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ABSTRACT 
 
In this paper we propose a nonmonotone line search combination rule for unconstrained
optimization problems and show that it possesses the global convergence property. We
establish the corresponding algorithm and illustrate its effectiveness by virtue of some
numerical tests. Simulation results indicate that the proposed method is very effective. 
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INTRODUCTION 
 
 Unconstrained optimization problems have been paid considerable attention by the researchers, because of 
comprehensive practical application background. There are many authors have made great efforts on the study of 
optimization algorithms. Consider a general unconstrained optimization problem denoted by 
 
min ( )

nx R
f x

  
(1) 

 
 Where ( )f x is a continuously differentiable function from nR to R . In the literature, it is customary to use iterative 

methods to solve this problem. At current iteration kx , if ( ) 0k kg f x   , we can find a step-length k by carrying some line 

search along the direction kd , and then obtain the next iteration as 

 

1k k k kx x d    (2) 

 
 where kd is the search direction, which can be determined by many methods. The literature[1] points out that the 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is the best quasi-Newton method and gave the associated procedures. 
For convenience, we will employ the BFGS algorithm in this paper to determine kd , namely, let  

 

, 0

, 0

T
k k k k

k T
k k k

H g if g d
d

g if g d

  
 

 (3) 

 
 Where ( ) 0k kg f x   , kH is generated by the BFGS correction formula. Moreover, (3) guarantee that the 

condition 0T
k kg d  holds. 

 There are already some well-known rules used to determine the step-length k in (2). Among them, the Arimijo rule, 

the Goldstein rule, and the Wolfe rule are popular and widely used by many authors[1]. However, in obtaining the step length

k , traditional line searches require the function value to decrease monotonically at every iteration, namely 

 

1( ) ( )k kf x f x   (4) 

 
 Consequently, they are in general called to be monotone line search technique, which is resultful in some situations. 
However, subsequent studies showed that the convergence rate of monotone line search technique may reduce considerably 
when the iteration locates in a narrow curved valley[2,3,4]. To overcome this problem, Grippo et al. introduced a highly 
innovative method[2] called the nonmonotone line search techniqueand illustrated its effectiveness by means of some 
numerical tests. This method has been developed by many authors. For those nonmonotone line search rules[2-13], the 
inequality 1( ) ( )k kf x f x  may hold for any k , and therefore, it can play a nonmonotone search role in the above three rules. 

However, the nonmonotone line search rules[2-9,11-13] for problems (1) essentially required the approximation sequence { kx } 

satisfies 0( ) ( )kf x f x for any 1k  . Under this condition, the approximation sequence { kx } will be trapped and can not 

escape from the valley bottom if the initial point 0x locates near a valley bottom. Motivated by this problem, we propose a 

new rule called to be a nonmonotone line search combination rule in the following. Moreover, we show that it possesses the 
global convergence property by virtue of[3] and[4]. With the help of numerical experiments it is shown that the proposed 
method is very effective for above problem. 
 
Nonmonotone line search combination rule 
 In this section, we will put forward a nonmonotone line search combination rule. First, the following assumption is 
the necessary. 
 Assumption 1 Throughout this paper, we assume that the function RRf n :  is bounded and differentiable on 

the level set  0: ( ) ( )nx x R f x c f x     for a given constant 1c  . 

 Nonmonotone line search combination rule. Let the bounded step-length 0k  along the direction kd such that  

 
( )

( )

1( ) ( ) ( )k r k r

m k
h sign f x

k k k k k r k r
r o

f x f x d f x   

 


    T
k k kg d  (5) 
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 Where 1  , 0k rh  , and ( ) min[ , 1]m k k M  with 1M  is a positive integer. Let1 0k r    , 
( )

1
m k

k r
r o




 , 

( )m k

k k r
r o

h h


  and k
k o

h S




 with S is a finite constant. 

 Clearly, inserting 1M  and 1  into the representation (5) gives ( ) ( )k k k kf x d f x   T
k k kg d , then the rule 

(5) reduces to the rule of Arimijo. Further, if 
0 ( )

( ) max { ( )}k l k r
r m k

f x f x  
  and 1k l  , 0k r  ( r l ), then (5) becomes

( )k k kf x d 
0 ( )
max { ( )}k j

j m k
f x  

 T
k k kg d , which is the nonmonotone line search rule proposed by Grippo et al.[2]. 

Therefore, the new rule (5) is a general version of some traditional rules well known in the literature. 
 
Proof for the global convergence of the new rule 
 In this section, we investigate the global strong convergence properties of unconstrained optimization in conjunction 
with the new nonmonotone line search combination rule. First, the following some definitions and lemmas are necessary. 
 Definition 1 The function [0, ) [0, )   ： is a forcing function (F-function) if for any sequence{ } [0, )it   ,

lim ( ) 0ii
t


 implies lim 0ii

t


 . 

 The literature[3] proved that there exists a F-function ( )it such that 

 
)T

k k k kg d t  （  with 0T
k k k kt g d d   . (6) 

 
 By the inequalities (5) and (6), the rule (5) becomes 
 

( )
( )

1( ) ( ) ( ) ( )k r k r

m k
h sign f x

k k k k k r k r k
r o

f x f x d f x t   

 


    . (7) 

 
 Lemma 3.1 In (2), the search direction kd is determined by the following BFGS algorithm. Then there is a constant 

0  satisfying  

 
T
k k k kg d d g  , 0,1,2,k    (8) 

 
 Proof. When the 0kg  , according (3), we easily get 0T

k kg d  . In view of T
k k kg d d   cos( , )k k kg g d , then 

there is a constant 0  such that cos( , ) 0k kg d    . Therefore, (8) holds. 

 Lemma 3.2 If k satisfies the rule (5) for 1k  , then 

 

0

1

1 0( ) ( ) ( ) ( )

k

i
i

kh

k r k
r o

f x f x t t   







    (9) 

 
 Proof. The principle of mathematical induction will be used to prove the conclusion. 
 If 1k  and 1M  , then we have ( ) 0m k  . By the inequality (7), we have 

 
10 1 10( )

2 10 1 1 1 1( ) ( ) ( ) ( ) ( )
h sign f x h

f x f x t f x t        . 

 
 Noting that 1k k rh h

krh      and  

 
00 0( )

1 00 0 0( ) ( ) ( )
h sign f x

f x f x t    00

0 0= ( ) ( )h f x t  . 

 
 We have 
 

10

2( ) hf x   00

0 0 1( ) ( ) ( )
h

f x t t     

 00 10h h  0( )f x 10

0( )h t 
1( )t  



12418  A Nonmonotone Line Search combination algorithm for unconstrained optimization problems  BTAIJ, 10(20) 2014 

 0 1h h  0( )f x 10

0( )
h

t 
1( )t .  (10) 

 If 1k  and 2M  , by the inequality (7), we have 
 

10 1 11 0( ) ( )

2 10 1 11 0 1( ) ( )+ ( ) ( )h sign f x h sign f xf x f x f x t       

 
10  10 00

0 0( ) ( )h h f x t   11
11 0 1+ ( ) ( )h f x t    

 
10( 1 0h h  1

11 0+ ( )h f x  ） 1
10

h  0( )t 1( )t  

1 0
10(h h  11 0+ ( )f x ）

10 0( )t 1( )t  

 1 0h h  0( )f x 
0( )t 1( )t . (11) 

 
 By (10) and (11), it follows that (9) holds for 1k  . We now assume that (9) holds for 1j k  , namely, 

 
1

0

2

0 1( ) ( ) ( ) ( )

k

i
i

kh

k r k
r o

f x f x t t   











   . 

 
 Then we have 
 

( )
( )

1( ) ( ) ( )k r k r

m k
h sign f x

k k r k r k
r o

f x f x t  

 


   

( )
k

m k
h

k r
r o

 


 
1

0

2

0 1{ ( ) ( ) ( )}

k r

i
i

k rh

i k r
i o

f x t t   

 



 

 



  ( )kt  

( )
k

m k
h

k r
r o

 


 
1

0

2

0 1{ ( ) ( ) ( )}

k

i
i

k rh

i k r
i o

f x t t   





 

 



  ( )kt  

( )
k

m k
h

k r
r o

 


 
1

0

( ) 2

0 1{ ( ) ( ) ( )}

k

i
i

k m kh

i k r
i o

f x t t   





 

 



  ( )kt  

0( )f x
( )

( )
m k

k r
r o



 0

k

i
i

h

 
 ( )

( )
m k

k r
r o

 


 
( ) 2

( )
k m k

i
i o

t
 




( )m k

k r
r o




 1( )k rt   ( )kt  

0( )f x 0

k

i
i

h

 



( ) 2

( )
k m k

i
i o

t
 




( )m k

k r
r o




 1( )k rt   ( )kt  

0( )f x 0

k

i
i

h

 



( ) 2

( )
k m k

i
i o

t
 




( )

1( )
m k

k r
r o

t   


  ( )kt  

0( )f x 0

k

i
i

h

 



( ) 2

( )
k m k

i
i o

t
 




1

(k) 1

( )
k

i
i k m

t 


  

  ( )kt  

0( )f x 0

k

i
i

h

 
 1

( )
k

r
r o

t 




  ( )kt . 

 
 Which means that (9) holds for j k . By the principle of mathematical induction, (9) holds for any given 1k  . 

 Next, we will prove the global strong convergence of the new rule. 
 Theorem 3.1 Under the above assumptions 1, let the search direction kd and the step-length k be determined by 

BFGS algorithm and (5), respectively. Assume{ }kx is a sequence generated by (2) according to the search direction kd and 

the step-length k , Then we have 

 

{ }kx  , and lim 0k
k

g


 . 

 
 Proof. According to Lemma3.2, we have 
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0

1

1 0 0( ) ( ) ( ) ( ) ( )

k

i
i

kh
S

k r k
r o

f x f x t t f x    







    . 

 
 Therefore, 1 0( ) ( )kf x c f x   with 1Sc   . Then, by the definition of  ,{ }kx  follows immediately. 

 By (9), we have 
 

0

1

1 0( ) ( ) ( ) ( )

k

i
i

kh

k r k
r o

f x f x t t   







    

0
0( ) ( )

k

i
i

kh

r
r o

f x t  




    

0( ) ( )
k

r
r o

c f x t 


   . 

 
 Which implies 
 

00 ( ) ( )
k

r
r o

t c f x 


   1( )kf x  . (12) 

 

 for all 1k  . By Assumption 1, ( )kf x  is bounded on the level set . Then (12) indicates that ( )
k

r
r o

t 


  which 

implies lim ( ) 0k
k

t


 . Combined with the fact that function is a F-function, it follows then that 

 

lim lim ( ) 0T
k k k k

k k
t g d d

 
   . 

 

 By Lemma3.1, it follows that lim 0k
k

g


 . The proof is completed. 

 
Numerical tests 
 Here, we apply our rule to some standard tests problems. 
 Algorithm (I) 
 Step 1. Initialization. Given the initial values

0
nx R , 

0H I and other data including an integer 1M  , a constant

0 1  , 0  , (0, 0.5)  , as well as k=0. 

 Step 2. Test termination conditions. Examine the stopping criterion by computing ( )k kg f x  . If kg  , *
kx x  

and the algorithm stops. 

 Step 3. Determine search direction. Calculate k k kd H g  , if 0T
k kg d  , set

k kd g  ,which guarantee the condition 

0T
k kg d   holds. 

 Step 4. Determine the line search step k . Let ( ) min[ , 1]m k k M  . If (5) holds, k  . Otherwise, contract . 

 Step 5. Compute the next point. Set k k ks d and 1k k kx x s   , and then calculate 1( )kf x   and 1 1( )k kg f x   . 

 Step 6. Update the iteration matrix 1kH  using BFGS formulae, namely, Set  

 

1

T T
Tk k k k k k

k k k kT T
k k k k k

s s H y y H
H H v v

s y y H y    
 

 

 With 1k k ky g g  ,
1

2( ) [ ]T k k k
k k k k T T

k k k k k

s H y
v y H y

s y y H y
  . Set k+1k   and then go to the step 2. 

 The functions in the numerical tests are the same as[5,7]. Take now the parameters involved in Algorithm (I) as 
follows: 
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610  , 310  ,
0 n nH I  , 1

1+ ( )kr m k
  ,

1.2

1

(1 k)krh 


. 

 With 0,1, , ( )r m k  . 

 Clearly, Algorithm (I) reduces to the standard of the BFGS algorithm (saying Algorithm (II)) when M=1 and 1  . 

If 1M  and 1  , algorithm (I) is similar to the nonmonotone BFGS algorithm (saying Algorithm (III)). The three methods 

are compared with the aid of Matlab, where the controllable parameter M is taken as 1 and 6 while as 1 and 3. The 

numerical results are presented in the following four TABLES, in which gn and fn denote the outside loop iterations and the 

function evaluations, respectively, while *( )f x is the function value of the approximate solution *x . 

 
TABLE 1 : Algorithm (I) does not dominate compared to Algorithm (II) or (III) 

 

Problem Dimension 
Algorithm 2( M =1,  =1) Algorithm 3( M =3,  =1) Algorithm 1( M =3,  =6) 

g fn n  *( )f x  g fn n  *( )f x  g fn n  *( )f x  

Pow.Sin. 
Ex.Ros. 
Ex.Ros. 
Ex.Ros. 
Ex.W.& 
H. 
Ge.Ros. 
Ge.Ros. 
Ge.Ros. 
PenaltyⅠ 
PenaltyⅠ 
PenaltyⅠ 
PenaltyⅡ 
PenaltyⅡ 
Watson 
Watson 
Watson 
Per.Qua 
Per.Qua 
Per.Qua 
RaydanⅠ 
RaydanⅠ 
RaydanⅠ 

4 
10 
30 
40 
2 
2 
8 

20 
30 
40 
80 
32 
40 
10 
36 
150 
70 
80 
90 
80 
100 
200 

>999 
95/245 
190/515 
230/636 
32/77 
39/96 
>999 
>999 

136/328 
>999 
>999 
>999 
>999 

66/154 
58/157 
>9999 
>999 
>999 
>999 
>999 

519/14606 
>999 

----- 
2.8656e-

13 
4.0157e-

13 
3.1755e-

13 
4.6651e-

20 
1.5647e-

17 
----- 
----- 

2.4773e-
04 

----- 
------ 
------ 
------ 

5.3203e-
07 

3.3840e-
08 

------ 
----- 
----- 
----- 
----- 

505.00 
----- 

>999 
98/246 
>999 

239/649 
32/77 
38/92 

60/167 
133/379 
22/60 
>999 
>999 

104/248 
98/253 
68/155 
85/210 
97/356 
90/349 
103/403 

>999 
201/3828 
73/192 
>999 

----- 
9.0191e-

15 
----- 

7.5025e-
13 

4.6651e-
20 

3.5514e-
23 

2.5945e-
16 

1.2228e-
17 

2.4773e-
04 

----- 
------ 

0.1032 
0.5569 

5.3203e-
07 

1.5352e-
09 

1.2814e-
09 

1.0450e-
14 

2.9824e-
15 

------ 
324.00 
505.00 

----- 

60/327 
85/212 

175/464 
205/560 
28/66 
31/75 
66/180 

138/385 
22/60 
74/160 

155/351 
112/270 
102/253 
64/149 
56/150 
98/344 
90/347 

102/399 
115/451 
103/217 
146/318 
297/752 

3.3350e-04 
4.6259e-15 
6.1892e-14 
4.0964e-14 
1.2043e-17 
7.8019e-20 
1.8386e-17 
7.5640e-17 
2.4773e-04 
3.3925e-04 
7.1305e-04 

0.1032 
0.5569 

5.3212e-07 
3.3854e-08 
1.2336e-09 
5.8369e-15 
1.6813e-14 
1.0610e-14 

324.00 
505.00 

2.0100e+03 

 
 Form TABLE 1, Algorithm (I) performs the best for the given initial point. As see form TABLE 2, the efficiency of 
Algorithm (I) is not worse then Algorithm (II) and Algorithm (III). 
 Extended Freudenstein & Roth (EFR) function is non-convex with two minimum points, one of which is globally 
minimum. Form TABLE 3, it is concluded that Algorithm (I) performs the best in finding the globally optimal solution and is 
very suitable for solving high-dimension problem. In specification, in the case of the dimension equal to 2, both Algorithms 
(II) and (III) give the minimum 48.9843 while Algorithm (I) gives the globally minimum 2.0835e-019. 
 The results for Brown and Dennis Function are presented in TABLE 4. It is easy to see that the iterations of 
Algorithm (I) is decreasing as $ becomes larger, which indicates the efficiency the new algorithm. 
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TABLE 2 : Algorithm (I) does not dominate compared to Algorithm (II) or (III) 
 

Problem Dimension 
Algorithm 2( M =1,  =1) Algorithm 3( M =3,  =1) 

Algorithm 1( M =3, 
=6) 

g fn n  *( )f x  g fn n  *( )f x  g fn n  *( )f x  

Beale 
Ex.W.& 
H. 
Ex.W.& 
H. 
Ex.W.& 
H. 
BDEXP 
BDEXP 
PenaltyⅡ 
Per.Qua 
RaydanⅡ 
RaydanⅡ 
Trigo. 
Trigo. 
Ex.Penalty 
Watson 

2 
10 
20 
30 

1000 
5000 

2 
10 
100 

1000 
50 
500 

1000 
100 

12/28 
85/219 
123/341 
156/448 
22/45 
23/47 
8/20 

18/51 
11/65 
11/65 
45/93 

53/109 
12/36 

75/219 

9.6837e-18 
6.5620e-16 
1.4192e-14 
3.6872e-14 
1.2011e-06 
2.8855e-06 
8.0664e-07 
4.5920e-14 

100 
1000 

5.4517e-06 
4.4742e-07 
883.1941 

1.1267e-08 

2/28 
89/225 
126/34

1 
154/44

0 
22/45 
23/47 
9/21 

19/51 
16/78 
16/78 
44/89 
52/107 
16/45 
76/217 

9.6837e-18 
3.7749e-16 
4.7872e-14 
6.5794e-14 
1.2011e-06 
2.8855e-06 
8.0664e-07 
3.9012e-14 

100 
1000 

5.4517e-06 
4.4742e-07 
883.1941 

1.1268e-08 

2/28 
83/206 
121/32

4 
153/43

2 
22/45 
23/47 
9/21 

19/50 
17/78 
17/78 
44/89 
52/107 
21/55 
76/216 

9.6837e-18 
1.8803e-14 
6.2400e-15 
1.7713e-14 
1.2011e-06 
2.8855e-06 
8.0664e-07 
6.1450e-14 

100 
1000 

5.4517e-06 
4.4742e-07 
883.1941 

1.1307e-08 

 
TABLE 3 : Results for Extended Freudenstein and Roth function (using the initial point 0x =(0.5,−2,0.5,−2,···,0.5,−2)) 

 

Dimension 
Algorithm 2( M =1,  =1) Algorithm 3( M =3,  =1) Algorithm 1( M =3,  =6) 

g fn n  *( )f x  g fn n *( )f x  g fn n  *( )f x  
2 
6 

10 
18 
22 
24 

10/32 
45/759 
27/95 
53/174 
52/219 
46/504 

48.9843 
146.9528 
244.9213 
440.8583 
538.8268 
587.8110 

11/33 
22/65 
30/95 
50/167 
60/198 
62/206 

48.9843 
146.9528 
244.9213 
440.8583 
538.8268 
587.8110 

15/42 
39/158 
46/144 
62/217 
75/259 
80/282 

2.0835e-19 
1.1415e-15 
1.3625e-16 
2.8598e-16 
1.7857e-16 
1.6609e-16 

 
TABLE 4 : Results for Brown and Dennis function (using m = 10 and the initial point 0x =(0.5,−2,0.5,−2,···,0.5,−2)) 

 
Algorithm2 

( M =1,  =1) 
Algorithm 3 
( M =3,  =1) 

Algorithm 1( M =3 ) 
 =6  =10  =20  =30  =40  =50 

g fn n  
g fn n  

g fn n g fn n g fn n g fn n  
g fn n  

g fn n

----- ----- 134/609 78/380 37/154 37/150 35/145 31/127 
 

CONCLUSIONS 
 
 By (12), we get 0( ) ( ) 0kc f x f x  . Then it follows that 0( ) ( )kf x c f x , where 1c  , and therefore it is possible 

to ensure
0( ) ( )kf x f x . Hence, we can reach the goal of slackness and let the iteration point escape from the valley near 0x

and search a better solution. This idea is a breakthrough of this paper. 
 We mention here that the rule (5) can be easily achieved. In general, there are many selections for kr , krh which is 

involved in (5). Take 
1

(1 k)kr p
h 


with the constants 1p  for example. In this case, the series p-series 

0

1

( 1) p
k k



  converge 

on a limited number S. 
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