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ABSTRACT 

The angular (fractional) complex Mellin transform which is a generalization of the complex mellin transform has 
many applications in several areas including signal processing and optics. In this paper we have given inversion theorem for 
the generalized Fractional Complex Mellin transform. For that we first prove two lemmas. Lastly we have discussed some 
applications of this transform. 
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INTRODUCTION 

The fractional Fourier transform is intimately related to several indispensable concepts appearing in 
diverse areas. It plays an important role in the study of optical system known as Fourier optics. The brief 
account of its application is discussed in4. 

The fractional Fourier transform Rα is an extension of the ordinary Fourier transform and depends on 
the parameter α  in the position-frequency plane. The one dimensional fractional Fourier transform with 
parameter α of f(x) denoted by Rα f(x)1 performs a linear operation, given by the integral transform, 
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Where ( )ξα ,xK  is the kernel as given in1. 

Bhosale3 extended fractional Fourier transform to the distributions of compact support. 

The fractional complex Mellin transform introduced in5 is the generalization of the complex Mellin 
transform is as follows. 
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In2 the angular (fractional) Mellin transform which is a generalization of the complex Mellin 
transform had extended to the distribution of compact support using kernel method. 

The testing function space E defined in5 is as follows - 

The testing function space E 

An infinitely differentiable complex valued function ψ on Rn belongs to E(Rn) or E if for each 
compact set K ⊂ Sa  

where { } nn
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Clearly E is complete and so a Frechet space. 

Moreover we say that f is a fractional Mellin transformable if it is a member of E’ (The dual space 
of E). 

The fractional Mellin transform on E’ 

It is easily seen that for each s∈Rn and ,
2

0 πφ ≤≤ the function Kφ (x,s) belongs to E as a function of x. 

Hence the fractional Mellin transform of f∈ E’ can be defined by  
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then the right hand side of (1.2) has a meaning as the application of f∈E’ to Kφ  (x,s) ∈ E . 

The paper is organized as follows. Section II gives the inversion theorem with two lemmas. Some 
applications are given in Section III and Section IV concludes the paper 

Notations and terminology used as in Zemanian6. 

Section II: Inversion theorem 

Let  ,)(  Rf E ′∈ ,0 πφ <<   and supp f ⊂ Sa where { }0,,: >≤∈= aaxRxxSa
  and let ( )ςφM  

be the generalized fractional complex Mellin transformation of f defined by, 
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Then for each E∈ψ  we have, 
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Proof : To prove the inversion theorem, we have established the following lemmas to be used in the 
sequel. 

Lemma 1: Let [ ]( )   M xfM )()( ςς φ

φ = for πφ <<0  and supp f ⊂ Sa   

where  { }0,,: >≤∈= aaxRxxSa  for E∈)(xθ , 

dxx xK   )(),()( θςςψ φ∫=
∞

∞−  

Then for any fixed number r, - ∞ < r <  ∞ 
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where nCi ∈+= τσς  and u is restricted to a compact subset of R. 

Proof :  The case 0)( =xθ  is trivial, hence consider 0)( ≠xθ . It can be easily seen that, 
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r
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is a C∞ - function of u and it belongs to E.  Hence the right hand side of (2.1) is meaningful.  

To prove the equality, we construct the Riemann-sum for this integral and write, 
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We show that the last summation converges in E to the integral on the right hand side of (2.1). 
Carrying the operator k

uD  within the integral and summation sign, which is easily justified we get, 
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It thus follows that for every m, the summation is a member of E and it converges in E to the integral 
on the right hand side of (2.1).  Hence the proof. 
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Lemma 2: For ,)(  x E∈θ  set )(ςψ   as in lemma 3.7.3 above for C∈ς , u is restricted to a compact 
subset of R then,  

τςψς
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converges in E   to )(uθ  as r → ∞. 

Proof : We shall show that )( )( uuM r θ→  in E as r → ∞.  

That is to show,  
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We note that for k = 0, 
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Since the integrand is a C∞ - function of u and ∈θ E, we can repeatedly differentiate under the 
integral sign and the integrals are uniformly convergent we have 
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Hence the claim. 

Proof of inversion theorem 

Now let ( )  x E∈θ . We shall show that  
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 tends to )(),( xxf θ  as r → ∞. …(2.4) 

From the analyticity of )(ςφM on C and the fact that ( ) xψ has a compact support in R, it follows 

that the left side expression in (2.4) is merely a repeated integral with respect to x and ς  and the integral in 
(2.4) is a continuous function of x as the closed bounded domain of the integration.  

Therefore we write (2.4) as - 
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Since ( ) xθ is of compact support, and the integrand is a continuous function of ( ) ,ςx  the order of 
integration may be changed. The change in the order of integration is justified by appeal to lemma 1. 

Thisyields  τςψς
π
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where ( ) ςψ is as in lemma 1.  

This is equal to  ∫
−

r

r
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Again by lemma 2 equation (2.5) converges to )(),( uuf θ  as r → ∞.  

This completes the proof of the theorem. 

Application of fractional mellin transform 

Scale transform is a powerful mathematical tool for processing images (for detecting) that are 
arbitrarily scaled. Hence it is used in the class of linear streach invariant systems. Xiaohong Hu8 developed 
Mellin transform technique of probability modeling for accurate solution of problems in some industrial 
statistic. 

Fractional Mellin transform given by Akay adds one more parameter (angle) to scale transform and 
hence it is also used in pattern recognition problems, industrial statistic. Moreover fractional Mellin based 
correlators are used to obtain time to impact and controlling moments in the navigation task7. 

The generalized fractional Mellin transform we have introduced in this paper is the extension of 
fractional Mellin transform given by Akay and can be used in all above cases. The advantage of our 
generalized fractional Mellin transform is it can be used even when the signals (functions) are singular 
functions. 

CONCLUSION 

We have given the inversion theorem for the generalized fractional complex Melin transform with 
two lemmas. Given some applications in various fields of this generalized fractional complex Mellin 
transform.  
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