April-June 2006



# Inorganic CHEMISTRY

An Indian Journal

Trade Science Inc.

➡ FULL PAPER

ICAIJ, 1(1-2), 2006 [1-9]

### A New Study On Molecular Structure Of Ferrocene

P.P.Singh Department of Chemistry, M.L.K.P. G.College, Balrampur, U.P. (INDIA) E-mail: rbs mlk@sify.com

Received: 31<sup>st</sup> January, 2006 Accepted: 19<sup>th</sup> April, 2006

Web Publication Date : 15th May, 2006

### ABSTRACT

The molecular orbitals of ferrocene are formed by linear combination of 50 orbitals of two  $C_5H_5^-$  and 9 orbitals of iron but only 19 molecular orbitals comprising nine orbitals of iron (3d, 4s, 4p) and ten p orbitals of carbon of two  $C_5H_5$ , have been studied quantitatively. The summation of eigen vector values shows the order of involvement of various metal orbitals as 4pz (3.1559) > 4py (3.101) > 4s (2.8046) > 4px (2.1483) > 3dyz (2.1293) > 3dxz (1.7494) > 3dz<sup>2</sup> (1.6924) > 3dx<sup>2</sup>-y<sup>2</sup> (1.4940) > 3dxy (1.3597). The energy level diagram has also been drawn; the eigen values indicate that energies of ten lowest molecular orbitals are in the range -0.4898 to -0.2314 ev. © 2006 Trade Science Inc. -INDIA

### INTRODUCTION

The sandwich structure of ferrocene was established by crystographic studies in 1956, and valence bond structure was suggested by Fisher as well as by Dunitz and Orgel. Qualitative molecular orbital diagram was also proposed<sup>[1,2]</sup>. The calculation of the relative energy levels and involvement of various atomic orbital in the formation of molecular orbital is still a subject of uncertainty<sup>[2]</sup>. There is a scope in respect of making a detail calculation of molecular

V.B.L.Srivastava, Deepa Singh Department of Chemistry, M.L.K.P.G.College, Balrampur, U.P. (INDIA)

### **KEYWORDS**

Ferrocene; Population analysis; Eigen vector; Eigen value; Molecular orbital; Atomic orbital.

orbital parameter of ferrocene and its congener. In recent years attempts have been made to make detail study of atomic and molecular orbitals of transition metal compounds with the help of computational chemistry and in this connection a special volume has been published by chemical review<sup>[3]</sup>. Application of molecular mechanic<sup>[4]</sup> to organomettalic and transition metal compounds is growing; hence we have used this technique in our study.

We in this paper present a study on the eigen values, eigen vector and population analysis of fer-



rocene in order to examine the extent of involvement of 3d, 4s and 4p orbitals of iron and also to give a quantitative support to molecular orbital diagram.

#### Theory

The 3D modeling and geometry optimization of ferrocene have been done by CAChe software using molecular mechanics with EHT option. Eigen values and eigen vectors values have been obtained with the same software, using the same option. With the help of these values, eigen vector analysis and magnitude of contribution of atomic orbital in MO formation have been made and discussed.

The MOs are formed by the linear combination of basis functions. Most molecular quantum mechanical methods (such as-SCF, CI etc.) begin the calculation with the choice of a basis functions  $\chi_r$ , which are used to express the MOs  $\phi_i$  as  $\phi_i = \sum_i c_{ri} \chi_r$ . The use of an adequate basis set is an essential requirement for the calculation. The basis functions are usually taken as AOs. Each AO can be represented as a linear combination of one or more Slatertype orbitals (STOs)<sup>[5-7]</sup>. An STO centered on atom **a** has the form (Nr<sub>a</sub><sup>n-1</sup> e<sup>-ζ ra</sup> Y<sub>1</sub><sup>m</sup> ( $\theta_a$ ,  $\phi_a$ ). Each MO  $\phi_i$ is expressed as  $\phi_i = \sum_i c_{ri} \chi_r$ , where, the  $\chi_{rs}$  are the STO basis functions. Here we use the STO-6G basis set (which is contracted Gaussian)<sup>[8-11]</sup> for the SCF calculation.

The coefficients in linear combination for each MO being found by solution of the Roothaan equation <sup>[12]</sup>. The most efficient way to solve the Roothaan equation is to use matrix–algebra methods. In matrix–algebra methods, the matrix elements are computed<sup>[13]</sup>, and the secular equation is solved to give the set of orbital energies (i.e. eigen values). These orbital energies<sup>[14]</sup> are used to solve Roothaan equations for the set of coefficients (i.e. eigen vectors) giving a set of MOs. The calculations are done using a computer.

By the above calculation, the values of orbital energies (eigen values) and eigen vectors (coefficients) have been calculated.

A widely used method to analyze SCF wave function is population analysis, introduced by Mulliken <sup>[15-16]</sup>. He proposed a method that apportions the elec-

Inorganic CHEMISTRY Au Iudian Journal trons of an n–electron molecule into net populations  $n_r$  in the basis functions  $\chi_r$  and overlap populations  $n_{r-s}$  for all possible pairs of basis functions.

For the set of basis functions  $\chi_1$ ,  $\chi_2$ ,  $\chi_b$ , each MO  $\phi_i$  has the form  $\phi_i = \sum_s c_{si} \chi_s = c_{1i} \chi_1 + c_{2i} \chi_2 + ... + c_{bi} \chi_b$ . For simplicity, we shall assume that the  $c_{si}$ ,s and  $\chi_s$ ,s are real. The probability density associated with one electron in  $\phi_i$  is

$$|\phi_{i}|^{2} = c_{1i}^{2}\chi_{1}^{2} + c_{2i}^{2}\chi_{2}^{2} + \dots + 2c_{1i}c_{2i}\chi_{1}\chi_{2} + 2c_{1i}c_{3i}\chi_{1}\chi_{3} + 2c_{2i}c_{3i}\chi_{1}\chi_{3} + 2c_{2i}c_{3i}\chi_{1}\chi_{3} + \dots$$

Integrating this equation over three-dimensional space and using the fact that  $\phi_i$  and the  $\chi_s$ 's are normalized, we get

$$I = c_{1i}^{2} + c_{2i}^{2} + \dots + 2c_{1i}c_{2i}S_{12} + 2c_{1i}c_{3i}S_{13} + 2c_{2i}c_{3i}S_{23} + \dots$$
(A)

Where the S's are overlap integrals:  $S_{12} = \int \chi_1 \chi_2 dv_1 dv_2$ , etc. Mulliken proposed that the terms in (A) be apportioned as follows. One electron in the MO  $\phi$ i contributes  $c_{1i}^2$  to the net population in  $\chi_1$ ,  $c_{2i}^2$  to the net population in  $\chi_2$ , etc., and contributes  $2c_{1i}c_{2i}S_{12}$  to the overlap population between  $\chi_1$  and  $\chi_2$ ,  $2c_{1i}c_{3i}S_{13}$  to the overlap population between  $\chi_1$  and  $\chi_3$ , etc.

Let there be  $n_i$  electrons in the MO  $\phi_i$  ( $n_i = 0, 1, 2$ ) and let  $n_{r,i}$  and  $n_{r,s,i}$  symbolize the contributions of electrons in the MO  $\phi_i$  to the net population in  $\chi_r$ and to the overlap population between  $\chi_r$  and  $\chi_s$ , respectively. We have

 $n_{r,i=} n_i c_{ri}^2$ ,  $n_{r-s,i=} n_i (2c_{ri} c_{si} S_{rs})$ 

Based on the above principle, the contribution of electrons in each occupied MO has been calculated with the help of eigen vector values.

#### **RESULT AND DISCUSSION**

The ferrocene has a sandwich structure and its optimized geometry as obtained from molecular mechanics method is shown in figure 1.

The molecular orbitals of ferrocene are formed by linear combination of 50 orbitals of  $C_5H_5^-$  and 9 orbital of iron, as detailed in TABLE 1. The 59 atomic orbitals give LCAO approximation to 59 molecular orbitals. The eigen values of MOs are included in TABLE 2. The atomic orbitals are represented by  $\chi$  and MOs by  $\phi$ . 1-40 $\chi$  are atomic orbit

|    |      |     |    |         |        | -    |         |           |          | D | F  | ullPa | per  |
|----|------|-----|----|---------|--------|------|---------|-----------|----------|---|----|-------|------|
|    |      |     | 7  | TABLE 1 | : Atom | ic c | orbital | s(χ) of f | errocene |   |    |       |      |
| χ  | Atom | AO  | χ  | Atom    | AO     |      | χ       | Atom      | AO       |   | χ  | Atom  | AO   |
| 1  | 1C   | 2S  | 16 | 4C      | 2Pz    |      | 31      | 8C        | 2Py      |   | 46 | 11Fe  | 3Dz2 |
| 2  | 1C   | 2Px | 17 | 5C      | 2S     |      | 32      | 8C        | 2Pz      |   | 47 | 11Fe  | 3Dxy |
| 3  | 1C   | 2Py | 18 | 5C      | 2Px    |      | 33      | 9C        | 2S       |   | 48 | 11Fe  | 3Dxz |
| 4  | 1C   | 2Pz | 19 | 5C      | 2Py    |      | 34      | 9C        | 2Px      |   | 49 | 11Fe  | 3Dyz |
| 5  | 2C   | 2S  | 20 | 5C      | 2Pz    |      | 35      | 9C        | 2Py      |   | 50 | 12H   | 1S   |
| 6  | 2C   | 2Px | 21 | 6C      | 2S     |      | 36      | 9C        | 2Pz      |   | 51 | 12H   | 1S   |
| 7  | 2C   | 2Py | 22 | 6C      | 2Px    |      | 37      | 10C       | 2S       |   | 52 | 12H   | 1S   |
| 8  | 2C   | 2Pz | 23 | 6C      | 2Py    |      | 38      | 10C       | 2Px      |   | 53 | 12H   | 1S   |
| 9  | 3C   | 2S  | 24 | 6C      | 2Pz    |      | 39      | 10C       | 2Py      |   | 54 | 12H   | 1S   |
| 10 | 3C   | 2Px | 25 | 7C      | 2S     |      | 40      | 10C       | 2Pz      |   | 55 | 12H   | 1S   |
| 11 | 3C   | 2Py | 26 | 7C      | 2Px    |      | 41      | 11Fe      | 2S       |   | 56 | 12H   | 1S   |
| 12 | 3C   | 2Pz | 27 | 7C      | 2Py    |      | 42      | 11Fe      | 2Px      |   | 57 | 12H   | 1S   |
| 13 | 4C   | 2S  | 28 | 7C      | 2Pz    |      | 43      | 11Fe      | 2Py      |   | 58 | 12H   | 1S   |
| 14 | 4C   | 2Px | 29 | 8C      | 2S     |      | 44      | 11Fe      | 2Pz      |   | 59 | 12H   | 1S   |
| 15 | 4C   | 2Py | 30 | 8C      | 2Px    |      | 45      | 11Fe      | 3Dx2-y2  |   |    |       |      |

P.P.Singh et al.



Figure 1

als of carbon, 41-49x of iron and 50-59x of hydrogen.

The population analysis as discussed later indicates that 2s and 2px, 2py orbitals of each carbon atom of  $C_5H_5^-$  are involved in the formation of  $\sigma$ bond between C-C and C-H. The orbitals involved in  $\sigma$  bonding are not of interest, hence shall remain out of our discussion. The 2pz orbitals of ten carbons and nine orbital of iron, which is in total 19 orbitals, are relevant to our discussion in respect of bonding between iron orbital and 2pz orbital of C<sub>5</sub>H<sub>5</sub><sup>-</sup>. These atomic orbitals are  $\chi_4, \chi_8, \chi_{12}, \chi_{16}, \chi_{20}, \chi_{24}, \chi_{28}, \chi_{32}, \chi_{36}, \chi_{40}$  of carbon and  $\chi_{41}$ - $\chi_{49}$  of iron. The co-

| MO( <b>\$</b> ) | Eigen values | MO(\$) | Eigen values | MO( <b>\$</b> ) | Eigen values |   | MO( <b>q</b> ) | Eigen values |
|-----------------|--------------|--------|--------------|-----------------|--------------|---|----------------|--------------|
| 1               | -1.1084      | 16     | -0.5265      | 31              | -0.3273      |   | 46             | 0.4071       |
| 2               | -1.0916      | 17     | -0.5234      | 32              | -0.2775      |   | 47             | 0.4112       |
| 3               | -0.9049      | 18     | -0.5187      | 33              | -0.2565      |   | 48             | 0.431        |
| 4               | -0.9018      | 19     | -0.5131      | 34              | -0.2323      |   | 49             | 0.4315       |
| 5               | -0.8728      | 20     | -0.5129      | 35              | -0.2314      |   | 50             | 0.4732       |
| 6               | -0.8666      | 21     | -0.5087      | 36              | -0.0656      |   | 51             | 0.5249       |
| 7               | -0.6916      | 22     | -0.5074      | 37              | -0.031       |   | 52             | 0.7326       |
| 8               | -0.6895      | 23     | -0.4898      | 38              | 0.0985       |   | 53             | 0.763        |
| 9               | -0.6799      | 24     | -0.4831      | 39              | 0.0996       |   | 54             | 1.048        |
| 10              | -0.6792      | 25     | -0.4608      | 40              | 0.1246       |   | 55             | 1.128        |
| 11              | -0.6078      | 26     | -0.4541      | 41              | 0.1454       |   | 56             | 2.0102       |
| 12              | -0.6044      | 27     | -0.4505      | 42              | 0.1816       |   | 57             | 2.0624       |
| 13              | -0.5468      | 28     | -0.4464      | 43              | 0.1873       |   | 58             | 2.2399       |
| 14              | -0.5456      | 29     | -0.4402      | 44              | 0.2782       |   | 59             | 2.2436       |
| 15              | -0.5389      | 30     | -0.3694      | 45              | 0.2796       | _ |                |              |

TABLE 2: Eigen values of molecular orbitals ( $\phi$ ) of ferrocene

FULL PAPER

| MOs                 | 4s          | 4px         | 4py         | 4pz         | 3dx <sup>2</sup> -y <sup>2</sup> | 3dz <sup>2</sup> | 3dxy        | 3dxz        | 3dyz        |
|---------------------|-------------|-------------|-------------|-------------|----------------------------------|------------------|-------------|-------------|-------------|
|                     | <b>X</b> 41 | <b>X</b> 42 | <b>X</b> 43 | <b>X</b> 44 | <b>X</b> 45                      | <b>X</b> 46      | <b>X</b> 47 | <b>X</b> 48 | <b>X</b> 49 |
| \$\phi_{23}\$       |             |             |             |             | 0.4708                           |                  |             | 0.2893      | 0.2288      |
| $\phi_{24}$         |             |             |             |             |                                  |                  | 0.2847      | 0.4762      | 0.2718      |
| <b>\$</b> 25        |             |             |             |             | 0.6472                           |                  |             |             | 0.3147      |
| $\phi_{26}$         |             |             |             |             |                                  | 0.2269           | 0.8185      |             |             |
| <b>\$</b> 27        |             |             |             |             |                                  | 0.5776           | 0.2565      |             | 0.4672      |
| $\phi_{28}$         |             |             |             |             | 0.3760                           |                  |             |             |             |
| <b>\$</b> 29        |             |             |             |             |                                  | 0.5383           |             |             |             |
| <b>\$</b> _{30}     |             |             |             |             |                                  | 0.3496           |             | 0.5271      | 0.3891      |
| <b>\$</b> 31        |             |             |             |             |                                  |                  |             | 0.4573      | 0.4577      |
| <b>\$</b> _{35}     |             |             |             |             | 0.2392                           |                  |             |             |             |
| <b>\$</b> 36        |             | 0.7335      | 0.6722      | 0.4698      |                                  |                  |             |             |             |
| <b>\$</b> 37        | 0.5031      | 0.7533      | 0.6885      |             |                                  |                  |             |             |             |
| <b>\$</b> 40        | 0.7981      |             | 0.2865      |             |                                  |                  |             |             |             |
| $\phi_{41}$         |             |             | 0.2780      | 0.7412      |                                  |                  |             |             |             |
| <b>\$</b> 43        |             |             |             | 0.3154      |                                  |                  |             |             |             |
| <b>\$</b> 50        | 0.9232      |             |             |             |                                  |                  |             |             |             |
| <b>\$</b> 51        |             |             | 0.3489      | 0.9974      |                                  |                  |             |             |             |
| $\phi_{54}$         |             | 0.2810      | 0.3923      | 0.6228      |                                  |                  |             |             |             |
| <b>\$</b> 55        | 0.5802      | .03805      | 0.4346      |             |                                  |                  |             |             |             |
| Summation<br>Values | 2.8046      | 2.1483      | 3.101       | 3.1559      | 1.4940                           | 1.6924           | 1.3597      | 1.7499      | 2.1293      |

N.B. Orbitals having eigen vector values above 0.22 have only been considered

efficients of these orbitals are the eigen vector values of  $\chi$  which have been evaluated by molecular mechanics method using Cache software. They express the forms of molecular orbital that is the extent of involvement of  $\chi$  in the formation of  $\phi$ . These values are included in TABLE 3, for metal orbitals and TABLE 4 for 2pz orbitals of carbon. The zero or near zero values have been excluded from the TABLE.

The first ten molecular orbitals, that is  $\phi_{23-31}$  and  $\phi_{35}$ , have contributions from 3d orbitals of the metal, and 2pz orbitals of different carbon atoms of two  $C_5H_5^-$ . The remaining nine molecular orbitals ( $\phi_{36}$ - $\phi_{37}$ ,  $\phi_{40}$ - $\phi_{41}$ ,  $\phi_{43}$ ,  $\phi_{50}$ - $\phi_{51}$ ,  $\phi_{54}$ - $\phi_{55}$ ) have contribution from vacant 4s, and 4px, 4py and 4pz orbitals of the metal, and 2pz orbitals of carbon. To examine the extent of involvement of 3d, 4s and 4p orbitals in the formation of molecular orbitals the values of

Inorganic CHEMISTRY An Indian Journal coefficient of each orbital have been added to see the total involvement in all the 19 molecular orbitals. The summation values are placed at the bottom of the TABLE, and the total contribution from each atomic orbital is shown in figure 2. It is clearly indicated that 4pz orbital has the maximum involvement out of 4s and 4p orbitals, and 3dyz orbital has the maximum involvement from the 3d orbitals. The sequence from the two series is as below.

4pz > 4py > 4s > 4px, $3dyz, 3dxz, 3dz^2 > 3dx^2-y^2 > 3dxy.$ 

### Eigen values

The eigen values of 59 molecular orbitals of ferrocene are listed in TABLE 2, out of which we shall discuss only 19 molecular orbitals described in TABLE 3 and 4. The first ten MOs are formed by various 3d orbitals and 2pz orbitals C<sub>5</sub>H<sub>5</sub><sup>-</sup> radicals. These orbitals are the most stable molecular orbitals

# 🗢 FullPaper

| TABLE 4: Eigen vector values of 2pz orbitals of  | en carbon atoms o | of both the $C_5H_5^-$ | <sup>-</sup> in 19 molecular |
|--------------------------------------------------|-------------------|------------------------|------------------------------|
| orbitals of ferrocene and their summation values |                   | 0.0                    |                              |

| MOs                 | 1c     | 2c     | 3c     | 4c              | 5c     | 6c     | 7c     | 8c     | 9c     | 10c    |
|---------------------|--------|--------|--------|-----------------|--------|--------|--------|--------|--------|--------|
|                     | χ4     | χ8     | χ12    | χ <sub>16</sub> | χ20    | χ24    | χ28    | χ32    | χ36    | χ40    |
| <b>\$</b> 23        |        | 0.2151 |        | 0.2796          |        |        | 0.2336 |        |        | 0.2841 |
| $\phi_{24}$         | 0.2133 |        |        |                 |        |        |        | 0.2312 |        |        |
| <b>\$</b> 25        | 0.2062 |        | 0.2511 |                 |        |        |        |        |        |        |
| <b>\$</b> 26        |        |        | 0.1668 |                 |        |        |        |        |        |        |
| $\phi_{27}$         |        | 0.2685 |        |                 |        |        | 0.2273 |        |        |        |
| $\phi_{28}$         |        | 0.2347 |        | 0.2169          |        | 0.3799 | 0.2591 | 0.2011 | 0.3185 |        |
| <b>\$</b> 29        |        | 0.3310 |        |                 | 0.2399 |        | 0.2523 |        |        | 0.2543 |
| <b>\$</b> _{30}     | 0.2886 |        | 0.3015 |                 |        | 0.2907 |        | 0.2767 |        |        |
| <b>\$</b> 31        | 0.2644 | 0.3474 |        |                 | 0.3104 |        | 0.3409 | 0.2797 | 0.3116 |        |
| <b>\$</b> 35        | 0.4567 | 0.4381 |        |                 | 0.3623 |        | 0.4564 | 0.4820 | 0.3912 |        |
| <b>\$</b> 36        | 0.2629 |        |        |                 |        |        |        |        |        | 0.2243 |
| <b>\$</b> 37        |        | 0.2973 |        |                 |        |        | 0.2673 | 0.2552 |        |        |
| $\phi_{40}$         |        |        |        | 0.3089          |        |        |        |        |        | 0.3653 |
| $\phi_{41}$         | 0.2114 |        |        | 0.2234          |        |        |        |        |        | 0.2387 |
| $\phi_{43}$         |        |        |        | 0.2661          |        |        |        |        |        |        |
| <b>\$</b> 50        |        |        |        | 0.4338          |        |        |        |        |        | 0.3828 |
| <b>\$</b> 51        |        |        |        | 0.3149          |        |        |        |        |        | 0.3416 |
| <b>\$</b> 54        |        |        |        |                 | 0.1856 |        |        |        |        |        |
| <b>\$</b> 55        |        |        |        |                 |        |        | 0.3004 |        |        |        |
| Summation<br>Values | 2.1382 | 1.1119 | 0.9363 | 1.8267          | 0.7359 | 0.6706 | 1.8809 | 1.4492 | 1.0213 | 2.0911 |



Inorganic CHEMISTRY Au Iudian Journal

and have their energies in the range -0.4898 to -0.2314 ev. The contribution of 3d metal and 2pz of carbon in the formation of ten MOs is described as below.

The next nine molecular orbitals are formed by interaction of 4s, 4px, 4py, and 4pz orbitals of metal and 2pz orbitals of carbon. These MOs are comparatively less stable and have their energies between -0.0656 and 1.1280 ev. The contribution of various atomic orbitals in the formation of molecular orbitals is presented below.

$$\begin{split} & \varphi_{36}, \chi_{42}, \chi_{43}, \chi_{44}, \chi_{4}, \chi_{40}, \\ & \varphi_{37}, \chi_{41}, \chi_{42}, \chi_{43}, \chi_{8}, \chi_{28}, \chi_{32}, \\ & \varphi_{40}, \chi_{41}, \chi_{43}, \chi_{16}, \chi_{40}, \\ & \varphi_{41}, \chi_{43}, \chi_{44}, \chi_{4}, \chi_{16}, \chi_{40}, \end{split}$$

Energy level diagram has been drawn for representing molecular orbital, their eigen values and involvement of atomic orbitals and is shown in figure 3.

### **Population analysis**

The contribution of electrons in each occupied MO is calculated by using the population analysis method, introduced by Mulliken. This method apportions the electrons of n-electron molecule into net population  $n_r$  in the basis function  $\chi_r$ . Let there be  $n_i$  electrons in the MO  $\phi_i$  ( $n_i = 0, 1, 2$ ) and let  $n_{r,i}$  symbolize the contribution of electrons in the MO  $\phi_i$  to the net population in  $\chi_r$ , we have

 $n_{r,i} = n_i c_{ri}^2$  .....Eq. 1

Where,  $c_{ri}$  is the coefficient of atomic orbitals for the i<sup>th</sup> MO (r = 1-29).

Eq.-1, has been solved for 58 electrons of 29

| Molecular orbital (\$) | Eigen values (e.v.) | <b>Energy Levels</b> | Atomic orbitals (χ)          |
|------------------------|---------------------|----------------------|------------------------------|
|                        | 1.1000              |                      |                              |
| 55                     | 1.1280              |                      | - Fe(4s,4px,4py) C(2pz)      |
| 54                     | 1.0480              |                      | Fe(4p), C(2pz)               |
| 51                     | 0.5249              |                      | — Fe(4py.4pz), C(2pz)        |
| 50                     | 0.4732              |                      | Fe(4s), C(2pz)               |
| 43                     | 0.1873              |                      | Fe(4pz), C(2pz)              |
| 41                     | 0.1454              |                      | Fe(4pz,4py), C(2pz)          |
| 40                     | 0.1246              |                      | Fe(4s,4py), C(2pz)           |
| 37                     | -0.031              |                      | Fe(4s,4px,4py), C(2pz)       |
| 36                     | -0.0656             |                      | — Fe(4p), C(2pz)             |
| 35                     | -0.2314             |                      | Fe(3dx2-y2), C(2pz)          |
| 31                     | -0.3273             |                      | - Fe(3dxz,3dyz), C(2pz)      |
| 30                     | -0.3694             |                      | e(3dxz,3dyz,3dz2), C(2p      |
| 29                     | -0.4402             |                      | $= E_{\alpha}(2d) C(2\pi q)$ |
| T                      | -0.4898             |                      | = 10(30), 0(2pz)             |
| 23                     |                     |                      |                              |

Figure 3: Energy level diagram of ferrocene

6

orbitals-23

### **Full Paper**

| ~~~~ |                                       |                 |                     |                         |
|------|---------------------------------------|-----------------|---------------------|-------------------------|
| χ    | Atomic<br>orbital                     | Eigen<br>vector | No. of<br>electrons | $n_{ri} = n_i c^2_{ri}$ |
| 2    | 1С-2рх                                | 0.1823          | 2                   | 0.0664666               |
| 6    | 2C-2px                                | 0.1296          | 2                   | 0.0335923               |
| 8    | 2C-2pz                                | 0.2151          | 2                   | 0.092536                |
| 15   | 4C-2py                                | 0.1227          | 2                   | 0.0301106               |
| 16   | 4C-2pz                                | 0.2280          | 2                   | 0.1039315               |
| 18   | 5C-2px                                | 0.1332          | 2                   | 0.0354845               |
| 28   | 7C-2pz                                | 0.2336          | 2                   | 0.1091379               |
| 31   | 8C-2py                                | 0.1644          | 2                   | 0.0540547               |
| 35   | 9C-2py                                | 0.1398          | 2                   | 0.0390881               |
| 40   | 10C-2pz                               | 0.2841          | 2                   | 0.1614256               |
| 45   | 11Fe-3dx <sup>2</sup> -y <sup>2</sup> | 0.4708          | 2                   | 0.4433053               |
| 46   | 11Fe-3dz <sup>2</sup>                 | 0.1156          | 2                   | 0.0267267               |
| 48   | 11Fe-3dxz                             | 0.2893          | 2                   | 0.167389                |
| 49   | 11Fe-3dvz                             | 0.2288          | 2                   | 0.1046989               |

TABLE 5: Contribution of electrons in molecular

TABLE 6: Contribution of electrons in molecularorbitals-24

| χ  | Atomic<br>orbital                     | Eigen<br>vector | No. of<br>electrons | $n_{ri} = n_i c^2_{ri}$ |
|----|---------------------------------------|-----------------|---------------------|-------------------------|
| 3  | 1C-2py                                | 0.1193          | 2                   | 2.0000                  |
| 4  | 1-2pz                                 | 0.2133          | 2                   | 0.0909938               |
| 10 | 3C-2px                                | 0.1260          | 2                   | 0.031752                |
| 12 | 3C-2pz                                | 0.1544          | 2                   | 0.0476787               |
| 14 | 4C-2px                                | 0.1266          | 2                   | 0.0320551               |
| 15 | 4C-2py                                | 0.1275          | 2                   | 0.0325125               |
| 16 | 4C-2pz                                | 0.1005          | 2                   | 0.0202005               |
| 18 | 5C-2px                                | 0.1288          | 2                   | 0.0331789               |
| 20 | 5C-2pz                                | 0.1385          | 2                   | 0.0383645               |
| 23 | 6C-2py                                | 0.1024          | 2                   | 0.0209715               |
| 24 | 6C-2pz                                | 0.1852          | 2                   | 0.0685981               |
| 32 | 8C-2pz                                | 0.2311          | 2                   | 0.1068144               |
| 35 | 9C-2py                                | 0.1435          | 2                   | 0.0411845               |
| 36 | 9C-2pz                                | 0.1199          | 2                   | 0.028752                |
| 38 | 10C-2px                               | 0.1215          | 2                   | 0.0295245               |
| 39 | 10-2py                                | 0.1483          | 2                   | 0.0439858               |
| 40 | 10C-2pz                               | 0.1272          | 2                   | 0.0323597               |
| 45 | 11Fe-3dx <sup>2</sup> -y <sup>2</sup> | 0.1041          | 2                   | 0.0216736               |
| 46 | 11Fe-3dz <sup>2</sup>                 | 0.2013          | 2                   | 0.0810434               |
| 47 | 11Fe-3dxy                             | 0.2847          | 2                   | 0.1621082               |
| 48 | 11Fe-3dxz                             | 0.4762          | 2                   | 0.4535329               |
| 49 | 11Fe-3dyz                             | 0.2718          | 2                   | 0.1477505               |

molecular orbitals in ferrocene, each MO has two electrons. The coefficient of atomic orbitals that is  $c_n$  is the eigen vector value. These values have been obtained from Cache software using molecular mechanic method. Zero or near zero values have not been considered. The results are included in TABLES 5-11. It is indicated that in MOs 1-22, only 2s, 2py and 2px electrons of carbon have their contribution in the formation of molecular orbitals of ferrocene. The result of solution of equation-1 for MOs of 23-29 clearly indicates that main contribution of electrons in MO-23 is from 2pz orbitals of 4c, 7c and

 TABLE 7: Contribution of electrons in molecular

 orbitals-25

| χ  | Atomic<br>orbital                     | Eigen<br>vector | No. of<br>electrons | $\mathbf{n}_{\mathbf{r}\mathbf{i}} = \mathbf{n}_{\mathbf{i}} \mathbf{c}^2_{\mathbf{r}\mathbf{i}}$ |
|----|---------------------------------------|-----------------|---------------------|---------------------------------------------------------------------------------------------------|
| 2  | 1C-2px                                | 0.1315          | 2                   | 0.0345845                                                                                         |
| 4  | 1C-2pz                                | 0.2062          | 2                   | 0.0850369                                                                                         |
| 6  | 2С-2рх                                | 0.1055          | 2                   | 0.0222605                                                                                         |
| 12 | 3C-2pz                                | 0.2511          | 2                   | 0.1261024                                                                                         |
| 24 | 6C-2pz                                | 0.1770          | 2                   | 0.062658                                                                                          |
| 31 | 8C-2py                                | 0.1600          | 2                   | 0.0512                                                                                            |
| 32 | 8C-2pz                                | 0.1981          | 2                   | 0.0784872                                                                                         |
| 40 | 10C-2pz                               | 0.1486          | 2                   | 0.0441639                                                                                         |
| 45 | 11Fe-3dx <sup>2</sup> -y <sup>2</sup> | 0.6472          | 2                   | 0.8377357                                                                                         |
| 46 | 11Fe-3dz <sup>2</sup>                 | 0.2173          | 2                   | 0.0944386                                                                                         |
| 48 | 11Fe-3dxz                             | 0.2138          | 2                   | 0.0914209                                                                                         |
| 49 | 11Fe-3dyz                             | 0.3140          | 2                   | 0.197192                                                                                          |

TABLE 8: Contribution of electrons in molecular orbitals-26

| χ  | Atomic<br>orbital     | Eigen<br>vector | No.of<br>electrons | $n_{ri} = n_i c_{ri}^2$ |
|----|-----------------------|-----------------|--------------------|-------------------------|
| 10 | 3C-2px                | 0.1351          | 2                  | 0.036504                |
| 11 | 3C-2py                | 0.1119          | 2                  | 0.0250432               |
| 12 | 3C-2pz                | 0.1668          | 2                  | 0.0556445               |
| 14 | 4C-2px                | 0.1758          | 2                  | 0.0618113               |
| 19 | 5C-2py                | 0.1701          | 2                  | 0.057868                |
| 24 | 6C-2pz                | 0.1761          | 2                  | 0.0620224               |
| 31 | 8C-2py                | 0.1158          | 2                  | 0.0268193               |
| 34 | 9C-2px                | 0.1125          | 2                  | 0.0253125               |
| 39 | 10C-2py               | 0.1217          | 2                  | 0.0296218               |
| 46 | 11Fe-3dz <sup>2</sup> | 0.2269          | 2                  | 0.1029672               |
| 47 | 11Fe-3dxy             | 0.8185          | 2                  | 1.3398845               |
| 49 | 11Fe-3dyz             | 0.1004          | 2                  | 0.0201603               |

Inorganic CHEMISTRY An Indian Journal

TABLE 9: Contribution of electrons in molecularorbitals-27

| χ  | Atomic<br>orbital                     | Eigen<br>vector | No.of<br>electrons | $n_{ri} = n_i c_{ri}^2$ |
|----|---------------------------------------|-----------------|--------------------|-------------------------|
| 8  | 2C-2pz                                | 0.2685          | 2                  | 0.1441845               |
| 16 | 4C-2pz                                | 0.1949          | 2                  | 0.075972                |
| 18 | 5C-2px                                | 0.1068          | 2                  | 0.0228125               |
| 20 | 5C-2pz                                | 0.1218          | 2                  | 0.0296705               |
| 28 | 7C-2pz                                | 0.2273          | 2                  | 0.1033306               |
| 40 | 10C-2pz                               | 0.1848          | 2                  | 0.0683021               |
| 41 | 11Fe-4s                               | 0.1004          | 2                  | 0.0201603               |
| 45 | 11Fe-3dx <sup>2</sup> -y <sup>2</sup> | 0.1063          | 2                  | 0.0225994               |
| 46 | 11Fe-3dz <sup>2</sup>                 | 0.5776          | 2                  | 0.6672435               |
| 47 | 11Fe-3dyz                             | 0.2565          | 2                  | 0.1315845               |
| 49 | 11Fe-3dyz                             | 0.4672          | 2                  | 0.4365517               |

TABLE 10: Contribution of electrons in molecular orbitals-28

| χ  | Atomic<br>orbital                     | Eigen<br>vector | No.of<br>electrons | $\mathbf{n}_{\mathrm{ri}} = \mathbf{n}_{\mathrm{i}}  \mathrm{c}^2_{\mathrm{ri}}$ |
|----|---------------------------------------|-----------------|--------------------|----------------------------------------------------------------------------------|
| 4  | 1C-2pz                                | 0.2347          | 2                  | 0.1101682                                                                        |
| 11 | 3C-2py                                | 0.1003          | 2                  | 0.0201202                                                                        |
| 12 | 3C-2pz                                | 0.2169          | 2                  | 0.0940912                                                                        |
| 15 | 4C-2py                                | 0.1632          | 2                  | 0.0532685                                                                        |
| 16 | 4C-2pz                                | 0.1190          | 2                  | 0.028322                                                                         |
| 19 | 5C-2py                                | 0.1620          | 2                  | 0.052488                                                                         |
| 20 | 5C-2pz                                | 0.1844          | 2                  | 0.0680067                                                                        |
| 24 | 6C-2pz                                | 0.3799          | 2                  | 0.288648                                                                         |
| 28 | 7C-2pz                                | 0.2591          | 2                  | 0.1342656                                                                        |
| 32 | 8C-2pz                                | 0.2011          | 2                  | 0.0808824                                                                        |
| 34 | 9C-2px                                | 0.1902          | 2                  | 0.0723521                                                                        |
| 35 | 9C-2py                                | 0.2112          | 2                  | 0.0892109                                                                        |
| 36 | 9C-2pz                                | 0.3185          | 2                  | 0.2028845                                                                        |
| 39 | 10C-2py                               | 0.1119          | 2                  | 0.0250432                                                                        |
| 45 | 11Fe-3dx <sup>2</sup> -y <sup>2</sup> | 0.3760          | 2                  | 0.282752                                                                         |
| 49 | 11Fe-3dyz                             | 0.1352          | 2                  | 0.0365581                                                                        |

10c. From Fe it is from  $3dx^2-y^2$  and  $3dz^2$ , In MO-24 it is from 2pz of 8c, and 3dxy, 3dxz and 3dyz of iron. Briefly the other MOs can be presented as below:

- MO-25 -3c-2pz, Fe-3dx<sup>2</sup>-y<sup>2</sup> and 3dyz.
- MO-26 Fe-3dz<sup>2</sup> and 3dxy.
- MO-27 2c-2pz, 7c-2pz, Fe-3dxy, and 3dyz.
- MO-28 6c-2pz, 7c-2pz, 9c-2pz, Fe-3d x<sup>2</sup>-y<sup>2</sup>.
- MO-29 2c-pz, 5c-2pz, 10c-2pz, Fe-3dz<sup>2</sup>.

TABLE 11: Contribution of electrons in molecular orbitals-29

| χ  | Atomic<br>orbital                     | Eigen<br>vector | No.of<br>electrons | $\mathbf{n}_{\mathbf{r}\mathbf{i}} = \mathbf{n}_{\mathbf{i}}  \mathbf{c}^2_{\mathbf{r}\mathbf{i}}$ |
|----|---------------------------------------|-----------------|--------------------|----------------------------------------------------------------------------------------------------|
| 8  | 2C-2pz                                | -0.3310         | 2                  | 0.219122                                                                                           |
| 11 | 3C-2py                                | -0.1108         | 2                  | 0.0245533                                                                                          |
| 12 | 3C-2pz                                | -0.1780         | 2                  | 0.063368                                                                                           |
| 15 | 4C-2py                                | 0.1742          | 2                  | 0.0606913                                                                                          |
| 16 | 4C-2pz                                | 0.1828          | 2                  | 0.0668317                                                                                          |
| 19 | 5C-2py                                | 0.1227          | 2                  | 0.0301106                                                                                          |
| 20 | 5C-2pz                                | 0.2399          | 2                  | 0.115104                                                                                           |
| 28 | 7C-2pz                                | 0.2523          | 2                  | 0.1273106                                                                                          |
| 36 | 9C-2pz                                | -0.1163         | 2                  | 0.0270514                                                                                          |
| 38 | 10C-2px                               | -0.1654         | 2                  | 0.0547143                                                                                          |
| 40 | 10C-2pz                               | -0.2543         | 2                  | 0.129337                                                                                           |
| 41 | 11Fe-4s                               | -0.1452         | 2                  | 0.0421661                                                                                          |
| 45 | 11Fe-3dx <sup>2</sup> -y <sup>2</sup> | -0.1367         | 2                  | 0.0373738                                                                                          |
| 53 | 15H-1s                                | 0.1072          | 2                  | 0.0229837                                                                                          |
| 59 | 21H-1s                                | 0.1261          | 2                  | 0.0318024                                                                                          |
|    |                                       |                 |                    |                                                                                                    |

The results very clearly indicate that only 2pz orbitals of carbon of  $C_5H_5^-$ , and 3d orbitals of iron provide electrons to molecular orbitals 23-29.

### ACKNOWLEDGEMENT

Deepa Singh gratefully acknowledges the financial support by U.G.C., New Delhi for award of PTRA.

### REFERENCES

- [1] F.A.Cotton, G.Wilkinson, P.L.Gaus; 'Basic Inorganic Chemistry', 3<sup>rd</sup> ed., Wiley and Sons, Asia 667 (2001).
- [2] R.C.Mehrotra, A.Singh; 'Organometallic Chemistry', Wiley Eastern Ltd., 247 (1992).
- [3] E.R.David; Chem.Rev., 100, 351 (2000).
- [4] I.N.Levine; 'Quantum Chemistry', 5<sup>th</sup> ed., Prentice Hall, New Jersey, 664 (2000).
- [5] E.Clementi, C.Roetti; At.Data Nucl.Data Tables, 14, 177 (1974).
- [6] C.F.Bunge et al.; At.Data Nucl.Data Tables, 53, 113 (1993).
- [7] C.F.Bunge et al.; Phys.Rev.A., 46, 3691 (1992).
- [8] S.Wilson; Adv.Chem.Phys., 67, 439 (1987).
- [9] E.R.Davidson, D.Feller; Chem.Rev., 86, 681 (1986).

Inorganic CHEMISTRY Au Iudiau Journal

- [10] D.Feller, E.R.Davidson; 'Reviews in Computational Chemistry', K.B.Lipkowitz, D.B.Boyd Eds, Wiley VCH, 1, 1-43 (1990).
- [11] T.Helgaker, P.R.Taylor, Eds., 'Yarkony Pt II', Wiley VCH, Part II, 725-856 (1990).
- [12] I.N.Levine; 'Quantum Chemistry', 5th Ed. Prentice

Hall, New Jersey, 426-436 (2000).

- [13] J.H.Lenthe, P.J.Pulay; Comp.Chem., 11, 1164 (1990).
- [14] L.G.Vanquickenborne, K.Pierloot, D.Devoghel; Inorg.Chem., 28, 1805 (1989).
- [15] S.M.Bachrach, K.Lipkowitz, D.B.Boyd; 'Reviews in Computational Chemistry', Vol.5, Wiley VCH, Chapter-3 (1994).
- [16] A.E.Reed, R.B.Weinstock; F.Weinhold, J.Chem.Phys., 83, 735 (1985).