ISSN: 0974 - 7435

Volume 6 Issue 4,5





### Trade Science Inc.

SHORT COMMUNICATION

BTAIJ, 6(4,5), 2012 [147-149]

## Bioinformatic analysis of the infectious bursal disease virus

Hari Mohan Saxena

Department of Veterinary Microbiology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141 004, (INDIA) E-mail: hmsaxena@vahoo.com Received: 14th May, 2012; Accepted: 14th June, 2012

## Abstract

The analysis of amino acid sequences of the Infectious Bursal Disease virus (IBDV) proteins was done to identify their features. Antigenicity plot of the 1011 residue long IBDV sequence revealed 38 potential antigenic sites in viral protein VP2 of the virus. Prosite analysis of the amino acid sequence of IBDV revealed 11 Casein Kinase II Phosphorylation sites, 17 Protein Kinase C Phosphorylation sites, 4 N-Glycosylation sites, 18 N-Myristoylation sites and 2 Tyrosine Kinase Phosphorylation sites, respectively. © 2012 Trade Science Inc. - INDIA

# **K**EYWORDS

Infectious bursal disease: IBD virus: Bioinformatic analysis; Host -pathogen interaction.

#### **INTRODUCTION**

Infectious Bursal Disease (IBD) is an acute contagious viral disease affecting young chickens up to six weeks of age causing high morbidity but low mortality. IBD Virus (IBDV) selectively affects the B Lymphocytes of chickens. It destroys B cells in the bursa of Fabricius causing significant depression of the humoral immune response. Although VP2 is known to be involved in host cell tropism, the site of predilection for IBDV on chicken B cells is not known yet. Bioinformatic study on the available protein sequence of IBDV was therefore undertaken to explore the molecular basis of host-pathogen interaction in Infectious Bursal Disease of chickens.

#### **MATERIALS AND METHODS**

Amino acid sequence of Infectious Bursal Disease

virus proteins available in the protein sequence database on web was analyzed using computer programs available in the public domain. The functional sites of the sequence were predicted by PROSITE software. Potential antigenic epitopes of IBDV protein were predicted on the basis of hydrophilicity profile using the ANTIGEN program.

#### **RESULTS AND DISCUSSION**

The Infectious Bursal Disease Virus (IBDV) infects the immature B cells in bursa during their differentiation in young chickens. The exact target of IBDV attachment to B cells is not known. The analysis of amino acid sequence of the Infectious Bursal Disease virus VP2 protein was done to identify the features. Antigenicity plot of the 1011 residue long IBDV sequence revealed 38 potential antigenic sites of the virus (TABLE 1).

# SHORT COMMUNICATION C

The conserved heptapeptide of IBDV VP2 showed similarities to peptide amidase which interacts with chymotrypsin and to an uncharacterized antigen of *Leishmania major* and *Leishmania braziliensis* which infect macrophages. It seems to suggest that IBDV and Leishmania may possibly have similar mechanism of entry into the host cell.

Prosite analysis of the amino acid sequence of IBDV revealed 52 functional sites (11 Casein Kinase II Phosphorylation sites, 17 Protein Kinase C Phosphoryla-

| S.no. | Start position | Sequence                           | End position |
|-------|----------------|------------------------------------|--------------|
| 1     | 8              | TQQIVPFIRSLLM                      | 20           |
| 2     | 54             | SGLIVFFPGFPGSIVGAHYT               | 73           |
| 3     | 82             | FDQMLLTAQNLPASYNYCRLVSRSLTVRS      | 110          |
| 4     | 113            | LPGGVYAL                           | 120          |
| 5     | 124            | INAVTFQGSLSELTD                    | 138          |
| 6     | 155            | IGNVLVGEGVTVLSLPTSYDLGYVRLGDPIPAIG | 188          |
| 7     | 190            | DPKMVATC                           | 197          |
| 8     | 201            | DRPRVYTI                           | 208          |
| 9     | 212            | DDYQFSSQYQAGGVTITLFSAN             | 233          |
| 10    | 236            | AITSLSIGGELVFQTSVQGLILGATIYLIG     | 265          |
| 11    | 267            | DGTAVITRAVAA                       | 278          |
| 12    | 291            | PFNIVIPT                           | 298          |
| 13    | 301            | ITQPITSIKLEIVT                     | 314          |
| 14    | 329            | ASGSLAVTI                          | 337          |
| 15    | 342            | YPGALRPVTLVAYER                    | 356          |
| 16    | 358            | ATGSVVTVAGVSNF                     | 371          |
| 17    | 379            | LAKNLVTE                           | 386          |
| 18    | 425            | YFMEVADLNSPLKIAG                   | 440          |
| 19    | 446            | DIIRALRRIAVPVVSTLFPPAAPLAH         | 471          |
| 20    | 473            | IGEGVDYLLG                         | 482          |
| 21    | 515            | KGYEVVANLFQVPQNPVVDGILASPGILRG     | 544          |
| 22    | 546            | HNLDCVLRE                          | 554          |
| 23    | 556            | ATLFPVVITT                         | 565          |
| 24    | 578            | KMFAVIE                            | 584          |
| 25    | 604            | SGHRVYGYAPDGVLPLET                 | 621          |
| 26    | 623            | RVYTVVPID                          | 631          |
| 27    | 638            | IMLSKDPIPPIVGS                     | 651          |
| 28    | 653            | GNLAIAYMDVFRPKVPIHVAM              | 673          |
| 29    | 692            | KLATAHRLGLKLAG                     | 705          |
| 30    | 733            | RLPYLNLPYLP                        | 743          |
| 31    | 748            | RQYDLAM                            | 754          |
| 32    | 764            | ELESAVRA                           | 771          |
| 33    | 774            | AAANVDPLFQSALSVFM                  | 790          |
| 34    | 866            | GIYFATPEWVAL                       | 877          |
| 35    | 904            | YLDYVHAEK                          | 912          |
| 36    | 917            | SEGQILRAATSIYGA                    | 931          |
| 37    | 936            | EPPQAFIDEVAKVYEV                   | 951          |
| 38    | 986            | PKPNVPT                            | 992          |

#### TABLE 1 : Epitopes of IBDV predicted from the available protein sequence



\_

 $\mathbf{O}$ 

| Functional site       | Residues  | Sequence | Functional site      | e Residues    | Sequence                |  |
|-----------------------|-----------|----------|----------------------|---------------|-------------------------|--|
| Casein kinase II      | 27 - 30   | SipD     | Protein kinase C     | 37 - 39       | TIR                     |  |
| phosphorylation       | 48 - 51   | TvgD     | phosphorylation site | 107 - 109     | TvR                     |  |
| site                  | 132 - 135 | SlsE     |                      | 200 - 202     | SdR                     |  |
|                       | 171 - 174 | TsyD     |                      | 307 - 309     | SiK                     |  |
|                       | 209 - 212 | TaaD     |                      | 314-316       | TsK                     |  |
|                       | 369 - 372 | SnfE     |                      | 403-405       | SeR                     |  |
|                       | 403-406   | SerD     |                      | 491-493       | TaR                     |  |
|                       | 564-567   | TtvE     |                      | 496-498       | SgK                     |  |
|                       | 565-568   | TveD     |                      | 503-505       | SgR                     |  |
|                       | 968-971   | TamE     |                      | 571-573       | ТрК                     |  |
|                       | 1007-1010 | SdeD     |                      | 594-596       | SqR                     |  |
|                       |           |          |                      | 621-623       | TgR                     |  |
| N-myristoylation site | 65-70     | GSivGA   |                      | 687-689       | SfR                     |  |
|                       | 69-74     | GAhyTL   |                      | 690-692       | StK                     |  |
|                       | 115-120   | GGvyAL   |                      | 828-830       | SqR                     |  |
|                       | 122-127   | GTinAV   |                      | 859-861       | SkK                     |  |
|                       | 143-148   | GLmsAT   |                      | 992-994       | TqR                     |  |
|                       | 224-229   | GVtiTL   |                      |               |                         |  |
|                       | 254-259   | GLilGA   |                      | Tk phosphory  | Tk phosphorylation site |  |
|                       | 281-286   | GLtaGT   |                      | 417-425       | ReytDfreY               |  |
|                       | 318-323   | GGqaGD   |                      | 729-736       | Rdw.DrlpY               |  |
|                       | 340-345   | GNypGA   |                      | N-glycosylati | on site                 |  |
|                       | 360-365   | GSvvTV   |                      | 46-49         | NLTV                    |  |
|                       | 490-495   | GTarAA   | 700-705 GLk          | IAG 121-124   | NGTI                    |  |
|                       | 540-545   | GIlrGA   |                      |               |                         |  |
|                       | 650-655   | GSsgNL   | 714-719 GSnv         | wAT 396-399   | NYTK                    |  |
|                       | 675-680   | GAlnAY   | 866-871 GIy          | fAT 685-688   | NVSF                    |  |

TABLE 2 : Functional sites of IBD virus proteins

tion sites, 4 N-Glycosylation sites, 18 N-Myristoylation sites and 2 Tyrosine Kinase Phosphorylation sites, respectively) (TABLE 2).

Tissue culture adaptation of infectious bursal disease virus (IBDV) results in alternation of three residues on its major capsid protein VP2 and these residues may engage in receptor binding. In a study by Yip et al (2007)<sup>[1]</sup>, recombinant VP2s of an attenuated strain (D78) and a very virulent strain (HK46) of IBDV tagged with rabbit immunoglobulin G heavy chain were expressed in mammalian cells, generating RAVP2 and RVVP2, respectively, in high purity. Using flow cytometry, both RAVP2 and RVVP2 were demonstrated to bind with Vero cells while these bindings were blocked by D78 viral particles. They suggested that both very virulent IBDVs (vvIBDVs) and attenuated IBDVs bind to Vero cells through the same receptor(s).

The bioinformatic analyses in the present study yielded useful information on the identity, nature and functional aspects of important proteins of IBDV. Thirty eight potential antigenic sites of VP2, and 52 functional sites of IBDV proteins were identified. The results of the present study offer valuable insight into the nature of the viral proteins involved in host – pathogen interaction and may form the basis for useful and confirmatory experimental studies in the future.

#### REFERENCE

 C.W.Yip, Y.S.Yeung, C.M.Ma, P.Y.Lam, C.C.Hon, F.Zeng, F.C.C.Leung; Virus Research, **123**, 50-56 (2007).

149

SHORT COMMUNICATION

BioTechnology An Indian Journal