequencies }
$$

$$
M=\operatorname{Ln} t=117.8
$$

$$
M=\operatorname{Ln} 117.8=7.5(\text { Chaos Blows } U p)
$$

Entropy and Order and Disorder
$S=k_{B} \log \Omega$
$=0.75(118.9)$
$=89.175=c^{2}$
Disorder $=C_{\text {Disorder }} / C_{\text {Information }}=89.175 / 7=127.3=\rho=4 / \pi=$ Density
Order $=1-C_{\text {Order }} / C_{\text {Information }}=1-1 / 7=0.857$

Order + Disorder $=0.857+127.3=12.8157=u \bar{V}=$ Universal Vector
$C_{o} / C_{I}+C_{D} / C_{I}=1 / 7+4 / \pi=1415=\sqrt{ } 2=E=\sin 45^{\circ}+\cos 45^{\circ}$

Conclusion

We see that AT math provides a light on Chaos Theory which could help us solve problems of disorder and order.

