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ABSTRACT 

Using theoretical formulation of Chung-In Um et al., the ground state energy of two-dimensional 
liquid 4He interacting through Lenard-Jones and Aziz potential were calculated at various densities. Our 
theoretical result indicates that ground state energy of two dimensional liquid 4He interacting with Aziz 
potential is close to GFMC calculation. 
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INTRODUCTION 

For many years, physicist have used hyper netted (HNC) and Fermi hyper netted 
chain (FHNC) theories to investigate the properties of highly correlated interacting boson 
and fermion systems such as liquid 4He and normal liquid 3He1,2. The HNC/FHNC equations 
with Jastrow ground-state wave functions treat consistently both long and short correlations 
of the system and give agreements to some degree with experimental results. In spite of 
qualitative successes of the Jastrow ground-state function, there exist quantitative 
differences between HNC/FHNC results and experimental ones, especially the equilibrium 
ground-state energy, and this fact leads one to consider the contributions arising from the 
three-body correlation functions3. It is well known that the three-body correlations do not 
affect seriously the structural properties of ground states, such as the radial distribution 
function and liquid structure function, but contribute significantly to the ground-state energy. 
Since liquid 3He system is less dense than liquid 4He, that is, the equilibrium density of the 
former is  0.0166 Å-1 while that of the latter is 0.02185 Å-3 in a three-dimensional system, 
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effects of three-body correlations in 3He are rather small compared to those in 4He. At 
equilibrium density, they make up about half the difference between the Jastrow results and 
experimental energy in a liquid 3He system5 and lower the Jastrow ground-state energy by 
about 10 % in liquid 3He. 

A trial ground-state wave function including three-body correlation functions in 
addition to two-body correlation effects can be constructed in the form 
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Where f2(rij) is the two-body correlation function which describes spatial correlations 
and depends only upon the spatial distance rij between two particle f3(rij, rjk, rki) is a three-
body correlation function and |Φ〉 is the anti-symmetric product of non-interacting single-
particle plane waves normalized in the system's area Ω with N fermions, which becomes 
simply unity for boson systems. 

In addition to the three-body correlation functions in the ground-state wave function, 
one should take into account the contributions coming from the elementary diagrams as well 
as effects of the HNC/FHNC equations to obtain better results. Unfortunately, there does not 
exisht a general closed expression for the elementary diagrams and therefore one must 
calculate each diagram individually, which is very time consuming. During the last two 
decades, two approximations for the estimation of the elementary diagrams have been 
developed. One is known as the scaling approximation4 and the other is the interpolating 
equation approximation5. Both techniques have shown their efficiency for central two-body 
correlations, providing similar results for the total ground-state energy to those of the 
variational Monte Carlo simulation. The scaling approximation uses the fact that successive 
contributions of the five, six and higher order elementary diagrams are approximately 
proportional to and have very similar spatial behaviour to the body elementary diagrams,4 so 
that one can represent the total elementary diagram contribution by means of the readily 
calculable four-body elementary diagrams. The interpolating equation approximation 
determines a parameter such that it gives the same value for the classical isothermal 
compressibility obtained from both the HNC/FHNC equations and Percus-Yevick7 equations 
using the classical pressure derivative or the compressibility integral. 

Although large number of theoretical works regarding 4He and 3He system have 
been reported7-11 but very few of them have been used for two-dimensional liquid. 

Chung-In Um et al.12 have developed a theoretical model to study two-dimensional 
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quantum fluid. By taking their model, one has evaluated the radial distribution function g(r) 
as a function of r for two dimensional liquid 4 He interacting through Aziz potential for 
various densities. In section 2, we have given the mathematical formulae used in the 
evaluation. The discussion of the result has been given in section 3 of this paper. In the last 
portion, we have shown the tables of the results and the reference taken. 

Mathematical formulae used in the evaluation 

The Hamiltonian for the considered system is given by – 

H = T + V = ( )jiiji rrV
m

VT
jiii ji
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Where V(r) is the interatomic interaction. A popular potential theoretical 
investigations is that of Lenard-Jones, which has parameters, i.e., the hard-core radius and 
the well depth, and can be written as – 

VLJ (r) = 4 ε ,
612
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ε = 1022 K, σ = 2.556 Å …(2) 

However, VLJ (r) includes only the dipole-dipole interaction and does not take into 
account multiple interactions. A more physically realistic potential which accounts for the 
self-consistent field Hartree-Fock repulsion and multiple interactions is the HFDHE2 

potential of Aziz et al.13 presented as – 
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The values of the constants are 

A = 0.54485 x 106, ε*/kB = 10.8 

α  = 13.353384, C6 = 1.3732412 

C8 = 0.4253785, C10 = 0.178100  

D = 1.241314,  rm = 2.9673 Å 
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It is well known from the Green's function Monte Carlo simulations and other 
variational calculations that the Aziz potential gives closer results to experiments than VLJ in 
three dimensions. One uses both potentials and com pare the results with those in two 
dimensions. 

The n-particle distribution function is represented as – 
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Where 
rr1  denotes the spatial coordinates of the ith particle and v is the spin 

degeneracy of the system (2 for this system). In homogeneous system, as N → ∞ and Ω → 
∞, the single-particle distribution function reduces to the density of the system so that the 
radial distribution function can be expressed in terms of the density and two-particle 
distribution function P2(r) as 
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One uses the FHNC approximation to sum the diagrams arising from the cluster 
properties of g(r). In this scheme, g(r) can be decomposed as - 

g r g r g r g rij dd ij de ij ee ij( ) ( ) ( ) ( )= + +2  …(6) 

Where dd, de and ee represent terms in which both i and j are not exchanged, only j 
is exchanged, and both i and j are exchanged, respectively. The components of g(rij) are 
given by - 

gdd(rij) = exp[u2(rij) + Ndd(rij) + Edd(rij)] 

gde(rij) = gdd(rij)[ Nde(rij) + Ede(rij)] 

gee(rij) = gdd(rij)[-L2(rij) / v + Nee(rij) + Eee(rij) + (Nee(rij) + Eed(rij))2] …(7) 

gee (rij) = gdd(rij)L(rij) / v 

where 

L(rij) = -l(kF rij) + v(Nee(rij) + Eee(rjj)) …(8) 

l(x) = 2jl (x) / x …(9) 
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kF is the Fermi momentum of the system, and j1 (x) is the Bessel’s function of the 
first kind of order 1. Nmm represent sums of the diagrams and Enm sums of the elementary 
diagrams. The equation gee(rij) denotes the terms in which both i and j are exchanged in 
incomplete exchange loop, and Nee(rij) and Eee(rij) are sums of the nodal diagrams and the 
elementary diagrams in which i and j belong to the same permutation loop, respectively. 

With the FHNC equation and expression for the g(r), one now calculates the energy 
per particle of the system. 

E
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The potential energy per particle is expressed by taking the thermodynamic limit, i.e., 
the area of system Ω and the number of particles N are infinite, keeping the density constant 
as - 

V
N
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The expression for the kinetic energy part is more complicated. There are three well-
known expressions for the helium system i.e., Jackson-Feenberg14, Clark-Westhous15 and 
Bethe-Pandharipande16. Among expressions for the kinetic energy per particle the Jackson-
Feenberg form is popular and easily tractable since its three-particle distribution part is not 
more significant than others. One uses here the Jackson-Feenberg and the Bethe-
Pandharipande forms so that we make use of the scaling approximation for the elementary 
diagrams. From the identity. 
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Jackson-Feenberg energy form is obtained as - 
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The first term of Eq. (13), TF = h2 2kF /4 m, is the non interacting fermion energy 
with the Fermi momentum kF = [4 π ρ/v]1/2, and the second, WB is the energy of the boson 
system. 
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The forms of Wф and Uф are  
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 Pandharipande-Bethe energy form is obtained by expanding the kinetic energy per 
particle as - 
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After some calculations, we obtained EPB/N as - 
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Where W and U are the bosonic energies per particle, and WF and UF are from the 
last term of Eq. (19) 
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For numerical calculations, one adopts the McMillan type function as a trial two-
body correlation function, which is widely used in variational and Monte Carlo calculations 
for liquid and helium systems. 
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Where, b is a variational parameter chosen to give an optimized distribution function 
at a given density. To obtain more precise results, we include three-body correlation effects 
in the following forms: 
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Where cyc denotes the cyclic permutation among the three particles coordinates i, j 
and k, and i is a unit vector along the line connecting particle i and j. Since it was first used 
in a variational Monte Carlo calculation8. This form for the three-body correlations is 
generally used in variational HNC/FHN methods1-3. 
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RESULTS AND DISCUSSION 

In this paper, we have evaluated the ground state energy of two dimensional liquid 
4He interacting through Lenard-Jones and Aziz potential at various densities. We have 
used the theoretical formalism of Chung-In Um et al.12 in our evaluation. Chung-In Um12  

calculated ground state energy of two dimensional liquid 4He using Jastrow two body 
correlation function in the trial wave function within the HNC approximation. His other 
calculation for energy per particle is by taking two body correlation and contribution of 
order elementary diagrams. We have taken three body as well as two -body correlations 
within the scaling aproximation4. Our theoretically evaluated results of ground state energy 
E(k)/N are shown in table 1 and 2 for Lenard –Jones potential and Aziz potential for 
various densities. We have compared our theoretical results with Chang’s result17 and 
GFMC result8 Our theoretical calculation indicates that the two dimensional liquid 4He 
interacting through Aziz potential is more close to the calculation8. Comparing with two 
potential, one conclude that Aziz potential is more suitable to describe, the ground state of 
the  two dimensional helium system similar to bulk case18. Some recent19-21 results reveal 
the same fact. 

Table 1: Evaluated results of ground state energy of two-dimensional liquid 4He 
interacting through the Lenard-Jones potential at various density 

Ground state energy E (k)/N 
ρ(Å–2) 

Our cal. results Chang’s17 results GFMC Calculations8 

0.020 

0.025 

0.030 

0.035 

0.040 

0.045 

0.050 

0.055 

0.060 

-0.520 

-0.546 

-0.624 

-0.658 

-0.748 

-0.786 

-0.842 

-0.725 

-0.556 

-0.628 

-0.637 

-0.658 

-0.586 

-0.552 

-0.505 

-0.486 

-0.453 

-0.446 

-0.504 

-0.546 

-0.589 

-0.627 

-0.553 

-0.524 

-0.508 

-0.493 

-0.486 
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Table 2: Evaluated results of ground state energy [E(k)/N] of two-dimensional liquid 
4He interacting through Aziz potential at various densities 

Ground state energy E(k)/N 
ρ(Å–2) 

Our cal. results Chang’s17 results GFMC Calculations 8

0.020 
0.025 
0.030 
0.035 
0.040 
0.045 
0.050 
0.055 
0.060 

-0.487 
-0.509 
-0.586 
-0.627 
-0.723 
-0.706 
-0.658 
-0.532 
-0.456 

-0.586 
-0.603 
-0.658 
-0.709 
-0.682 
-0.596 
-0.542 
-0.506 
-0.487 

-0.523 
-0.588 
-0.602 
-0.657 
-0.597 
-0.602 
-0.524 
-0.486 
-0.442 
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