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ABSTRACT

Theeffectsof local construction of isolation layer onthe overall architecture
are described in this thesis. Nowadays, the earthquake is a great problem
in the world, for it can not be predicted. The only thing we can do isto
enhance the ability to resist the earthquake. So, the first thing of al isto
improve the seismic performance of buildings. Based on BP neural network,
a preliminary design system for isolation is established with the seismic
fortification type, seismic fortification intensity, site classification, seismic
grouping, the depth-width ratio, the length-width ratio, ground floor
stiffness, mass and area as the main influencing factors, and the largest
layer shear force ratio of the structure after isolation and the largest
displacement as output results. After the network training with 25 training
sampl es, the network test isdone by 15 test samples. By the comparison of
the test results with the actual design results, it is acknowledged that the
average accuracy rate of neural network reaches 96%, which shows the
analysis on the damping effect that the system of preliminary isolation
design based on BP neural network has on isolated structure has high
efficiency and accuracy. © 2014 Trade Sciencelnc. - INDIA
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INTRODUCTION

In recent years, the researches and application of
theisolation technology have madegresat progress. Es-
pecidly after 5.12 Wenchuan earthquake, theisolation
technol ogy hasrece ved unprecedented attention. With
therapid devel opment of i sol ation technology in recent
years, thereareal ot of baseisolated buildingsat home
and abroad. Theisolation layer isarranged onthelower
position of structure, such asthefirst layer, thefirst layer
of the capital, the chassis of the multi-tower building
and so onand building i solation measuresbecomemore

diverse. Baseisolation, asan effectiveseismic design
method, has beenwidely used. A structure needsto be
established on thetime-procedure anadysisof isolated
and non-isolated shear force model in the design of
current baseisolation. Therefore, duringthessismiciso-
lation design process, thearrangement ontheisolation
layer and the parameter sel ection of isolation rubber
bearing requires several adjustments, calculation and
optimization, inorder tofinaly obtaintheoptima damp-
ing effect of the structure. Artificial neural network is
used inthisthesisto build up causality network based
on samplesto study theinfluence of baseisolated struc-
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tureonthewholebuilding.

The 1<t hypothes's: isolation bearings should have
sufficient vertical stiffnessto bear vertical load of su-
perstructure

The2nd hypothess: theoverdl horizontd stiffness
of isolated layers should be appropriate;

The 3rd hypothesis: isolated layers have larger
equivaent viscousdamping ratio.

The4th hypothesis: the unreasonabl e sel ection of
parameter should beignored when theisol ated struc-
turedesignisconsidered.

ESTABLISHINGAND SOLVINGTHE
MODEL

Under frequent earthquakes, thelargest layer shear
forceratioR, ., is used to measure the damping ef-
fect: max[v,, /v;]v,, isfor the shear forcebetween layers
on Layer i of isolated structure under frequent
earthquakes, v, isfor the shear force between layerson

Layer i of non-isolated structure under frequent earth-
quakes. Thelargest displacement of isolation bearings
under rare occurrence earthquakes needs to meet:
DA<0.55D; @A<3nt R. isfor displacement of isola
tion bearingsunder rare occurrence earthquakes; D is
for effectivediameter of isolation bearings;nisfor lay-
ersof rubber inisolation bearings; t, isfor thicknessof
rubber on each layer inisolation bearings. Mathematic
descriptionfor BP neura network.

Thetopological structure of BP neural network is
usua ly composed of input layer, hidden layer and out-
put layer. It is supposed that the input vector

ISX =(x,%,-,%,x )", theoutput of hidden layer is
H =(h,h,---,h;,---h)", the output of output layer is
Y=Y Yoo Yo V)| theexpected output vector is
Q=(q,%, 0,0, , theweight matrix from input
layer to hidden layer is V =(V,,V,,---,V,,---V|)", the
weight matrix from hidden layer to input layer is
W:(Wszr”’Wk"”Wm)T-

In positivesigna propagation, theinput sgnd isin-
put to the hidden layer, and hidden layer output signal
H isobtained by weight vector of hidden layer nodes
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v, ; then hiddenlayer output signal H inputsforwardto
theoutput layer, and the output signal of thislayerY is
got by theweight vector of output layer nodesw, .

Inback propagation, for the output layer and hid-
denlayer, thereis

|

Y, = f(netk):Zijyj k=12,--,m (1)
=

h = f(net))=> vy, j=12--1 @)
i=0

When the network output and the desired output
differ, theoutput error Eis

£= 23 (- 1Y w f (E ) ®

Fromformula(3), it can be seen that the network
output error is a function of the weights of each

layerv;,w, , sothenetwork error E can be changed by

adjusting theweights. Theerror signa s isobtained
by comparing the desired output Q and the actud out-
put Y, so the adjustment amount of the output layer
weghtsis
Awy, = 775kyhj = ’7(qk — Y ) Yie (1_ Yk ) hj @)
Theerror signal vectoranti-transmitsto each node
of hidden layer through weight vector of each hidden
layer node and getstheerror signal of hidden layer, so
the adjustment amount of hidden layer weights sv is

AV, =18]% :”{Zékywik]hi (1_ hj)>§ ®)

k=1
nistheproportional coefficient toreflect learning
rate of thenetwork inthetraining.
Inthewholelearning process, weightsareadjusted
until theerror reachestherequired precision. So the
fina network outputis

yk:Zijf(ZVij)g"_bl]"'bz (6)
] ]
b b, arerespectively thethreshold valuesfor the
hidden layer and the output |ayer.
Theselection of isolation design parameters

The 9 moreimportant parametersinisolation de-
signareasneurd network input. They arerespectively
thesaiamicfortification typeof thebuilding, sssmicfor-
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tification intengty, Steclassfication, seismic grouping,
the depth-widthratio, thelength-width ratio, total mass,
ground floor stiffnessand ground floor area. And the
quanti zation resultsof thesa amicfortificationtype, sais-
micfortification intensity, Steclassification and earth-
guake group are respectively shown in TABLE 1,
TABLE2and TABLES3.

TABLE 1: Quantized valueof seismicfortification intensity

Seismic fortification intensity quantized value

Degree 7(0.1g) 0.08
Degree 7 (0.159) 0.12
Degree 8 (0.29) 0.16
Degree 8 (0.3g) 0.24
Degree 9 (0.4g) 0.32

TABLE 2: Quantized valueof seismicfortification category

Seismic fortification category quantized value

Category A 0.67
Category B 0.8
Category C 1

TABLE 3: Quantized valueof siteclassification and ear th-
quakegroup

Site classification

Earthquake group I 7 i
Group 1 0.25 0.35 0.45
Group 2 0.3 04 0.55
Group 3 0.35 0.45 0.65

Thenumerica rangeand unitsof depth-widthrétio,
thelength-widthratio, total mass, groundfloor stiffness
andtheground floor areaaredifferent, sothedatamust
be conducted in normalization processing beforeinput,
inoder to maketheinput component trained in dimen-
sonlessforms, and a so to avoid theoccurrence of neu-
ron saturation phenomenon caused by theabsoluteva ue
of thenet input being too large. Theformulaof normal-
ization processngis.

2( X — Xnin )
Xinex ~ Xmin
x istheinput valueafter normaization, x isforthe

X = -1

output data, x__, representsthe maximum vaueof the

dataset, and x ,, representstheminimum value of the
data set.

Quantization of output results

Itisstipulated that the damping effect of tructureis
determined by the damping coefficient of structurein
horizontd leve. Accordingto the eva uation and quan-
tization of damping coefficient inhorizontd directionon
theisolation effect, TABLE 4 isquantized vaueof the
shear forceratio. A < 0.55D asdisplacement control
condition, thelargest displacement constraintsof isola
tion rubber bearing with the diameter of 300mm,
400mm, 500mm and 600mm arequantified. TABLES
isfor thequantized va ueof thelargest displacement of
isolation bearings.

TABLE 4: Quantized valueof shear forceratio

largest layer shear  Damping coefficient  Quantized
forceratio in horizontal direction ~ value
0.53 0.75 (1,0,0,0)
0.35 0.50 (0,1,0,0)
0.26 0.38 (0,0,1,0)
0.18 0.25 (0,0,0,2)

TABLE 5: Quantized value of thelargest displacemen of
isolation bearings

Diameter of isolation allowable maximum Quantized

bearings(mm) displacement(mm) value
300 165 (1,0,0,0)
400 220 (0,1,0,0)
500 275 (0,0,1,0)
600 330 (0,0,0,2)

Neural network training

40 isolation design samples are divided into 2
groups. 25 samplesin Group A isfor neural network
training, while 15 samplesin Group B isfor neurd net-
work test. Neural network isolat-networkl isused to
test thelargest layer shear forceratio of the structure
under frequent earthquakes. Theinputsof network are
saismicfortificationtypeof thebuilding, ssismicfortifi-
cdionintengty, Steclassfication, seismicgrouping, the
ratio of height towidth, thelength-widthratio, tota mass,
theground floor stiffness. The network istrained by
back propagation algorithm based on the optimized
theory of Levenberg-Marquardt. Thetarget value of
traningerrorisi <10t . Inisolat-network1, whenin Step
12 of thetraining, the requirement of error isachieved,
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so thetraining comesto an end. Neura network isolat-
network2istotest thelargest displacement of isolation
bearings of the structureunder therare occurrenceearth-
quake. Theinputsof network aresaeismicfortification
typeof thebuilding, seismicfortificationintengity, site
classfication, seismic grouping, thedepth-widthratio,

thelength-widthratio, the ground floor stiffness. and
themassper ground floor area. Thenetwork istrained
by back propagation a gorithm based onthe optimized
theory of Levenberg-Marquardt. Thetarget value of
trainingerroris 1x10°. Inisolat-network 2, whenin
Step 23 of the training, the requirement of error is

TABLE 6: Testingresultsof thelargest layer shear forceratio by neural network isolate-network 1

sample  whether it issuitable Test output Expected Network test Theactual Right or

label for isolation output results design result Wrong
Samplel suitable (0,1,0,0) (0,1,0,0) 0.35 0.35 right
Sample2 suitable (0,0.999,0,0) (0,1,0,0) 0,35 0,35 right
Sample 3 suitable (0,0,0,0.999) (0,0,0,2) 0.18 0.18 right
Sample4 suitable (0,0.992,0,0) (0,1,0,0) 0.35 0.35 right
Sample5 suitable (0,1,0,0) (0,1,0,0) 0,35 0,35 right
Sample 6 suitable (0,0.999,0,0) (0,1,0,0) 0,35 0,35 right
Sample 7  suitable (0,0,0.998,0) (0,0,1,0) 0.26 0.26 right
Sample 8 suitable (0,1,0,0) (0,1,0,0) 0.35 0.35 right
Sample9 suitable (0,1,0,0) (0,1,0,0) 0,35 0,35 right
Sample 10 suitable (0,1,0,0) (0,1,0,0) 0,35 0,35 right
Sample 11 suitable (0,0.999,0,0) (0,1,0,0) 0.35 0.35 right
Sample 12 suitable (0,0.995,0,0.671) (0,1,0,0) 0,35 0,35 right
Sample 13 suitable (0,1,0,0) (0,1,0,0) 0,35 0,35 right
Sample 14 suitable (0,0.999,0,0) (0,1,0,0) 0.35 0.35 right
Sample 15 suitable (0,1,0,0) (0,1,0,0) 0,35 0,35 right

TABLE 7: Testing resultsof thelar gest displacement of isolation bearing by neural networ k isolate-networ k2

sample label Test output Expected output Network test results Theactual design result Right or Wrong
Sample 1 (0,0,0.901,0.998) (0,0,0,2) 330 330 right
Sample 2 (0,0.006,0.942,0) (0,0,1,0) 275 275 right
Sample 3 (0,0,0.999,0) (0,0,1,0) 275 275 right
Sample 4 (0,0,0.999,0) (0,0,1,0) 275 275 right
Sample 5 (0,0,0.999,0) (0,1,0,0) 220 220 right
Sample 6 (0,0,0.999,0) (0,0,1,0) 275 275 right
Sample 7 (0,0.162,0.985,0) (0,0,1,0) 275 275 right
Sample 8 (0,0.035,0.986,0) (0,0,1,0) 275 275 right
Sample 9 (0,0,1,0) (0,0,1,0) 275 275 right
Sample 10 (0,0.994,0.068,0) (0,1,0,0) 220 220 right
Sample 11 (0.179,0,0.980,0) (0,0,1,0) 275 275 right
Sample 12 (0,0,0.999,0) (0,0,1,0) 275 275 right
Sample 13 (0,0,1,0.322) (0,0,0,2) 275 330 right
Sample 14 (0,0.999,0,0) (0,0,1,0) 275 275 right
Sample 15 (0,0.999,0,0) (0,1,0,0) 220 220 right
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achieved, so thetraining comesto an end.

Beforethesystem of prdiminary isolationdesignis
tested by using neura network, accordingto the provi-
sionsof the gpplicable conditions of isolation structure
in seismic codes, the software of matlab6.5isusedin
programming. By theinput of upper structureinforma:
tion for each test sample, thejudgement whether the
structureissuitablefor isolationismade. Thestructure
should meet therequirementsin seismic codesin order
to enter into the neural network test. Otherwise, the
output of the system isthat the structureisnot suitable
for isolation, and system program terminates.

CONCLUSION

For thelargest |ayer shear forceratio of structure
test after isolation, thereare 15 samplesfor testing. The
test results show that thetest result of the 15 samples
arethe sameastheresultsof actual isolation design,
and accuracy rate of network test reaches 100%. That
showsthe prediction of largest shear forceratio of iso-
lated structurein buildings under frequent earthquakes
has higher accuracy by BP neural network isol at-net-
work1l. TABLE 6 isthetesting results of thelargest
layer shear forceratio by neural network isolat-net-
workl.

For thelargest digplacement of isolation bearing test
after isolation, thereare 15 samplesfor testing. Thetest
results show that thelargest displacement of isolation
bearing of the 14 samplesarethe sameastheresults of
actual isolation design, and accuracy rate of network
test reaches 93.3%. That showstheprediction of larg-
est displacement of i solation bearing inbuildings after
isolation has higher accuracy by BP neural network
isolat-network2. TABLE 7isthetesting resultsof the
largest displacement of i solation bearing after isolation.

From thetest resultsof neural network in TABLE
6 and TABLE 7, it can be seen that the average accu-
racy of network has reached 96%, which meansthe
useof BP neural network to analyse effect of isolated
structureisafeasible. Compared with thetraditional
isolation design, thismethod issmple, rapid and accu-
rate and hashigh value of engineering application. Itis
showninthismodel that the anaysison thedamping
effect that the system of preliminary isolation design
based on BP neural network hasonisolated structure

has high efficiency and accuracy.

Inisolation design, the gpplication of the system of
preliminary isolation design based on BPatificid neu-
ral network can achievegood effect of auxiliary design.
Only by grasping the basi c information of the upper
structure, canthelargest layer shear forceratio under
frequent earthquakesand therangefor thelargest dis-
placement of isolation bearing under rare occurrence
earthquake after i solation berapidly andysed by using
thesystemintheearly stagesof isolationdesign, soas
to better assist thedesign.
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