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Introduction

Many important phenomena in physics and engineering, such that fluid dynamics, plasma, chemistry, biology, optical fibers
have been described with the aid of the nonlinear partial differential equations (PDEs) in mathematical physics.
Investigations to exact solutions of these nonlinear PDEs will help us to understand these phenomena better. In recent years,
various effective approaches have been developed to construct the exact solutions of these equations. Therefore, exact
solution methods of PDEs have become more and more important resulting in methods, such as the Hirota bilinear transform
method [1] the mapping method [2] the exp-function method [3,4], the sine-cosine method [5,6] the homogeneous balance
method [7,8] the tanh-sech method [9,10] the extended tanh-coth method [11,12], the (G'/G) -expansion method [13-15]
the modified simple equation method [16-19] the multiple exp-function method [19-21] the first integral method [22,23] the

soliton ansatz method [24-28] the generalized Kudryashov method [29-31] the general Exp , -function method [32] the
rational (G'/G) -expansion method [33] and so on.
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The objective of this article is to apply the generalized Kudryashov method and the general Exp , -function method for

obtaining many new exact solutions, symmetrical hyperbolic Fibonacci function solutions as well as bright, dark and singular
soliton solutions of the following nonlinear Schrédinger equation with fourth-order dispersion and cubic-quintic nonlinearity
[34-36]:

B By, B

iu - Sl +yfufu-ite = U oy Loy mlufu ialﬂuful —iaczuﬂuf)I =0, i=v-1,

where U =U(X,t) is a complex envelop amplitude, t represents the time (in the group-velocity frame), X represents the
distance along the direction of propagation (the longitudinal coordinate), f3,, f,, 3, are respectively representing the group
velocity dispersion (GVD), the third order dispersion (TOD) and the fourth order dispersion (FOD) while », and y, are the
cubic and quintic nonlinearities coefficients of the medium. The term proportional to &, results from the first derivative of

the slowly varying part of the nonlinear polarization. It is responsible for self-steeping and shock formation at a pulse edge.

The last term proportional to ¢, has its self-frequency shift arising from delayed Raman response, and generally, a, should
be complex. When ﬂ3 = ,84 =y,=0, =0, = 0, Eq. (1) reduces to the well-known nonlinear Schrédinger equation. In

many cases IMa, <<Rea, , so we consider the real part of ¢, as in [34]. Propagation of ultra-short optical pulses in

optical fibers is governed by the nonlinear Schrédinger equation with fourth-order dispersion and cubic-quintic nonlinearity
(1). Eq. (1) has been discussed in [34] by using an auxiliary equation method, in [35] by using the F-expansion method and in
[36] by using the soliton ansatz method combined with the Jacobi elliptic equation method.

This article is organized as follows: In sections 2 and 3, we describe the generalized Kudryashov method and the general Exp
o -function method. In section 4, we apply these two methods to find many new exact solutions, symmetrical hyperbolic

Fibonacci function solutions as well as bright, dark and singular soliton solutions of Eq. (1). In section 5, some graphical

representations of some results are presented. In section 6, some conclusions are illustrated.

Description of the Generalized Kudryashov Method
Suppose that a nonlinear PDE has the following from:

F(u,u,,u,,u,,u,,U,,..)=0, )
where U =U(X,t) is an unknown function, F is a polynomial in U and its partial derivatives, in which the highest order

derivatives and nonlinear terms are involved.

The main steps of the generalized Kudryashov method [29-31] are described as follows:
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Step 1
First of all, we use the wave transformation:
u(x,t)=U(&), &E=kx+A1t, (3)

where k and A are arbitrary constants with k, A0, to reduced equation (2) into a nonlinear ordinary differential

equation (ODE) with respect to the variable & of the form

HU,U’,U"U",..)

0, (4)

where H is a polynomial in U (£) and its total derivatives U’,U",U",... suchthat U'=9 U"= U and so on.

ds dé
Step 2
We assume that the formal solution of the ODE (4) can be written in the following rational form:
n,aQ' A
U(g) — ZI—O |Q (é) _ [Q(g)] (5)

Y7b,Q(&)  B[QE)]

where Q = -, A[Q(f)]z >r,aQ'(&) and B[Q(f)]= Z’j“:oijj(f) . The function Q is the solution of the

equation

Q' =QQ-1)in(a), O<a=l 6)

From (5) and (6), we have

U6 =0Q-1) *5 2 ina) 0
U"(f)=Q(Q—1)(2Q—1)[@}ln2(a)
v AR A - (8)
+Q2(Q_1)2[B(AB AB") I:3ABB+2A(B) }Inz(a)’
and so on.
Step 3

We determine the values M and N in (5) by balancing the highest order nonlinear terms and the highest order derivatives of

U(¢) inEq. (4) and we can determine a formula of Mand N.
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Step 4
We substitute (5)-(8) into Eq. (4) and equate all the coefficients of Qi (1=0,1,2,...) to zero, yield a system of algebraic

equations which can be solved using the Mathematica or Maple, to find k, A and the coefficients of a (i =01,..., n)

and b; (j=0,1,...,m). Consequently, we can get the exact solutions of Eq. (2).

The obtained solutions will be depended on the symmetrical hyperbolic Fibonacci functions given in [32,37]. The

symmetrical Fibonacci sine, cosine, tangent, and cotangent functions are, respectively, defined as:

a*-a~ a‘+a~*
sFsE) =2 2" N
V5 J5
a‘-a a‘+a* ©
tanFS(é:): m, COtFS(é:) :m,
SFs(@) = —=sh[gin(@)]  cFs(&) = —2ch[¢In(a)]
J5 ' J5 ’ (10)

tanFs(£) = tanh[£In(a)] COtFs(€) = coth[£ In(a)]

Description of the general Exp , -function method
With reference to [3] He and Wu have established the well-known exp-function method for solving many nonlinear PDEs.

In this section, we give the main steps of the general Exp , -function method [32] as follows:

Step 1
We consider (2)-(4) of Sec. 2.

Step 2
According to the general Exp , -function method, which was suggested by Ali and Hassan [32], we assume that the wave

solution of Eq. (4) can be expressed in the following form:

Yo a A"
p mg !
2m—q Bpnd

U(e) =

(11)

where P, Q,C,d are positive integers to be determined and A, B,, are constants to be determined too, while 0 <a#1

is an arbitrary fixed positive number. We can write (11) in the following equivalent form
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Aa% +..+Aa%*
B,a™ +..+B "%

U(s) =

(12)

Step 3

We determine the values of C, p by balancing the linear term of highest order of Eq. (4) with the highest order nonlinear

term. Similarly, we determine the values of d,( by balancing the linear term of lowest order of Eq. (4) with the lowest

order nonlinear term.

Step 4
We substitute (12) into Eq. (4) and calculate all the coefficients of alk (j =0, 1,2, ...) Setting all the coefficients to be

zero, we get a set of algebraic equations which can be solved by using Maple. Consequently, we can get the exact solutions
of Eq. (2).

The obtained solutions will be depended on the symmetrical hyperbolic Fibonacci functions given in (9) and (10).

Applications
In this section, we apply the generalized Kudryashov method and the general Exp , -function method describing in sections 2

and 3 to solve Eq. (1) in the following subsections:

On solving Eq. (1) using the generalized Kudryashov method
Let us now solve Eq. (1) using the generalized Kudryashov method. To this aim, we use the wave transformation:

u(x,t) = g(&)exp(id), &=Px—t, & =kx—ct, (13)

where P,k and C are all constants, while @(&) is a real function of & .

Substituting (13) into Eq. (1) and separating the real and imaginary parts, we obtain the two ODESs:

(133 - C,B4) "+ (GP —6cf, —3p,c° + B, )¢' +6(3a, +2a,)¢°¢' = 0, (14)

and

Bib" +6(28, +2c8, - B,c? )¢ +(28k ~128,C7 —4B,C* + Bct )9

15
_24(71_Ca1)¢3 _2472¢5 =0, 4

There are two cases to be considered:
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Case 1

If B, —cB, #0.
In this case differentiating Eq. (14) and substituting the result into Eq. (15), we have the nonlinear ODE:

B,(6P +6¢8, +156,67 ~55,6°)-12,(8, + Cf3,)¢" + 68,3, + 20,)(#°¢" + 29”)

(16)
—(B,—cB,) (28K —128,¢> —4B.C° + B.c* )p+ 24(B, — B, (1, — cen ) + 1,9° | =0,
Balancing ¢52¢” and 2° in (16), then the following relation is attained:
2(n—m)+(n—m)+2=5(n-m)=n=m+1. 17)
If we choose M=1 and N =2, then from (5) the formal solution of Eq. (16) has the form:
_a+aQ+a’
¢(§) - bo + le 1 (18)
and consequently,
: (ai+ZazQ)(bo+b1Q)—b1(ao+aiQ+a2Q2)}
= -1 In(a), 19
#(£)=QQ ){ (0, +5O)’ (a) (19)
#O)- %(ZQ ~D)i(a, + 28,Q)(b, + Q) ~b, (3 +4Q + 2,Q7)]In% (@)
+Q2(Q_1)2 Inz(a) (20)
(b +b,Q)

<[2a, (b, +,Q) — 20, (a, + 23,Q)(b, + b,Q) + 2b% (a, + 8,Q + a,Q%)}

Substituting (18)-(20) into (16), collecting the coefficients of each power of Qi (1=0,1...,10) and setting each of the
coefficients to zero, we obtain a system of algebraic equations. Solving this system of algebraic equations with aid of Maple,
we obtain the following sets:

Set1

k = %(2/32 +2B,¢— B,6%)In*(a) +(2:—:(12ﬁ'2 +A4B,C —ﬁ4cz)—§ﬂ4 In‘(a),

P= %(ﬂa _/B4C)|n2(a) "‘%(Gﬂz +3ﬂ30 _/84(:2)10‘2 = Lﬂz(a)(ﬂs _ﬁ4c)_gal,

2a’

5N @) | _ AbiIn'(a)

a2 7 as

n==ca+ %;(zﬁz +2p5¢C _ﬁ402)|n2(a) -

1 1
a, = Eaz'ai =—a,,a, =a2,b0 :_Ebl’bl :bl'
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Substituting (21) into (18), we get the following exact solution of Eq. (16):

2, -, )rallf  —a (a4
w0 ) “

With the help of (9) and (10) the hyperbolic Fibonacci function solution of Eq. (1) has the form:

u(x,o{‘b‘j‘z (px_g}xp[i(kx_a)], @

which can be written in the form
u(x,t) = {% coth[(Px —t)In(a)]} expli(kx—ct)] (24)

Set 2

(=< @p,+2p0- pictIn’(a) + 5(12/32 +40- )~ A" a),

1 —b’In’(a 2
= L (.- Ao @+ (68, 360 Aic’ha =24, - po)- 2,
% 3 (25)
“In*(a) -58,0%In*(a) 1 2
2= ﬂ42156a§ 7T ﬂflngaé " 96a2 (6, + 4pc “Cz)_EaZC’
8, = 8,8 =0, bl b =b.
Substituting (25) into (18), we get the following exact solution:
~2a,(a°*1
#(&) = Ta{ag 11} (26)

Now, the soliton solutions of Eqg. (1) has the form:

u(xt) = ;ao coth[z(Px—t)ln( )}exp[(kx ct)), 27)
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and
u(x,t) = — 22, tanh{1 (Px —t)ln(a)} expli(kx—ct)}

_ B In*(a) (a)
(7 Ca1)1 V2= az

ca’
—2,34C)+W ]
~28,- o)+ bllnzz(a)

Set 3
in*(@)+267)( )~ & 65 )+ﬁ4( In? (@) + jln @)

4b1| 2( a)
= _(ﬁa + 4ﬁ4c)ln2(a) _%(3ﬁ3
_bl In'(@) (ﬂa A ) galvﬂz ﬂ4 In‘(a) -

P
— azbo

BT T

(71 - Cal)’

Substituting (29) into (18), we get the following exact solution

a‘¥1
if_|_l'

#(S) = b1

Now, the soliton solutions of Eq. (1) has the form

u(x,t) = —2a2 tanhB(Px —t)In(a)} expli(kx—ct)],
and
u(x,t) = — , 2coth{z(Px—t)In(a)}exp[i(kx—ct)]

Set4
(08 + 2.0~ A I @)+ (125, + 450 ) i @)

2

P= g - B (@) + S (65, + 380 Aic) e
163,b; In*

(28)

_TI@ g )2 e,

@)

2b? 108,62 In*(a
n=Ca + ZO(ZﬂZ—I-ZﬂSC Bic )In (a)+ ﬂ430 5 ( )’72
2 aZ aZ
a,=0,a =-a,,a,=a,,b, =b,,b =-2b,.

(29)

(30)

(31)

(32)

(33)
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Substituting (33) into (18), we get the following exact solution:

é
¢(é)=ii( a j

b, L a* -1

Now, the singular soliton solution of Eq. (1) has the form:

u(x,t) = i%csch [(Px—t)In(a)]exp [i(kx—ct)}

0

Set5

_ 32a5(3c, +2a,)' 22, (30 +2at, ) [

1 )
=P O e bA )

B0 ()~ 22,8, + 2]

CEpo B (@) 4ap 06,6, i Noey +20,) BBABD) B @)

8/, 30,8 In"(a) 8,

o_ B3B8+ B2)  23(3e + 20, [628,8, + 52 )- B’ ()] _ 32a8(3a, + 20,

37 302421’ (a) 305 A2 In° (a)

1

B by B, In”(a) 483,38,
C:&+Ma =a %:Ma =0b.=b.. b =b,.
IBA ﬂ4b02 Inz(a) 0 0 bO 2 0 0'™1 1

Substituting (36) into (18), we get the following exact solution:

Tb, Fh,
+h, £,

B ao(boaf
¢(§) - bo (b0a§

SN—T—

If b, =0 then we have the soliton solutions of Eq. (1) has the form:

_% l _ i _ é 4a§(3a1+2a2)
u(x,t)_bo tanh{z(Px t)In(a)}expli{kx (,B4+ o) jtﬂ

and

_% Lipy e[ B 48(30, +2at,)
u(x,t)_bo coth[z(Px t)ln(a)}exp[l(kx (ﬁ4+ A7) jtﬂ

_ ey 2830, +20,)(oy +2a,) BE(52In’ ()12, 3, ~652)In* (a)

(34)

(35)

(36)

@37)

(38)

(39)
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Case 2
If B,—cp, =0, thenwe have:

B

c= . (40)
B
In this case, Eqgs. (14) and (15) becomes
3
[GP _5Pb; zifj ¢ +6(3c, +2a,) ¢ =0, (41)
P B
and
1332 " 4ﬂ2ﬂ3 183 ﬂ3al 3 5
YR +6[2ﬁ +=19p"+3 8 ¢—24| y,——=—= |¢p° - 24y,9° =0. (42)
‘ ©B g B Bs i
From Eq. (41), we deduce that:
,Bzﬂs ﬂs? -3
= —, =—ua,. 43
PTa T BT )
Balancing ¢ and g° in (42), then the following relation is attained:
(n—m)+4=5(n-m)=n=m+L1. (44)

If we choose M=1 and n =2, then the formal solution of Eq. (42) has the same formal (18). Substituting (18)-(20) into

(42), collecting the coefficients of each power of Q' (i =0,1,...,10) and setting each of the coefficients to zero, we obtain

a system of algebraic equations. Solving this system of algebraic equations by the Maple, we obtain the following sets:

Set 1

TV s @ 65,8, - 457 0 @)+ 34157 +45,5.)

= 37 208 0 @B 6,8, 1051 0* (@) )+ 3 .5 )
ZZW,%Z%%,QZ—%,&Z az’ bO’bl

10
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Substituting (45) into (18), we get the following exact solution of Eq. (42):

-a ( 1)+ a,( ;)2 :i(az‘f +1} @)

by —2b( ;) 2b, | @* -1

#(5) =

Now, with the help of (9) and (10) the hyperbolic Fibonacci function solution of Eq. (1) has the form:

u(x,t) = {Zb cothHﬂfBﬂ3 3’,‘5) } xp{(kx ? tﬂ (47)

which can be written in the form

_ & Bbs, B )y i kx_ P
u(x,t) = 2 coth{[[ 5 +3ﬂ42}( t}ln(a)}exp{l(kx 5 tﬂ (48)
Set 2
- ﬂ g @Bz + 68,8 — 4@+ 38262 + 45,5,)}
= 3 O @D 126, -5 0" @)+ 120003 ()
, = ﬂ4b1;T (a) 8, = _Z-fbo a, = aZ(Zk;;)l_bl),az — azibo :bo’b1 — bl
Substituting (49) into (18), we get the following exact solution:
a‘¥1
#(S) = 2bl [a§ " J- (50)

Now, the soliton solutions of Eq. (1) has the form:

u(x,t)=_2§12 tanh{(% 3’% Jx t}ln( )}exp{i[kx—%tﬂ, (51)

and
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2 BB | b : B
u(xt) = ZQ_COth{{( 5 +-3/i.j —t}ln(ai}exp{l(kx—~zat]}

Set 3

- ﬂ L2 (a)e 2 +12,8, + B2 In*(@) |- 32(62 + 45,8,
7= W {207 In2(2)[33% + 68,8, + 587 In*(a) |+ 3, 8,82,
Vo= ]-Bﬂzlbiw’ao =0,8 =-a,,8, =a,,b, =by,b, =-2b,

Substituting (53) into (18), we get the following exact solution:

a,( a
¢(§) = ia(azg _1J

Now, the singular soliton solution of Eq. (1) has the form:

o[- ol ]

Set 4

652 +5621n%(a))

_ (@)

. _
24,34 [3ﬂ3 ~54; f; In*(a) - 44, In* (a)]ﬁ 12, 7

_ 5ﬂ4b1 |n4(a)+12a1ﬂ3312 _ _ _ __E _
Nn= 12afﬂ4 8, =08 =28, =-a,b, = 2b1’b1—b1-

The result of set 4 follows from the result of set 3 with the interchanges a, <> 2a,,b, <> b,.

Set 5
- ﬂ L (g (@)spz +6,6, - £ In*(@)]+ 362(67 + 45,5,
= e @B 12,6, -5 0" @)+ 4B}
4 I _
, = ,B4b£624(a) 8, =a,,8, = aO(beO +b1),a2 — O,bo — bo,bl =b,.

Substituting (57) into (18), we get the following exact solution:

(52)

(83)

(54)

(55)

(56)

(57)
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B ao(boa§ Fh,F bl)

P(&) = bo(boaf b, + bl) (58)
If b, =0 then we have the soliton solutions of Eq. (1) has the form:

Bl L[ BB, B, il kx—Be
u(x,t) = 0 tanh{ZK 7 + 3'342Jx t}ln(a)}exp{l[kx 5 tﬂ (59)
and

_% o (BB Py il kx_Be
u(x,t) = 0 coth{2 H 5 + Sﬁf}( t} In(a)}exp{{kx 5 tﬂ (60)

On solving Eq. (1) using the general Exp , -function method

In this subsection, we solve Eq. (1) using the general Exp , -function method. To this aim, we use the same transformation

(13) to get the two ODEs (14) and (15).

There are two cases to be considered:

Case
If B,—cB, #0 .

In this case, inserting (14) into (15) to get the ODE (16). Let us now determine the positive integers P, Q,C,d of Eq. (11).

To this aim, we balance the highest order of @#°¢” and ¢° in (16) to get

~ cla[(3°*3 el

¢2¢"(§) cza(ﬁ o, (61)
and

#(5)= CS:[;GS—;T (62)
where C;(i =1—4) are constants. From (61) and (62) we have

3c+3p=p+5c, (63)

13
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which leads to the result

p=c. (64)

In the same way, to determine the values of d,q, we balance the lowest order of ¢#°@" and ¢° in (16) to get

.+ d,al-Cd+se]

AES da (65)

and

plo-=rhepe T o

where d,(i =1—4) are constants. From (65) and (66) we obtain

~(3d +3q)=—(q+5d), (67)
which leads to the result

q=d. (68)
For simplicity, we set p=C=21and q=d =1. Thus Eq. (16) has the formal solution:

gy - A A A (69)

¢ £
B,a® +B, +B_a

where A, B, (1=0,£1) are constants to be determined later. Substituting (69) into Eq. (16) and collecting all the

coefficients of ajé(j =0,%1,...,£5) and equating them to zero, we have the set of algebraic equations. Solving these

algebraic equations using the aid of Maple, we have the following sets:
Setl

- 2lprapepe I @+ 25, +ape- pict)-2 g0’ @)

- B/ In*(a) 3
2AZ (IB ﬁ4) al’ (70)

B/-le (28, +2p,0 - p.c*Jin’ (a) —%A'?(a),

p:%(ﬁ3—ﬂ4 c)in?(a)+— (Gﬂz +36,c- f.0%)a,
_ £,B. In(a)

V2 A14 7
—AB.
A1= g 1!Ab=01A1:A1’B4=B—l’BOZO’81281'

1

=Ca, +

14
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Substituting (70) into (69), we obtain the following exact solution of Eq. (16)

_AlBa*-B.a%)
¢(‘§)_ Bl(Blag N B,la_g). (71)

If B_l = Bl, then with the help of (9) and (10) the hyperbolic Fibonacci function solution of Eq. (1) has the form:

u(x,t) :{%tanFs(Px—t)} expli(kx—ct))] (72)

1

which can be written in the form

1

u(x,t) = {%tanh[(Px —t)ln(a)]}exp [i(kx—ct)] (73)

If B_1 = —Bl, then with the help of (9) and (10) the hyperbolic Fibonacci function solution of Eq. (1) has the form:

u(x,t) = {%coth(Px —t)} exp fi(kx—ct)], (74)

1

which can be written in the form

u(xt) :{%coth[(Px—t)ln(a)]} expli(kx—ct)] (75)

1

which is equivalent to the previous singular soliton solution (24) if A =-a,,B, =D,.
Set 2
1 c? 1
- g(2/32 +2ﬂ3c—ﬂ4cz)ln2(a)+—(12ﬂ2 +4ﬁ30—ﬂ4c2)—§ﬂ4 In*(a),
1 - B In%(a) 3
P= In?(a 64, +36.,c— =0\ a,
(8- B (@) + (65, +38¢- B’ ), 2o Ao -

B! 2y 5ABIINY@)  _ BBIINn(a)

=C 28, +206.c— In“(a Y, = ,

n=cat 128A182(ﬂ2 pre=fic’Jn’ (@) 768A7B% 2" 4006A'BY,
—4AB, B2

A = RN} B,—B,B,=B,B =0

TR ASOA=AB, =B, —

15
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Substituting (76) into (69), we obtain the following exact solution of Eq. (16)

4AB (B2 —4B%a~)
2(p24¢ 2 -¢Y (77)
B2(B%a“ +4B,B, +4B%a~)

#(&)=

If B,=1 5 By, then the dark soliton solution of Eq. (1) has the form:

u(x,t) = {ZB—AltanhB(Px - t)In(a)}} expli(kx—ct)], (78)

0
which is equivalent to the previous solution (28) if A =-a,, B, =bh,.

If B, == By, then the singular soliton solution of Eq. (1) has the form:

u(x,t) ={ZB—A&cothE(Px—t)ln(a)}} expli(kx—ct)] (79)

0
which is equivalent to the previous singular soliton solution (27) if A =—-a,,B, =b,.
Set 3

- __1(2ﬁ2 +2ﬂ3c—ﬂ4c2)ln2(a)+;—2(12ﬂ2 +4ﬂ3c—ﬁ4c2)—2—14ﬂ4 In*(a),

2B,B, In*(a)
== ho)- al, &0
108,BB,In‘(a)  163,B/B%In‘*(a)

w7 A

P=— (8- Ao (@)+ £ 68, +300- A b

288,

(zﬂz 2ﬂ30_ﬂ402)|n2(a)_
A,=0A=A,A=0B,=B,B,=0B =B,

7n=Ca
Substituting (80) into (69), we obtain the following exact solution of Eq. (16)

) [ — (81)

€ €
Ba-+B a

If B, =B,, then the bright soliton solution of Eq. (1) has the form:

u(xt) = {%sech[(Px Dina )]} explifkx—ct)] &)
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If B, =—B,, then the singular soliton solution of Eq. (1) has the form:

u(x,t) = {% csch[(Px - t)ln(a)]} expli(kx—ct))]

1
which is equivalent to the previous singular soliton solution (35) if A, =ta,,B, = bO.

Set 4

1 2\y1 2 ¢’ A 4
k = g(2ﬁ2 +2B,c— B,¢*)In’(a) +ﬂ(12ﬁ2 +4BC- B )‘ﬁﬂ4 In*(a),
~BZIn’(a)
A2

car B e SABIN@ BB In'(a)
= e+ g (2B + 2= At @)= = F

b= ﬁ(ﬂs—mc)lnz(a)%(wz+3ﬁsc—ﬂ402)' @ =

-AB
A—lzo’A():%’Al:Ai’B—lzo’BO:BO’BlzBl'

1

Substituting (84) into (69), we obtain the following exact solution of Eq. (16)

_ A%Blaf - Bo;
#e)= B,(B,a* +B,)

If B, =B, then the dark soliton solution of Eq. (1) has the form:

u(x,t) = {% tanhB(Px — t)In(a)}}exp fi(kx—ct)}

If B, =—B,, then the singular soliton solution of Eq. (1) has the form:

u(xt) = {%cothB(PX —t)ln(a)}exp li(kx—ct)]

1

(ﬁs —ﬂ4C)—ga1,

(83)

(84)

(85)

(86)

(87)

17
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Set 5

AN 5,
" 16A%B%In(a) (In°(a) + 2 ), ~ca,)-~ (8/33 Shc )+ﬂ4( n’(a )+24c ]In (a)
cAy

1 . C
P= E(ﬂs +4p,c)In’(a) —€<3,33 ~2p,C)+ m(?ﬁ ~ca,)
5 o) C(og A
b= P @) =5 2~ PO+ g U o) (33
-2/’ B’ In*(a) _164,A'B/In‘(a)
a, = Ab (,Ba ﬂ4) al' Aé;—v

4AZB
A —A.l,Ao=A0,A1=4’:, AL RLLELS
=1

Substituting (88) into (69), we obtain the following exact solution of Eq. (16)

A (A%al +4A A, +4A%a) &)
4BA,(A%a* —4A%a)

#&)=

If A, = ’71 A, then the dark soliton solution of Eq. (1) has the form:

u(x,t) :{_22" tanhE(Px —t)ln(a)}} expli(kx—ct)] (90)

1

which is equivalent to the previous dark soliton solution (31) if A, =a,,B, =b,.

If A,= % A, then the singular soliton solution of Eq. (1) has the form:

u(x,t) = {% coth[%(Px - t)In(a)}} expli(kx—ct)] (91)

which is equivalent to the previous singular soliton solution (32) if A, =—a,,B, = bl

Case 2

If fp;—cB,=0
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In this case, we use the same steps of case 2 in subsection 4.1 to get the ODE (42). Let us now determine the positive integers

p,q,c,d of Eq. (11). To this aim, we balance the highest order of ¢~ and ¢° in (42) to get

~ Cla[(cﬂsmf] T+

#(¢)= c,a®) 2)
and

#(¢)= Ci[ :a:::)) i+ (93)
where C;(i =1—4) are constants. From (92) and (93) we have

c+15p=5c+11p, (94)
which leads to the result

p=c. (95)

In the same way, to determine the values of d, (], we balance the lowest order of ¢”” and ¢5 in (42) to get

1 d.gl(@+15a)¢]
_..td,

A — d,a %) 0
and

plo)-mriooa T -
where d,(i =1—4) are constants. From (96) and (97) we obtain

—(d +15q)=—(5d +11q), (98)
which leads to the result

q=d. (99)
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For simplicity, we set p=C=1 and q=d =1. Thus Eq. (42) has the same formal solution (69). Substituting (69) into

Eqg. (42) and collecting all the coefficients of ajé(j =0,%1,...,£5) and equating them to zero, we have the set of algebraic

equations. Solving these algebraic equations using the aid of Maple, we have the following sets:

Setl
-1 00 2 02 |2 414 —[3/332 +20; |n2(a)] S.B; In*(a)
= —3[3ﬂ3 +Ap2FEIN* @)+ 245, In' ()}, = p=t 8
2 A (100)
7 = afA -2p,B In’ (a)’ A, = _—AB, A =0,A=A,B, =B,B =0B =B,
APB, B,
Substituting (100) into (69), we get the following exact solution of Eq. (42):
a*-B.,a*
#(&)= A, a) (101)

B(Ba‘+B,a*)

If B, =B,, then the dark soliton solution of Eqg. (1) has the form:

u(xt) :%tanh{(%+%jx—t} In(a)} xp{ (kx— 'gj tﬂ (102)

If B_1 = _B1' then the singular soliton solution of Eqg. (1) has the form:

u(x,t) =%coth{[%+3ﬂ—éjx—t} In(a)} exp{ [kx— 231 tﬂ (103)
Set 2
-2 /ga) (5 +25,5.)+ /35(/358;%/35), . /fABi';\Ifr:‘*(a),
ne ﬂ;j‘l a2 -LEE 09
A=A, A=0A=— AB B,=B,,B,=0B =B,

-1

The result of set 2 follows from the result of set 1 with the interchanges A <> A ;,B, <> B, and &< —¢.

20
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Set 3

= pagp @l w28 p@)-35 (6 4. )

Nn= W]A)Z {_ ZBlB—l Inz(a)[?’ﬁsz + 6182184 + 5ﬂ42 Inz(a)]-'_ 30{1'83'6\? }’
_168,B/B’ In*(a)

V2= Aé

A,=0,A)=A,A=0B,=B,B,=0,B =B,

Substituting (105) into (69), we get the following exact solution of Eq. (42):

A

€ £
Ba-+B a

#(&)=

If B, =B,, then the bright soliton solution of Eq. (1) has the form:

u(x,t) = %sech{(% + 3ﬁ_,83;j X —t} In(a)} exp{i[kx— %tﬂ

If B, =—B,, then the singular soliton solution of Eq. (1) has the form:

u(x,t) = %csch{ﬁﬂzf 3+ 3%4 j —t}ln(a)}exp{ (kx— gj tﬂ

which is equivalent to the previous singular soliton solution (55) if A, ==a,,B, =b,.

Set 4
Y L @37 + 65,5, - p2In*(@))+ 362(57 + 45,8, )
1 4 2 2 2 2 2p2
= W{Bo In? @[6/% +12/3,5, 55 In* (a) |+ 76801, 5,78,
_BBiIn‘(a) , _—4AB’ B
2 4096A'B*, Aa= B A=0A=AB,=8,5=58, "7 4B,

Substituting (109) into (69), we get the following exact solution of Eq. (42):

(105)

(106)

(107)

(109)

(108)
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4AB.,(B2a‘ —4B%a~)

)= B (B2a® +4B,B, +4B%a ) (110)
If B, = BO, then the dark soliton solution of Eq. (1) has the form:
2A Bobs | s B
u(x,t) =—=tanh ( 23 4 153 jx—t}ln a xp{(kx— 3tﬂ (111)
B, { { B 3 e B

which is equivalent to the previous dark soliton solution (59) if A =+a,, B, =b.

If B, =3By, then the singular soliton solution of Eq. (1) has the form:
2A (ﬂzﬁs iy j ( By j

u(x,t) =—=coths= +-== |x—t|In(a)rexp| i| kx—=t ||, (112)
B, B 3p: @ B

which is equivalent to the previous singular soliton solution (60) if A =< a,, B, =bh;.

Set 5
~[67 + B2 (a)] _BIn'(@)
- g PP 2B @ 3 @) = PR R S AOE, -
= 80[1,53/6&2 _1842812 In4(a) A =0 A\) — _AiBO ’Ai — Ai'B—l =0, Bo — BO! B1 — Bl.

LI 1
8A12ﬂ4 Bl
Substituting (113) into (69), we get the following exact solution of Eq. (42):

_ A1 B1a§ — Bo
#&)= 5. (B2t 2B,) (114)

If B, =B, then the dark soliton solution of Eq. (1) has the form:

A U2 @ - 2w il kB2
u(x,t)_Bltanh{Z[[lzﬂsln (a) Gﬁf}( t}ln(a)}exp{l(kx ﬂfﬂ' (115)
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If B, =—B,, then the singular soliton solution of Eq. (1) has the form:

Al U7 nz@ - B |y il kx— P2
U(X’t)_BICOth{ZKH'BsIn (a) Gﬁf}( t}ln(a)}exp[l(kx ﬂAtﬂ. (116)

Some graphical representations of some solutions
In this section, we will illustrate the application of the results established above. Exact solutions of the results describe
different nonlinear waves. For the established bright, dark and singular soliton solutions with symmetrical hyperbolic
Fibonacci functions are special kinds of solitary waves. Bright, dark and singular soliton solutions have a remarkable
property that keeps its identity upon interacting with other.

Let us now examine FIG. 1, 2, 3 and 4 as it illustrates some of our results obtained in this article. To this end, we select some
special values of the obtained parameters, for example, in some of the singular , dark and bright soliton solutions (27), (55),

(73) and (107) of the nonlinear Schridinger equation with fourth-order dispersion and cubic-quintic nonlinearity with

a,=b=—h=A=A=B=Cc=g=F=La=¢e, -10<X,t <10, respectively.

2. % 1015
1.5 x 1015

1.x1015—:

5% m“—:

Sk

+ 1

FIG. 2. Plot solution |u(X, t)| of (55) with p=4/3,k =-1/6, B, = B, =1.
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FIG. 4. Plot solution |u(X, t)| of (107) with p = 4/3,k =-1/6, 5, = 3, = 1.

Conclusion

In this article, we have shown that the symmetrical hyperbolic Fibonacci function solutions can be obtained by using the
generalized Kudryashov method and the general Exp , -function method. As applications, abundant we have obtained many

new exact solutions, symmetrical hyperbolic Fibonacci function solutions as well as bright, dark and singular soliton
solutions of the nonlinear Schrodinger equation with fourth-order dispersion and cubic-quintic nonlinearity. On comparing
our results obtained in this article using these different methods with the well-known results obtained in [34-36] using a
different method, we conclude that our results for Eq. (1) are new and not published elsewhere. Further, the different methods
used in this article are very powerful and effective techniques in finding the exact solutions, solitary wave solutions and
soliton solutions for a wide range of nonlinear problem. Finally, our results obtained in this article have been checked with
the aid of the Maple by putting them back into the original Eq. (1).
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