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Introduction 

 

The properties of Bose gases have recently attracted great attention both experimentally and theoretically. These interests, in 

these systems, are based on the initial experiments on alkali atoms as first step and have been extended to diluted gases such 

as Rb, Na or Li [1-4]. 

 

Since then, the field of ultra-cold atoms gave rise to a multitude of experimental and theoretical methods. On the one hand, 

the experimenters tried to always try to better understand this strange behavior of the material confining gas by different 

types of potential traps and changing their shapes and structures. They even succeeded in controlling the interactions between 

atoms by using Feshbach resonance. The gas initially repellents could become attractive and vice versa. It is an extraordinary 

advance in atomic physics. In addition, the techniques of cooling have become increasingly ingenious and reach temperatures 

of the order of nanokelvin, pushing the experiences toward zero absolute. 

 

On the other hand, and with the breakthrough experimental techniques, we have seen the development of theoretical models 

of increasingly sophisticated. One of the first models with a great success was the Gross-Pitaevskii equation (GP) which 

describes the behavior of gas at exactly zero temperature. This equation, which is typically a nonlinear Schrodinger equation, 

Abstract  

We devote a particular attention to the role played by the repulsive interaction on the chemical potential of condensed atoms, the 

chemical potential of non-condensed atoms, the anomalous fraction and the heat specific capacity for Bose gas in harmonic trap. 

First, we point out that the generalized Hartree-Fock Bogoliubov approximations (GHFB) produces a change in the specific 

temperature via estimation experience, and we discuss these inadequacies. We calculate a behavior of condensate density in 

Thomas Fermi approximation, where the thermal cloud is not negligible. Finally, we compare our results with various recent 

numerical estimates and experience. 

 

Keywords: Bose einstein condensation (BEC); Generalized hartree-fock bogoliubov approximations (GHFB); Thomas fermi 

approximation (TFA) 

 

mailto:kouidris@yahoo.fr


www.tsijournals.com | August-2017 

2 

  

is able to predict correctly many equilibrium properties of quantumgases. The effects of temperature and correlation between 

condensed atoms (in the state) and non-condensed atoms (excited) are completely ignored in this approximation. In contrast, 

it takes account the interactions between condensed atoms and predicted with great success the collective excitations of the 

condensate at zero temperature. 

 

However, if you not taking into account the thermal cloud, it still remained fairly low conceptually. Many generalizations 

have been proposed [5,33] from Popov approximation, which involves explicitly non-condensed density to that of Beliaev 

where we see it clear for the first time of many body effects via the anomalous average, itself directly connected to the self-

energy and therefore the T matrix scattering. 

 

So in this paper, we use the approximations described above but at finite temperature because they are responsible in 

determination of general properties of trapped ultra-cold atoms, in particular the chemical potential, energy spectrum and heat 

capacity as function of temperature and number of particles respectively. In this context and based of the Gross-Pitaevskii 

equation which gives the proper state of system exactly, we can discuss various state. The interactions between atoms are 

responsible to describe the different properties. We note here, that we take in account the Yukalov rules [34] in determination 

of the chemical potential. We inject this rule in our numerical algorithm [35] we are able to find this quantity. 

 

The paper is organized as follows. In Sec-II we set up the formalism needed to treat an interacting Bose gases within the 

generalized Hartree-Fock Bogoliubov approximation (GHFB). We analyze, in Sec-III results and discussion, the influence of 

the trap potential and the interactions on the chemical potential of the gas. We show that the interactions have important 

effects on the chemical potential. We investigate the behavior of the heat capacity. We find that at sufficiently low 

temperatures the interactions change the qualitative behavior of the heat capacity. This is explained in terms of the effects the 

interactions have on the quasi particle spectrum. Finally, we summarize the results in Sec-IV. 

 

Formalism 

 

We will consider a spherically symmetric harmonic trap, the condensate wave function, 
0

  (r), may be chosen real [5] and 

may be verify the Gross-Pitaevskii equation, which is simply the Euler Lagrange of the energy functional of the dilute Bose 

gases. It reads: 

2

( ) [ ( ) 2 ( ) ( )] ( ) ( ) (1)
0 02

V r g n r n r m r r rctrap
m

 


     
 
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 
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Where: 

1 2 2
( )

2
V r rtrap  is the trap potential, 

2
4 a

g
m


  is the strength interaction, and ( ), ( ), ( )n r n r m r

c
 are the condensate 

density, the non-condensate density and the anomalous density respectively. To simplify the notation, the energies will be 

measured in units of,   is determined by the quasi particles amplitudes  ( ), ( )u r v r
i i

 and quasiparticles energies, Ei , 

which obey the coupled Bogoliubov-de Gennes (BdG) equations: 
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Here:  
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By expanding the quasiparticles amplitudes, ( ( ), ( ))u r v ri i  via a spherical harmonics basis: 

 

( ( ), ( ))
( ( ), ( )) ( ) (4)
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We can determine the analytic form of the condensate, the non-condensate and the anomalous density: 

2
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 is the Bose-Einstein function : 

1 1
1 (9)z N

c
 

   

With fugacity 
1

z
  

1 1
1 (9)z N

c
 

   

1

k TB

  is the inverse temperature. The chemical potential is determined, by using the Yukalov rule [34]. 

The equations (1-3) form a closed set to be solved self-consistently. We have chosen in our numerical calculations the couple 

(n; l) up to (nmax, lmax) beyond which values the results of the coupled equations (1-3) remain unchanged. 

 

Results and Discussions 

Let us consider a 
87

Rb gas 
25

( 1.44 10 )Kgm


  with s-wave scattering length 
9

5.82 10a m


  in a harmonic trap with 

frequency 2 200Hz   . We started by calculating the chemical potential. 
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The chemical potential 

In this section we will determine the chemical potential µ as a function of the temperature and number of particles in the trap. 

Yukalov [34] has done an extensive analysis of µ(N;T) in the case of an interacting gas in Popov approximation and beyond 

it. He found an essential relation which describes the condensate potential and non-condensate potential as: 

(10)
n n u
c c nc nc

    

Where 
Ncn

c N
  and 

Nncn
nc N

  presents the condensate and non-condensate fraction respectively. µcis chemical potential 

relative to the condensate atoms and µnc is the non-condensate chemical potential. We used the algorithm described in ref 

[35] so at each iteration we determine total chemical potential by used equation (10), and consequently the condensate and 

non-condensate chemical potential. We plot in FIG.1 the general variation of chemical potential for various temperature (up 

to the transition temperature Tc for N = 2000.We note that the tendencies of the both chemical potential are the same just up 

to 0:74Tc but when we go beyond it the total chemical potential stars to deviate which is the result of the dominance of the 

potential created by the non-condensate atoms. 

 

 

FIG. 1. The chemical potential versus temperature, the solid line corresponds to the condensate chemical potential; the solid 

line with stars (green) corresponds to the total chemical potential. 

 

In order to examine in detail how the interactions affect, by changing the strength coupling g, this physical quantity we 

choose as example a Thomas Fermi limit. Recall that in this limit we neglect the kinetic part of equation (1), we find directly 

an analytic form of the condensate function 
0

  (r): 

( ( )) (2 ( ) ( ))2
( ) (11)

V r n r m rtrap
TFT r

gN Nc c




 
   

( ) ( ) (2 ( ) ( )) (12)
0

n TFT r n r n r m rc cTF
    
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Where ( )n TFT rc  and ( )
0

n r
cTF

 are the Thomas Fermi density at finite temperature T and at zero temperature respectively. 

The FIG. 2 shows the general variation of the condensate density in Thomas Fermi approximation (TFA) and in (GHFB) 

approximation. 

 

FIG. 2. The condensate density in (GHFB) as solid line, the dashed line Thomas Fermi approximation at T=10nK and the 

dotted line is the Thomas Fermi approximation at T=0nK. 

 

The dashed lines correspond to the Thomas-Fermi approximation (TFA) at finite temperature; the continuous line is the 

calculation given by (GHFB) approximation and the dotted line is the Thomas-Fermi approximation (TFA) at zero 

temperature. If we analyze this FIG. 2 with more attention we deducted that it corresponds to a translation at the radius of the 

condensate which can be verified by a theoretical relationship given below and as consequence the Thomas Fermi chemical 

potential, µTFT (T), and radius, RTFT (T),at finite temperature can be obtained by using the following condition: 

23
( ) 1 (13)0

R
TFT d r rTFT   

2
5( ) (0)(1 2 ) (14)

0

N M
TTFT TF N Nc c

     

1
5( ) (0)(1 2 ) (15)

0

N M
R T RTFT TF N Nc c

    

Where 

2
5(0) (15 )

0 2

Nca
TF d


  is chemical potential at 0nK and 

3 3
( ) , ( )0 0

r r
d rn r N d rm r M    
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We assume that at finite temperature the contribution of thermal cloud is small compared that the condensed atoms density 

where the following approximation 1
N

Nc

  and 
| |

1
M

Nc

   is satisfactory. The equations (11) and (12) can be reduced and 

finally the chemical potential µTFT (T) and radius RTFT (T) take the new form: 

4 2
( ) (0)(1 ) (16)

0 5 5

N M
TTFT TF N Nc c

     

5 1
( ) (0)(1 ) (17)

0 5 5

N M
R T RTFT TF N Nc c

    

By explaining this later term, we deducted that: 

( ) (0) ( ) (18)
0 1

R T R R TTFT TF
   

Where R1(T) is the translator vector. 

In FIG. 3 we plot the chemical potential µTFT (T) of interacting gas as a function of condensate number Nc and at the 

specific temperature 0:74Tc. We used the parameters g=1, g=2 and g=4 for various number of condensate (where 

4 a
g g

d


  . The solid line correspond to g=1, the dashed line correspond to g=2 and the dotted line correspond to g=4. 

We note that when we increase g, the chemical potential, µTFT (T), decrease. Noted here that the specific temperature is 

determined by putting: 

(19)N N
c
  

Where (1 ( ) )
N Tc

N Tc


   with α=2.3 is fitting parameters. 

 

FIG. 3. The chemical potential in Thomas Fermi approximation at finite temperature T=0:74Tc for g=1, 2 and 4:the 

dashed line g=2, dotted line g=4, solid line g=1as functionas the condensate atoms number Nc. 
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Condensed, non-condensed and anomalous fraction 

 

We use the equations (5), (6) and (7) and we integrated over all space, we can determine the condensed, non-condensed and 

anomalous fractions. We plotted these fractions as function of temperature with N=10000 for various strength coupling g=1 

and g=2 in FIG. 4.The presence of the repulsive interactions has the effect of expanding the atomic cloud. We note here that 

the non-condensate fraction increases monotonically with the strength coupling g while the condensate fraction decrease with 

g. The anomalous fraction increases if we take the absolute value. Before finish, we present this fraction at just 0:74Tc as 

function of number of particles ranging from 2000 to 10000 for g. The FIG. 5 shows their variations which present a 

monotonically comportment. The figure 5 shows their variations which present a monotonically comportment. 

 

FIG. 4. (a) The condensate fraction, (b) non-condensate fraction and (c) anomalous fraction in the condition of [5]; N=10000 

for g=1 and 2. 

 
 

FIG. 5. (a) The condensate fraction, (b) non-condensate fraction and (c) anomalous fraction in the condition of [5] as 

function as the number of atoms at T = 0:74Tc with g=1. 
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Heat capacity 

 

For a gas of particles in a constant confining potential, the most useful definition of the heat capacity is [36]: 

1
( ) (20)

2
C T T

n N
  

For our case the energy is given by: 

( , ) ( , ) (21)E T N T N  

In Thomas Fermi approximation (TFA) the equation (20) takes the new form: 

11 4
( , ) (0) (22)

02 5

T
C T N

nTF TFN Tc


 




  

In FIG. 6, we plot the heat capacity in Thomas Fermi approximation as function as temperature for N=2000 and with 

different strength coupling g. We note that this capacity for N=2000 has a same behavior for different g until 40 nK and 

beyond this value it stars to decrease gradually when g increases. For more precision, we present it in FIG. 7 as function as 

Nc at T fixed, we choose T=0:74 Tc, because at this specific temperature the effect of the potential created by the non-

condensed atoms has the same that their created by the condensed atoms. We note that the effect of the interaction on the heat 

capacity depends on the strength of the interactions, g which decrease when we increase g, but when we exceeds a critical 

value Nc=4500 the three curves have the same behavior. 

 

 

FIG. 6. The heat capacity in TF approximations versus the temperature of N=2000 for various strengths coupling g. The solid 

line correspond to g=1, the dashed line correspond to g=2 and the dotted line correspond to g=4. 
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FIG. 7. The heat capacity in units of kB versus the condensate number for g=1, 2 and 4 at T=0:74 Tc : the dashed line g=2, 

the dotted line g=4 and the solid line g=1. 

 

Collective excitation 

 

The study of elementary excitations is important case of quantum many body theories in general and in particular for Rb 

gases. In this case, we have plotted the collective excitations as a function of number of atoms for various coupling strengths 

g=1 and g=2 at finite temperature T=0:74Tc, the effect of non-condensate atoms is not negligible as consequently the 

potential created by this fraction start to increase. 

The FIG. 8, shown the frequencies modes. We observe that the frequency modes l=0 and l=2 splits into two parts which 

characterize the degenerate eigenvalue of the harmonic potential. The l=0 mode, also called Breathing mode, is influenced by 

the compressibility of the condensate, and its increase in frequency which is the result of repulsive interactions between 

atoms. On the other hand, the mode, l=2, or quadruple mode frequency decreases when we increase N and g respectively. 

The mode l=1 present the center of mass of the condensate mode and is located precisely at 
trap

 . This later is not affected 

by the interaction effect.  

 

FIG. 8. The calculated excitation frequencies as function as the number of atoms N at T=0:74Tc for g=1 and g=2. 
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Aspect ratio 

 

Another quantity which measures the mutual interactions between the condensate and the thermal cloud is the aspect ratio. At 

finite temperature it presents the ratio between the kinetic energy and the mean field energy created by the condensate atoms 

and the energy created by the thermal cloud and can be written as: 

(23)
( ) 2 ( )

T
ARn

gn r gn rc


  

 

With T is the kinetic energy. We assume that the thermal cloud effect is less than the condensate effect
( )

| 1
( )

n rc
n r

 . The 

equation (23) takes a new form: 

( )
(1 2 ) (24)

( )

n rcAR ARn wn
n r

   

Where 
( )

T
ARwn gn rc


 

 is the aspect ratio without the thermal cloud. 

 

The FIG. 9 depicts this ratio (AR) at zero temperature, ARwen,and at finite temperature, enAR , as function of the number of 

condensed atoms as predicted by GHFB calculations and measured by [37]. We observe that the GHFB approximation yields 

an overall good agreement with experiment and confirms the departure from the TF model [38-39] of Castin-Dum which 

predicts a constant aspect. The aspect ratio at finite temperature presents instability around 1.05.  

 

 

FIG. 9. Aspect ratio of pure BEC versus the condensate number Nc. Solid line represent the GHFB calculations while 

crosses (blue) are from [37]. 
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Conclusion 

We have concerned in this paper, a behavior GHFB equations of interacting Bose gases in a harmonic trap at finite 

temperature. So about this, we have developed a numerical code to solve the GHFB equations for large numbers of atoms, 

where the real numerical challenge is not the number of atoms but the number of occupied modes at finite temperature 

inspired by the anomalous density. As consequence, we have determined a chemical potential of the condensed atoms and a 

chemical potential of the non-condensed atoms. We have discussed their behavior and their effect when we change the 

coupling constant and particularly in Thomas Fermi limit at finite temperature. We find that the interactions have, above a 

specific temperature, an essential effect in structure of these different quantities appeared, the thermal cloud increase but the 

chemical potential and the condensate density decrease. The aspect ratio, at finite temperature, presents an instability value 

around 1.05 and conforms to the experimental data [37] at zero temperature. 
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