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ABSTRACT 

In this paper, Weisner’s group theoretic method is utilized to obtain the generating functions for 
the Legendre polynomials Pn (x). To derive the elements of Lie algebra, a suitable interpretation to the 
index n is given. Further, a linear independent differential operators was derived, which generates a Lie 
algebra. The principle interest in our results lies in the fact that, how the Weisner’s group-theoretic method 
can be applied suitably to the Legendre polynomials in order to derive six generating functions. Many 
results obtained are well known but some of them are believed to be new in the theory of special functions. 
Mathematics Subject Classification (2010): 33C10, 33C45, 33C50, 33C80. 
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INTRODUCTION  

Group theoretic method was proposed by Louis Weisner in the year 1955 and he 
employed this method to find generating relations for a large class of special functions. 
Weisner discussed the group theoretic significance of generating functions for 
hypergeometric functions namely Hermite, Bessel functions etc. This technique was used by 
Khanna and Bhagavan1, Khan and Pathan2 for obtaining generating functions for various 
special functions. The importance of group theoretic method is to create a connection 
between special functions and matrix groups and plays a very important role in constructing 
the first order linear differential operators, which generates a Lie algebra that is isomorphic 
to some matrix Lie algebra. Miller3, Mc Bride4, and Srivastava and Manocha5 reported group 
theoretic method for obtaining generating relations in their books. Hypergeometric 
polynomials/hypergeometric series in one and more variables arise naturally and rather 
frequently in a wide variety of problems in applied mathematics, theoretical physics, 
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engineering sciences, statistics and operation research etc., In fact, a considerable field of 
physical and quantum mechanical situations (such as Schrodinger’s wave mechanics) and 
various types of distributions in probability theory lead naturally to such classical orthogonal 
polynomials as the Legendre and Laguerre polynomials. 

The principle objective of this paper is to derive some more interesting bilateral            
(or bilinear) generating relations for Pn (x) using Weisner1 group-theoretic method4 by 
giving an interpretation to the index n. The usefulness of this method is that it yields a set of 
six generating relations.  

Definition 

The Legendre polynomials Pn (x) satisfy the following descending and ascending 
recurrence relations, respectively: 

 ( ) ( ) ( ) ( )[ ]xPxxPnxPdx
dx1 n1nn

2 −=− −  …(1)                

and  ( ) ( ) ( ) ( )[ ]xxPxxP1)(nxPdx
dx1 1nnn

2
+−+=−  …(2) 

These two independent differential recurrence relations determine the linear ordinary 
differential equation 

 ( ) ( ) ( ) ( ) ( ) 0xP1nnxDP2xxPDx1 nnn
22 =++−−  …(3) 

where dx
dD = . The proofs of these results are obvious. 

Group – Theoretic Discussion 

Let us write the differential equation (3) in operator functional notation as 

 ( ) ( ) 01nnD x2Dx1n,dx
dx, L 22 =++−−=⎟

⎠
⎞⎜

⎝
⎛  …(4) 

In order to use Weisner’s method, we now construct from (3) the following partial 

differential equation by replacing xybyn,xbydx
d

∂
∂

∂
∂ and ( ) ( )yx,ubyxPn : 
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 ( ) ( ) 0yx,uy2yx2x
y

y
x

x1 2

2
2

2

2
2 =⎥

⎦

⎤
⎢
⎣

⎡
∂
∂+

∂
∂−

∂
∂+

∂
∂−   …(5) 

where ( ) ( )xPyyx,u n
n=  is a solution of (5). 

Let L represents the partial differential operator of (5), given by 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂+

∂
∂−

∂
∂+

∂
∂−=⎟

⎠
⎞⎜

⎝
⎛

y2yx2x
y

y
x

x1n,dx
dx,L 2

2
2

2

2
2  …(6) 

We now seek linearly independent lowering and raising differential operators B and 
C each of the form 

y)(x,Ayy)(x,Axy)(x,A 321 +
∂
∂+

∂
∂  

such that 

[ ] 1
1 )()( −

−= n
nn

n
n yxPbyxPB  

  [ ] 1n
1nn

n
n y(x)Pcy(x)PC +

+=  …(7)      

where bn and cn are expression in n which are independent of x and y.  

Each Ai (x, y), i = 1, 2, 3, on the other hand, is an expression in x and y, which is 
independent of n. 

This necessitates the bringing into use of the recurrence relations (1) and (2). With 
the help of (1) and (2), it follows from (7) that 

( ) xyyxyxy  x1C 22 −
∂
∂−

∂
∂−=  

 ( ) yxxy x1B 12

∂
∂+

∂
∂−= −  …(8) 

To find the group of operators, let us write .yyA 
∂
∂≡  
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Then we have the operators A, B and C, which satisfy the following commutator 
relations: 

 [A, B] = −B      [A, C] = C       [B, C] = −2.4 −1 …(9) 

Now, every linear differential operator of the first order generates a one parameter 
Lie group4 and therefore, these commutator relations show that the set of operators {1, A, B, 
C} generate a three-parameter Lie group. Furthermore, we would like to prove that these 
operators commute with the partial differential operator L. We express L in terms of these 
operators. 

We know that 

( ) .y
u2yx

u2x
y
uy

x
ux1Lu 2

2
2

2

2
2

∂
∂+

∂
∂−

∂
∂+

∂
∂−=  

and 

( ) ( ) y
uy2xy

uyx
ux12x

y
uyx

x
ux1CBu 22

2

2
22

2

2
2

∂
∂−

∂
∂+

∂
∂−−

∂
∂−

∂
∂−=  

We get 

( )[ ] u.AuCBL x1 22 =−−  

Therefore, 

 ( ) ( ) uACBLux1 22 +=−  …(10) 

By using the commutator relations, we prove that the operators A, B and C commute 
with (1 – x2) L and hence with R = r1 A + r2 B + r3 C + r4, where each ri (i = 1, 2, 3, 4) is an 
arbitrary constant, R is the set of differential operators. 

This Lie algebra determines a root system and Weyl group. The extended form of 
the group generated by each of the operators A, B and C as follows: 

 ( ) ( )yex, fyx, fe aaA =  …(11) 

 ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

++

+= 22
22

bB bbxy 2y,
bbxy 2y

bxy fyx, fe  …(12)   
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 ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++++

+

++
=

1cxy 2yc
y ,

1cxy 2yc
cyx f

1cxy 2yc
1yx, fe

222222
cC  …(13) 

where a, b and c are arbitrary constants and f (x, y) is an arbitrary function. 

Then it is evident that  

 ( ) ( )ηξ, f
1cxy 2yc

1yx, fee
22

bBcC

++
=  …(14) 

Where 

( )
( ) ( )[ ] ( )1cxy 2yccyxy2b1cxy 2ycby

1cxy 2yc bcyxyξ
2222222

222

+++++++

++++=  

( ) ( )
1cxy 2yc

cyxy 2b1cxy 2ycbyη 22

22222

++
+++++=  

Generating Functions 

Derivation from the Operator (A – υ)  

We see that A generates a trivial group. Say u(x, y) = yυPυ (x) is a solution of the 
simultaneous equations Lu = 0 and (A – υ) = 0 for arbitrary υ. Therefore, we determine 
generating functions of Pn (x) by finding ebB + cC [yυPυ (x)].  

We need to consider three cases. 

Case-1: Suppose b = 1, c = 0. Since for an arbitrary function f (x, y)  

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
++

++

+= 2
2

B y xy21,
y xy21

1xy  fyx, fe  

We find 

 ( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

+++=
2υ

2
υ

2B

y xy21
xy1Py xy21yx, fe  …(15)   
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Since B[yυPυ (x)] = υyυ-1 Pυ-1 (x), we have 

 ( )[ ] ( ) ( ) ( )xPy!n
υ1xPye nυ

nυ
υ

0n

n
n

υ
υB

−
−

=
∑ −−

=  …(16) 

Equating expressions (15) and (16) and replacing –y-1 by t, we get – 

 ( ) ( ) ( )∑
=

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−
−+−

υ

0n

n
nυ

n
2υ

2
υ

2 txP!n
υ

t2xt1
txPt x t21  …(17) 

Case-2: Suppose b = 0, c = 1. In this case, we have  

 ( )[ ] ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

+++=
−−

2υ
2

1υ
2υ

υ
υC

y xy21
yxPy xy21yxPye  …(18) 

On the other hand, 

 ( )[ ] ( ) ( ) ( ) nυ
nυ

0n

n

υ
υc yxP!n!υ

!nυ1xPye +
+

∞

=
∑ +−=  …(19) 

Equating the expressions (18) and (19) and replacing –y by t′ we get – 

 ( ) ( ) ( )∑
∞

=
+

−− +=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−
−+−

0n

n
nυ2υ

2
1υ

2 txP!n!υ
!nυ

t2xt1
txPt x t21  …(20) 

Case-3: Suppose bc ≠ 0, without any loss of generality we can choose b = − 1 and c 
= 1, so we have 

( ) ( ) ( ) ( ) ( ) ( )∑∑
∞

= =

+−
+−

−− +−−−
=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

+−++
0n

υ

0k

nkυ
nkυ

nk
n

2υ
2
1

2
υ

2 yxP!n!k
1kυυ1

y2xy1
1xyPy2xy1  

                                                             or 

 ( ) ( ) ( ) ( ) ( )∑∑
∞

= =

+−
+−

−
−− +−−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+−
−+−

0n

υ

0k

nkυ
nkυ

nk
kυ

2υ
2
1

2
υ

2 txP!n!k
1kυυ1

t2xt1
xt1Pt2xt1  …(1) 
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Derivation from the Operator not Conjugate to (A-υ) 

Let S = ecC ebB, where b and c are arbitrary constants 

Now according to McBride    we find that – 

ebBCe−bB = –2bA – b2B + C – b 

ebBAe−bB = A + bB 

ecCAe−cC = A + cC 

ecCBe−cC = 2cA + B – c2C + c  

Consider the set of linear differential operators 

{R/R = r1A + r2B + r3C + r4, for all combinations of zero and non-zero coefficients 
except for r1 = r2 = r3 = 0}. 

We find that  

SA S−1 = ecC ebB Ae−bBe−cC 

= (1 + 2bc) A + bB – c(1 + bc) C + bc  

Then 

r1 = 2bc       r2 = b  r3 = −c (1 + bc) 

From two of these three equations we can find b and c in terms of r1, r2 and r3. The 
third equation then imposes a restrictive relation on the ri (i = 1, 2, 3), which r1

2 + 4 r2 r3 = 1. 

Therefore, (A-υ) is not conjugate to operators for which r1
2 + 4 r2 r3 = 0.  

We consider the following Cases : 

Case-1: If r1 = 0, r2 = 1, r3 = 0, we seek a solution of the system Lu = 0 and (B + λ) u 
= 0.  

where λ is a non-zero constant. 



 P. L. R. Kameswari and V. S. Bhagavan: Group-Theoretic Origins of…. 

 

1662 

For convenience, we choose λ = 1 and write the equation as Lu = 0 and (B + 1)u = 0. 

A solution of this system is – 

( ) ( )⎟
⎠
⎞⎜

⎝
⎛ −−= 1xy4

1;1;Feyx,u 22
10

xy  

If this function expanded in powers of y, we get 

 ( ) ( )∑
∞

=

=⎟
⎠
⎞⎜

⎝
⎛ −−

0n

n
n22xy

!n
yxP1xy4

1;1;e  …(22) 

Which can equally well be written in term of Bessel’s function as 

( ) =− 2
0

xy x1yJe ( )∑
∞

=0n

n
n

!n
yxP  

Case-2: If r1 = 2, r2 = 1, r3 = –1, we are led to this choice by considering ecC (B – ω) 
e–cC. 

where is a non zero constant. We find that – 

ecC (B – ω) e–cC = 2 cA + B + c2C + (c – ω) 

If we let c = 1 then we determine the solution of the system 

Lu = 0 and (2A + B – C + 1 – ω) = 0. From the generating function of (22), by 
replacing y by –y we get – 

⎟
⎠
⎞⎜

⎝
⎛ −−=− − 1)(xyω4

1;1;Fey)(x,u 222
10

xωω  

We know that for an arbitrary function f (x, y).  

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++++

+

++
=

222
c

y xy21
y,

y xy21
yx f

y2xy1
1yx, fe  
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Thus 

     ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

++

−−
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

+−

++
=− 22

222

1022
c

y xy21
1)  (x yω

4
1 1; ;F

y xy21
ωy y)(x exp

y xy21
1ωy x,u e  

                     ( ) ( )∑
∞

=

−−

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++

+−++=
0n

2n

nnn2
1

2
υ

2

y2xy1
yxP!n

yω1y2xy1  

With the help of (20), we get – 

( ) ( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

++

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

+−

++
22

222

1022 y2xy1
1xyω

4
1;1;F

y2xy1
ωyyxexp

y2xy1
1  

 = ( ) ( )∑
∞

=0n

n
nn yxPωL  …(23) 

Which is a bilateral generating function for Pn (x).6 

Case-3: Let r1 = 0, r2 = 0, r3 = 1. we seek a solution of the system 

Lu = 0 and (c + Ø) u = 0, where Ø is a non-zero constant. We may avoid actually 
solving this system by noting that – 

( ) ( ) ( ) 1bc1 cCcBbc1A bc1 2cee 1)(B ee 22bBcCcCbB +++−+++=+ −− . 

If we choose b = 1 and c = –1, we get 

( ) 1Cee1Bee BCCB +−=+ −−  

Therefore we can obtain a solution of Lu = 0 and (C – 1) u = 0 by transforming the 
generating function (22) as – 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−⎟
⎠
⎞

⎜
⎝
⎛ −−=

⎭
⎬
⎫

⎩
⎨
⎧ ⎟

⎠
⎞⎜

⎝
⎛ −−−

2

2

10
22

10
xycB

y
1x

4
1;1;Fy

x1expy
11xy4

1;1;Feee  

If we let -1/y = t and expand in powers of t we get – 
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( ) ( ) ( ) ( )∑
∞

=

−=⎟
⎠
⎞⎜

⎝
⎛ −−+−−

0n

n
n22

10 !n
txP

e
t1xt4

1;1;Fxt1expt  

or 

                               ( ) ( )∑
∞

=

=⎟
⎠
⎞⎜

⎝
⎛ −−

0n

n
n22

10
xt

!n
txP1xt4

1;1;Fe  
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