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ABSTRACT 

Binding energies of hydrogen, helium, carbon and oxygen matter were evaluated without taking 
exchange energy term in a superstrong magnetic field. The evaluation has been performed by theoretical 
formalism of Skjervold and φ Stgaard using three adjustable parameters, η, R(a0) and l(a0). Our results are 
in good agreement with those of the other workers. 
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INTRODUCTION 

The behaviour of atoms in superstrong magnetic field of the order of 1012–1013 G has 
been investigated.1 Such magnetic fields are assumed to exist in neutron stars.2 Since the 
magnetic fields are stronger than the coulomb's forces between electrons and atomic nuclei; 
therefore, the properties of matter at the surface of the neutron star will be very different 
from those of ordinary matter. This is because of the fact that the energies associated with 
the magnetic motion of electrons become much larger than the Coulomb's energies. 

If one considers the interaction between two magnetically distorted atoms in 
superstrong magnetic fields, the cylindrical shapes give rise to enormous electric quadrupole 
moments and the highly directional quadrupole–quadrupole interaction is extremely stronger 
and favour bonding along the cylinder axis in the direction of magnetic fields. The resulting 
molecule is extremely tightly bound and a series of atoms is expected to stick together like a 
tent pole to form a polymer chain. This chain will be much more stable than an isolated atom. 



2090 J. D. Singh and L. K. Mishra: Binding Energies Estimation…. 

One polymer chain will attract a neighbouring one even in the absence of Vander Waal's 
force because of the nature of the quadrupole–quadrupole interaction. The equilibrium 
configuration will then be a close–packed lattice that would be millions times stronger than 
terrestrial steel. 

The properties of matter in superstrong magnetic fields have been studied by several 
workers.3–13 Atoms are, for instance, treated in the Thomas–Fermi or Hartree–Fock 
approximation. Then these are coupled into long molecular chains and possibly aggregated 
to form a solid crust in a neutron star. Ruderman4 first presented a variational calculation 
specifying the structure of linear chains of nuclei and surrounding non–interacting electrons, 
which should form the basic component of the neutron star crust. Glasser and Kaplan9 also 
calculated the various contributions to the total energy of a linear chain of nuclei surrounded 
by an axisymmetric distribution of electrons. 

Flowers et al.11 then carried out the most detailed calculations of the binding energy 
of heavy atoms, such as iron and corresponding condensed matter, in superstrong magnetic 
field by a variational method. Lai and Salpeter14 studied the energy levels of H2 molecules in 
a superstrong magnetic field (B ≥ 1012 G), typically found on the surfaces of neutron stars. 
The interatomic interaction potentials were calculated by a Hartree–Fock method with 
multiconfigurations assuming that the electrons are in the ground Landau state. Both the 
aligned configurations and arbitrary orientations of the molecular axis with respect to the 
magnetic field axis were considered. Different types of molecular excitation were then 
studied. Electronic excitations, aligned (along the magnetic axis) vibrational excitation and 
transverse vibrational excitation (a constrained rotation of the molecular axis around the 
magnetic field line). Similar results for molecular ion were also obtained and compared with 
vibrational calculations.15-19 Both numerical results and analytical fitting formula were 
obtained for a wide range of field strength. In contrast to the zero field case, it was found 
that the transverse vibrational excitation energies were larger than the vibration excitation 
and both were larger than the electronic excitation. Lai20 reported that the properties of the 
matter are drastically modified by strong magnetic fields (B 2.35 × 109G). In such strong 
magnetic fields, the Coulomb force on the electron acts as a small perturbation compared to 
magnetic force. The strong field condition can also be mimicked in laboratory 
semiconductor. Because of the strong magnetic confinement of electrons perpendicular to 
the field, atom attains a much greater binding energy compared to the zero–field case and 
various other bound states becomes possible including molecular chains and three–
dimensional condensed matter. 

In this paper, we have evaluated the binding energies of hydrogen, helium, carbon 
and oxygen matter in the presence of superstrong magnetic field without including the 
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exchange energy term. Our evaluation indicates that binding energies of all the four matter 
increases with the increase of the magnetic field strength B. We have taken atomic 
dimensions as η, R (a0) and l (a0) in the evaluation. The value of η increases with B, whereas 
the value of R (a0) and l (a0) both decreases with the increase of B. These atomic dimensions 
give the values of the lattice spacing or distance between the nuclei in the chain. For 1012 G, 
the values of binding energy are 0.16 eV, 0.56 eV, 4.0 eV and 6.7 eV for hydrogen, helium, 
carbon and oxygen matter. These results are in good agreement with the earlier work done 
by Müller13 and Ruderman4. 

Mathematical methods used in the evaluation 

One now wants to investigate the behaviour of condensed matter in superstrong 
magnetic fields. One considers two regions - 

                                             η = 10–5 (B/Z3)1/2 > 1 ...(1) 

which is most likely for condensed matter of light atoms and 

                                                    0.1 < η < 1 ...(2) 

which is most likely for condensed matter of heavier atoms in neutron stars. One 
assumes that a magnetic field B in the Z–direction will dominate in the plane perpendicular 
to the field. 

                                                   i.e.  B = Bρ ...(3) 

The electrons will correspondingly occupy Landau levels of orbital radius. 

                                            ρM = (M + 1/2)1/2ρ ...(4) 

where 

ρ = (2hc/eB)1/2 ...(5) 

is the cyclotron radius.            (M = 0, 1, 2 .....) 

The normalized electron wave functions can be assumed to be separable in circular 
cylindrical coordinates. i.e. 

φKM (ρ, z, φ) = (πLM!ρ2)1/2 (ρ2/ρ)M/2 exp (-ρ2/2ρ2) exp (ikz) exp (-iMφ) ...(6) 
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where L is the length of the system in the z–direction of the field, i.e. we assume  

                                                 L → ∞ for B → ∞ ...(8) 

In region (1), the electrons occupy Landau orbital, where the outer orbital has the 
radius10,13 

R = (M0 + 1/2)1/2 ρ= M0
1/2ρ ...(9) 

where 

M0 = (R/ρ)2 ...(10) 

One now considers a one dimensional chain of atoms in the direction of magnetic 
field, i.e. a linear chain of nuclear charges, where L is the length of the chain and l is lattice 
spacing or distance between the nuclei. The electrons are assumed to be distributed in such a 
way that one has cylindrical symmetry and one dimensional Fermi gas in Z–direction of the 
magnetic field. The number of electrons needed to keep charge conservation (neutrality) is 
(Lz/l), the density of momentum states (L/2π) and the volume of the one dimensional Fermi 
sphere is 2KF i.e. 

                                             2KF = M0 (L/2π) = Lz/l ...(11) 

or 

                                                   KF = πz /lM0  ...(12) 

This gives a charge density - 

                                               σ = Z/M0 = KFl/ π ...(13) 

which defines the number of electrons per Landau levels, i.e. 
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The energy of the system can be written as - 

                                      E = EF + E+– + E++ + E– – + Eex  ...(15) 

where EF is the kinetic energy of the Fermi gas, Eij is the potential energy because of 
interaction between two particles (charges) i and j; and Eex is the exchange term in the 
electron–electron interaction  energy. The total energy E then depends on two parameters l 
and M0 (or R), when one assumes L → ∞ and one wants to minimize the energy. 

The assumption of one–dimensional Fermi gas gives a one dimensional kinetic 
energy, i.e. 

E k
mF = ∑ h
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Introducing dimensionless variables - 
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one gets 

                                                     EF = µ0BK3 λ M0/6π  …(17) 

Now the Coulomb interaction energy between the electrons and the nuclei is given 
by - 

                                         
E V(p, z) d rMK (r) 

MK
+− = − ∑ρ φ

2 3

 

and in dimensionless form, we have - 
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E+– = –(z2e2/ρ) [2 ln(L/ρ) + 2 ln 2–1–ln(Mo) –3/2Mo
-1] …(18) 

The Coulomb interaction energy of the these nuclei can also be estimated classically 
(where one neglects boundary effects) and is given by - 

                                                   E++ = (L/2l)E0 …(19) 

and in dimensionless - 

 E++ = 2(z2e2/1) [ln(L/ρ) + ln(ρ/21) + ε] …(20) 

which ε is Euler's constant. 

Now the direct Coulomb's interaction energy of the electrons can be written as - 

 E– – = –(z2e2/1) [ln(L/ρ) + 1/2 ln g –1/4–1/lnMo –1/2(ln z)Mo
-1] …(21) 

Where 

ψ(Μ ) 

→ ∞

ο = ln M  
and g /g  = ln g, 1 < g < 2
for g = 2, B  

o

2 1

  

…(22) 

where 

g1 = 
1

0
(χM1 + χ M2)(1 + χ)– (M1 + M2 + 2)dχ = M1 ! M2 !/(M1 + M2 + 2) …(23) 

and 

g2 = 
1

0
(χM1 + χ M2)(1 + χ)– (M1 + M2 + 2) ln(1 + χ) dχ …(24) 

The total energy of the system without exchange term is given by - 

E = EF + E+– + E++ + E– – 

Now taking equation (17), (18), (20) and (21), one arrives on the result - 

E = –
z2e

1

2

 
ln 

21
R = (ε – C1) + (z3π2 h2/6 mL2) 

ρ
R  …(25) 
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where 

C1 = 2 ln z – 3/2Mo
-1

 – 1/2 ln g) – 3/4 + 1/2Mo
-1 ln 2 = 0.33 …(26) 

Now, minimizing with respect to l and R, one gets - 

ln 
21
R = (ε – C1 + 1) = 2Zπ2 h2/6ρ2 mL

ρ
R  

1
2 

= 2Zπ2 h2/6e2 ml
ρ
R  …(27) 

which can be combined to give - 

n(2l/R) =  ε – C1 + 3/2 …(28) 

l = 2.87 R 

We have numerically evaluated the binding energies of hydrogen, helium, carbon 
and oxygen matter without the exchange term. The result are shown in Tables 1, 2, 3 and 4, 
respectively. 

Table 1: Dimensions and energies for hydrogen matter in superstrong magnetic field 
without exchange terms 

B(1012G) η R(a0) l(a0) –E(KeV) 

1 10.3 0.166 0.426 0.16 

5 23.1 0.087 0.250 0.30 

10 32.7 0.066 0.189 0.40 

50 73.1 0.035 0.100 0.76 

100 103.4 0.026 0.075 1.01 

500 231.2 0.024 0.040 1.92 

600 251.9 0.019 0.036 2.00 

700 264.6 0.016 0.033 2.16 

800 282.8 0.014 0.030 2.28 

900 301.6 0.012 0.026 2.37 

1000 327.0 0.010 0.029 2.53 
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Table 2: Dimensions and energies for helium matter in superstrong magnetic field 
without exchange terms 

B(1012G) η R(a0) l(a0) –E(KeV) 

1 3.7 0.191 0.547 0.56 

5 8.2 0.100 0.287 1.06 

10 11.6 0.076 0.218 1.40 

50 25.9 0.040 0.114 2.66 

100 36.6 0.030 0.087 3.51 

500 81.7 0.016 0.046 6.68 

600 92.8 0.0152 0.045 6.98 

700 102.9 0.0145 0.043 7.05 

800 108.6 0.0140 0.039 7.27 

900 112.8 0.0130 0.037 7.86 

1000 115.6 0.012 0.035 8.81 

Table 3: Dimensions and energies for carbon matter in superstrong magnetic field 
without exchange terms 

B(1012G) η R(a0) l(a0) –E(KeV) 

1 0.7 0.238 0.682 4.0 

5 1.6 0.125 0.358 7.6 

10 2.2 0.095 0.271 10.1 

50 5.0 0.050 0.143 19.2 

100 7.0 0.038 0.108 25.3 

500 15.7 0.020 0.057 48.2 

600 17.6 0.019 0.055 53.9 

700 18.9 0.017 0.052 55.6 

800 20.5 0.016 0.049 58.5 

900 21.8 0.014 0.045 60.2 

1000 22.2 0.015 0.043 63.7 
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Table 4: Dimensions and energies for oxygen matter in superstrong magnetic field 
without exchange terms 

B(1012G) η R(a0) l(a0) –E(KeV) 

1 0.5 0.252 0.722 6.7 
5 1.0 0.132 0.379 12.8 

10 1.4 0.100 0.287 16.9 
50 3.2 0.053 0.151 32.2 

100 4.6 0.040 0.114 42.5 
500 10.2 0.021 0.060 81.0 
600 10.9 0.020 0.058 90.8 
700 11.2 0.019 0.055 97.2 
800 12.5 0.018 0.052 100.5 
900 13.0 0.017 0.048 103.2 

1000 14.5 0.016 0.046 106.8 

RESULTS AND DISCUSSION 

In this paper, the binding energies of hydrogen, helium, carbon and oxygen matter 
without including exchange energy term have been evaluated and also the binding energies 
for magnetic field strengths ranging from 1012 and 1015 G. For magnetic field of 1212G, 
binding energies for atoms in condensed matter of 0.16 KeV for hydrogen, 0.56 keV for 
helium, 4 KeV for carbon and 6.7 KeV for oxygen without including exchange energy term 
have been obtained. 

In all the four matters, the binding energies increases as the strength of magnetic 
field increases. The main difference with the earlier work is in the atomic dimensions i.e. for 
the lattice spacing or distance between the nuclei in the chain i.e. the value of l(ao) and R(ao). 
In all the evaluated four matters, the value of η increases with increase in magnetic field B. 
However the value of R(ao) and l(ao) decreases with increase of magnetic field B. Our 
evaluated results are in good agreement with those of the other workers21–22. 
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