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ABSTRACT

In this paper, Weisner’s group theoretic method is utilized to obtain the generating functions for
the Legendre polynomials P, (x). To derive the elements of Lie algebra, a suitable interpretation to the
index n is given. Further, a linear independent differential operators was derived, which generates a Lie
algebra. The principle interest in our results lies in the fact that, how the Weisner’s group-theoretic method
can be applied suitably to the Legendre polynomials in order to derive six generating functions. Many
results obtained are well known but some of them are believed to be new in the theory of special functions.
Mathematics Subject Classification (2010): 33C10, 33C45, 33C50, 33C80.
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INTRODUCTION

Group theoretic method was proposed by Louis Weisner in the year 1955 and he
employed this method to find generating relations for a large class of special functions.
Weisner discussed the group theoretic significance of generating functions for
hypergeometric functions namely Hermite, Bessel functions etc. This technique was used by
Khanna and Bhagavan', Khan and Pathan’ for obtaining generating functions for various
special functions. The importance of group theoretic method is to create a connection
between special functions and matrix groups and plays a very important role in constructing
the first order linear differential operators, which generates a Lie algebra that is isomorphic
to some matrix Lie algebra. Miller’, Mc Bride*, and Srivastava and Manocha’ reported group
theoretic method for obtaining generating relations in their books. Hypergeometric
polynomials/hypergeometric series in one and more variables arise naturally and rather
frequently in a wide variety of problems in applied mathematics, theoretical physics,
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engineering sciences, statistics and operation research etc., In fact, a considerable field of
physical and quantum mechanical situations (such as Schrodinger’s wave mechanics) and
various types of distributions in probability theory lead naturally to such classical orthogonal
polynomials as the Legendre and Laguerre polynomials.

The principle objective of this paper is to derive some more interesting bilateral
(or bilinear) generating relations for P, (x) using Weisner' group-theoretic method® by
giving an interpretation to the index n. The usefulness of this method is that it yields a set of
six generating relations.

Definition

The Legendre polynomials P, (x) satisfy the following descending and ascending
recurrence relations, respectively:

(1-x*)-Lp,(x)=n[p,.,(x)-xP,(x)] (D)
and (l—xz)%Pn(x): (n+1) [xP,(x)-xP, ,(x) ] ..(2)

These two independent differential recurrence relations determine the linear ordinary
differential equation

(1-x?) D, (x)-2x DP,(x)+n (n+1)P,(x) = 0 .03

where D = % . The proofs of these results are obvious.

Group — Theoretic Discussion

Let us write the differential equation (3) in operator functional notation as

L( d njz(l—xz)Dz—ZxD+n(n+1)=0 ()

X’ dX 9

In order to use Weisner’s method, we now construct from (3) the following partial

differential equation by replacing ddTby 8% ,nby y 667 and P, (X) byu(x, y) :
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{(l_xz)ai_zz"'yz;;/_22_2)(%4_2}’%}1(&}’):0 ...(5)

where u(x,y)=y"P,(x) is a solution of (5).

Let L represents the partial differential operator of (5), given by

d ol -x2) 2o 14200 53 0 4oy 0
L(x,&,nj{(l X)6x2+y oy 2X8x+2y8y} ...(6)

We now seek linearly independent lowering and raising differential operators B and
C each of the form

ALY e+ A S+ ASY)

such that
B[P, (0y"]=b, P, (0y" "

clp, @y ]=c,P, . @y A7)
where b, and c, are expression in n which are independent of x and y.

Each A; (x, y), 1 =1, 2, 3, on the other hand, is an expression in x and y, which is
independent of n.

This necessitates the bringing into use of the recurrence relations (1) and (2). With
the help of (1) and (2), it follows from (7) that

C:(l—xz) y%—xyZ%—xy

]
B—(l X)y 6X+X6y ...(8)
0

To find the group of operators, let us write A=y

E.
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Then we have the operators A, B and C, which satisfy the following commutator
relations:

[A,B]=-B [A,C]=C [B,C]=-24-1 ...(9)

Now, every linear differential operator of the first order generates a one parameter
Lie group® and therefore, these commutator relations show that the set of operators {1, A, B,
C} generate a three-parameter Lie group. Furthermore, we would like to prove that these
operators commute with the partial differential operator L. We express L in terms of these
operators.

We know that

2 2
0 u+y28—u—2x@+2y@

Lu=(1—x2)67 8y2 ox oy’

and

CBu=(1-x2) 28 —x2y? 08 o (1-x7) Qyy Doty Q0

ox oy’ dy oy
We get
1-x*)L—CB]u=A".
Therefore,
(1-x*)Lu=(CB+A?)u ..(10)

By using the commutator relations, we prove that the operators A, B and C commute
with (1 — xz) L and hence withR =1, A+ 1, B+ 13 C + 14, where each r; (1= 1, 2, 3, 4) is an
arbitrary constant, R is the set of differential operators.

This Lie algebra determines a root system and Weyl group. The extended form of
the group generated by each of the operators A, B and C as follows:

e f (x,y):f(x,eay) ...(11)

e™f (x,y)=f YD [ D bxy+b .(12)

\/y2+2bxy+b2
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eCf (x,y) = I £ xrey Y ..(13)
\/czy2 +2cxy+1 \/czy2 +2cxy+1 \/czy2 +2cxy+1

where a, b and ¢ are arbitrary constants and f (x, y) is an arbitrary function.
Then it is evident that

1

eCeBf (X, y)=
\/czy2 +2cxy+1

f(&n) ...(14)

Where

Xy +cy’ +b(c2y2 +2cxy+l)

5 \/[yz +b’ (czy2 +2cxy+1)+ 2b (xy+cy2)J (02y2 +20xy+1)

YD’ (02y2+2cxy+1)+2b (xy+cy2)
n= 2.2
¢y +2cxy+1

Generating Functions
Derivation from the Operator (A —v)

We see that A generates a trivial group. Say u(x, y) = y'P, (x) is a solution of the
simultaneous equations Lu = 0 and (A — v) = 0 for arbitrary v. Therefore, we determine
generating functions of P, (x) by finding ¢"® ¢ [y"P, (x)].

We need to consider three cases.

Case-1: Suppose b = 1, ¢ = 0. Since for an arbitrary function f (x, y)

e®f (x,y)=f __oyHl A1+F2xy+y
( ) [\/1+2xy+y2

We find

e’f (x,y)= (1+2xy+y2);PD[l+¢J ...(15)

\/1+2xy+y2
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Since B[y"P, (x)] =vy"' P,.; (x), we have

elr ()= 3 EVEh g () -(16)

|
= n:

Equating expressions (15) and (16) and replacing —y ' by t, we get —

(1—2Xt+t2);Pv[#:+tzj Zi(_nu!)n PU_H(X)tn (17)

Case-2: Suppose b =0, ¢ = 1. In this case, we have

e” [y"PU (X)]z y" (1+ 2xy+y’ )70271 P, [X—WJ ...(18)

\/1+2xy+y2

On the other hand,
0 1 '
NI E S AL S (19)

Equating the expressions (18) and (19) and replacing —y by t’ we get —

—u-l < (1) + n)'
1-2xt+t?) 2 P = ‘P, (x)t" ...(20)
( ( 1-2xt +t2 J Z‘) vin!
Case-3: Suppose bc # 0, without any loss of generality we can choose b=—1 and c

=1, so we have

(25 +y?)7 Pv[—\/XYH ] Sy EERkbket) gy
1+2xy+y =0 k=0 In!

or

Eollokel)

Nl > x )t (1
m] Zkz k!n! v—k+n( )t ( )

71)7l
(1—2xt+12)2 ZPD(
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Derivation from the Operator not Conjugate to (A-v)
Let S = ¢ ¢"®, where b and c are arbitrary constants
Now according to McBride we find that —
e®Ce™=-2bA-bB+C-b
e®®Aec™®=A +bB
e“Ae “=A+cC
e“Be““=2cA+B-c’C+c
Consider the set of linear differential operators

{R/R =11A + 1B + 13C + 14, for all combinations of zero and non-zero coefficients
except forr; =1, =13 =0}.

We find that
SA S'=¢%C "B Ae B C
=(1+2bc) A+bB—c(l +bc)C +bc
Then
rn=2bc 1n=>b r; =—c (1 +bc)

From two of these three equations we can find b and ¢ in terms of ry, 1, and r3. The
third equation then imposes a restrictive relation on the r; (i =1, 2, 3), which n+4nrn=1.

Therefore, (A-v) is not conjugate to operators for which r;* + 4 r, 13 = 0.
We consider the following Cases :

Case-1: If 1, =0, 1, = 1, r; = 0, we seek a solution of the system Lu=0and (B + 1) u

where A is a non-zero constant.
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For convenience, we choose A = 1 and write the equation as Lu=0 and (B + 1)u = 0.

A solution of this system is —
o= (5151 1)

If this function expanded in powers of y, we get

& (— 1, %yz(xz—l))zi Pn(;‘!)yn (22

n=0

Which can equally well be written in term of Bessel’s function as

e 1,12 )= iP“(X)yn

|
= n:

Case-2: Ifr; =2, 1, =1, r3 = —1, we are led to this choice by considering ¢ (B — o)

where is a non zero constant. We find that —
e“B-0)e“=2cA+B+c’C+(c—w)
If we let ¢ = 1 then we determine the solution of the system

Lu=0and 2A +B - C + 1 — ) = 0. From the generating function of (22), by

replacing y by -y we get —

u(x,-y)=e " F (— i1 % o'y’ (x? —1))

We know that for an arbitrary function f (x, y).

ST B,

_\/1+2xy+y2 \/1+2xy+y2’\/1+2xy+y2
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Thus

‘ 1 ~(x+y)oy 1 0%y’ (x*-1)

eu(x,—a)y)z—zexp — o —;I;Z—2
VI+2xy+y JI+2xy+y (1+2xy+y)2

zi(l+2xy+y2);é(—l)“m“y“ p X+y
n! ! 1+ 2xy +y?

n=0

With the help of (20), we get —

_ 22(2_}
1 exp( (X+y)coyj OFI[_;I;i oylx -1 J

\/1+2xy+y2 1+2xy +y’ (1+2xy+y2)z

=YL, ()R, (x)y" (23)

n=0
Which is a bilateral generating function for P, (x).°
Case-3: Letr; =0, 1, =0, r; = 1. we seek a solution of the system

Lu =0 and (c + @) u =0, where @ is a non-zero constant. We may avoid actually
solving this system by noting that —

e (B+1)e ‘e ™ =2¢c(1+bc)A+(1+bc)B-c’C+c(l+bc)+1.
If we choose b =1 and c =—1, we get
ePe “(B+1)ee™ =-C+1

Therefore we can obtain a solution of Lu = 0 and (C — 1) u = 0 by transforming the
generating function (22) as —

2
eBeC{exy F(—;l;l 2xz—lj}zlex (—l—ij F —;1;l x 1
ol 4Y( ) y Y y o 4y

If we let -1/y = t and expand in powers of t we get —
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(—t) exp (—1+xt) OF{—;l;%tz(xz _1)) _ -t iPn(X_)tn

or
xt o~ Pn tn
e” ,F, (—;1;%t2(xz—l))=§ (ri(‘)
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